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Abstract 

The aim of this paper is to present some statistical aspects of an order 1 autoregressive 
model with errors following a stationary and ergodic generalized threshold ARCH process. So, 
to analyse the precision of forecasts obtained with these models a probabilistic study will be 
done. Moreover, a consistent test for a general AR( 1) model with errors following an ergodic 
white noise of null conditional median will be developed and adapted to our stochastic process. 
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1. Introduction 

Conditionally heteroscedastic models, proposed by Engle (1982) and generalized, in 
different ways, by other authors (Bollerslev, 1986; Nelson, 1991; Zakoian, 1990), are, 
under their stationarity conditions, white noises; so, they could be taken to describe 
the error process in general time series modelling. 

In these models, the form of the conditional heteroscedasticity is known and this fact 
will certainly lead to improved theoretical statistical results. Therefore, Sections 2 and 3 
of the study will concentrate on some statistical aspects of an order 1 autoregressive 
model with errors following a stationary and ergodic generalized threshold ARCH 
process (Rabemananjara and Zakoian, 1993; Goncalves and Mendes Lopes, 1994). 

In Section 2, a probabilistic study is developed to analyse the precision of forecasts 
obtained with these models. Unlike in the classical case, this precision is not indepen- 
dent of the current and past states of the process; so, this kind of modelling allows 
us to detect subperiods of stronger or weaker volatility. Expressions of the conditional 
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variance and of the variance of the successive forecasts will be established, thereby 
generalizing the corresponding results of Zakoian (1990). 

A test for those models will be proposed, taking into account that they are well- 
described by their conditional distribution in the past. So, in Section 3, a consistent 
test is implemented for the autoregression coefficient of an AR( 1) model with errors 
following an ergodic white noise of null conditional median. The test definition follows 
the idea present in Goncalves et al. (1996), in which a consistent test was obtained 
for stationary and ergodic ARMA models with conditionally Gaussian errors. 

We point out that the consistence of the test is now established under very weak 
hypotheses. In fact, we only require the strong stationarity, the ergodicity and the nullity 
of the conditional median of the error process. Even the hypothesis of second-order 
integrability of the process, usual for classical tests, is not demanded in this case. To 
prove the consistence of the test we will use a non-traditional methodology, particularly 
useful in test theory (Tassi and Legait, 1990, p. 250) which is based on the asymptotic 
separation of the model distributions obtained under each one of the hypotheses to be 
tested. 

The test proposed here may also be considered as a test for the equality to zero of 
the conditional median of the observed process. 

In this paper, the following notations for a general process X =(X,, t E Z) will be 
used: X,+ = max(X,, 0), X,- = min(&, 0) and X_,_, the a-field generated by (Xr-i, i > 1). 

2. The AR(l)-Gtarch(l,l) model: the forecast error 

Let us consider a real stochastic process Y = ( Yt, t E Z) satisfying the autoregression 
equation 

r,-CPK-I =&tr soEl--l,l[, (1) 

where E = (Q, t E Z) follows the generalized threshold Arch (1,l) model given by 

(c~o>O,~+~O,CCI,- 20 and Pi 80), 
+ 0, = ~0 + m,+~~_] - t+~1_, + Plat-l, 

with (Z,, t E Z) a sequence of independent and identically distributed real random 
variables, with zero mean and unit variance, such that Z, is, for every t E Z, independent 
of the a-field ct_, . 

A general definition of Gtarch(p, q) models can be found in Rabemananjara and 
Zakoian (1993). 

The stationarity and the ergodicity of these models have been studied in Goncalves 
and Mendes-Lopes (1994,1996). For the particular model considered here, these prop- 
erties are equivalent to the following condition on the coefficients: 

(~i,+)2@Z,t)2 + (ai,-)2QZ;)2 + P: + %[cc,,+E(Ztt) - c+w,-)I< 1. (2) 
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In this kind of models, the form of the conditional variance to the past is known; 
therefore, a better insight into the accuracy of forecast intervals may be expected, if 
we replace the non-conditional variance by the conditional one. In fact, taking into 
account the particular form of cf, forecast intervals may be obtained, the widths of 
which are a function of the past variability of the data. 

The importance of the study of the conditional variance of the forecast error may be 
also illustrated, if we suppose that the law of et given ~r_i is Gaussian with zero mean 
and variance cf. As the law of Y,/I’_ l is Gaussian with mean cpY,_i and variance 
a:, the one-step-ahead forecast intervals, with a confidence level equal to LX, have the 
closed form: 

where a = F-‘((1 + c()/2) and F is the distribution function of the N(O,l) law. But, if 
we want to compute other forecast intervals, as the law of E~+JE~ for s> 1 is not neces- 
sarily a Gaussian one, we can only obtain approximations using, in particular, moment 
inequalities, such as those of Bienayme-Tchebycheff or Bernstein (Frechet, 1950) from 
which forecast intervals may be deduced taking into account the conditional variance 
of the forecast error. 

These comments lead us to the study of this conditional variance. 
The forecast formula for the instant t + S, s E N, at instant t of the model (1) is 

E( Yt+&) = (PS Y, 

and so, the conditional variance of the forecast error is 

V(Y,,SIY,) = 2 cp2(S-iW+,lE,). 

As the conditional variance of the a-process is known, this expression may be made 
explicit. In fact, the following result is obtained: 

Theorem 1. If Y is the process dejned by (1) and if we suppose that the law of 2, 
is symmetrical with respect to the origin then 

V(Y,+,/y,) =$ q2(S-i)(bi-‘o;+, + ct+~hf;:(a~, b, C) + Si(ao, b, cl>, 

with 

b = ; (@I,+)’ + (a,,- )* + V: + 4W1(q+ + RI,- >I; c = BI + qq+ + El,- ), 

fi(ao, b, c) = 

1 - g-1 
gi(ao, b, c) = O$ ____ 

l-b + 
2cc4 
- 
1-C 

bi-’ _ 1 bi-’ _ @-l 

b-l- (b - cl I 
3 

and k = E(Z,t ) = E( -Z,- ). 
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Proof. We have 

yI+s = (P’Y, + 2 (ps-i&t+i 
i=l 

and so 

(A) E( Y:+,/r,) = (pzsY: + 2 $02(S-‘)E((Tf+i/&t). 
i=l 

Using the definition of (TV, the general properties of the conditional expectation and 
taking into account that Ed = o,Z,, we show: 

(i) E(a?+ilE,) = zi + bE(a:+i_l/E,) + 2aOCE(~t+i-l/&) 

and 
i 2 

(ii) ECal+il,) = a0 CjlO CJ + PC&+,. 

The result is obtained replacing, recursively, (i) and (ii) in expression (A). 0 

Let us study now the behaviour of the conditional precision as s grows to infinity. 

Theorem 2. Under the general hypotheses of Theorem 1 and supposing that E is a 
weakly stationary Gtarch (1,l) process, we have 

a;< 1 + c) 
V(K)=(l -b)(l -$)(l -c)’ 

Proof. The convergence, when s + 00, of the series present in Theorem 1 occurs, as 
b>O and c>O, if 

b<l and ccl, 

We point out, firstly, that as the law of Z, is symmetrical, the condition b< 1 is 
equivalent to the condition (2) of stationarity of E. 

Let us prove now that the condition b < 1 implies c < 1. To make the analysis easier, 
we take 

al,+ =x, ml,- = Y and b1 =z. 

We need to study the intersection of the conditions z + k(x+y) < 1 and x2 + y2 + 2z2 + 
4kz(x+y) < 2. 

The equation (El) kx+ky+z = 1 describes the plane passing by the points (l/k, 0, 0), 
(0, l/k,O) and (O,O, l), while the equation (~72) x2 + y2 + 2z2 + 4kzn + 4kzy - 2 = 0 
describes an ellipsoid of revolution (see Fig. 1 for k = i). 

Let us analyse the relative position of the curves (El ) and (E2) when z = h, for h 
arbitrarily fixed (0 <h d 1). 

In the plane z = h, the equation (El) is the straight line given by kx + ky + h - 
1 = 0 and the equation (E2) is the circumference with centre (-2kh, -2kh) and radius 
v’8k2h2 + 2 - 2h2. The distance between the centre of the circumference and the 
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Fig. 1. Curves (El) and (E2) fork= f 

straight line is 

d = _ k( -2kh) + k( -2kh) + h - 1 4k2h - h + 1 

vFX@ = VW 

and it is clearly greater than the radius of the circumference if k < i. As Z, has a 
symmetrical distribution of unit variance, it is easy to prove that k < i. Moreover, the 
case k = i corresponds to a degenerated distribution for IZ, 1. 

So under our general hypothesis of stationarity for the s-process, and excluding 
the extreme case k= i, the referred series is convergent to [cr~(l+c)]/[(l--b)(l - (p2) 
(1 - c)]. 0 

It should be noted that, in spite of the dependence on the past of the forecast for a 
finite lead time, when this lead time grows indefinitely, we obtain a result independent 
of the forecast origin t, as in the classical case. 

The latter equality allows us to obtain the variance of the error process 

a;( 1 + c) 
V(so=(l _b)(l -c)’ 

which generalizes the result of Zakoian (1990) when E follows a conditionally Gaussian 
TARCH (1) process. 
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3. A test for an AR(l) model 

3.1. The test consistence 

Let X=(X,, t E Z) be a real stochastic process such that 

xt=cpx-I +&r cPEl--l,l[, 
where E = (Ed, t E Z) is a strongly stationary and ergodic process such that E~ # 0, a.s., 
for every t E Z. We assume that the median of the conditional law of ct given cr_, is 
unique and zero, for every t E Z. 

Considering T+ 1 observations of X, denoted by x0,-x,, . . . ,XT, a test may be proposed 
for the hypotheses 

Ho: cp = 0 against H, : cp = B (/? # 0 arbitrarily fixed). 

This test is constructed, following the idea of Gongalves et al. (1996), using the sets 

for every tE{l,...,T+ l}. 
Let g: R--f R + be a strictly p ositive and symmetrical function, increasing on R+; 

we define the acceptance regions of Ho by 

VTEN, AT= 

{ 

{x(T):c;, s(pxf-1)[2lo,(xf-l,xf) - 1120), P>O, 

{x(7):c:=,g(p?cf-,)[21D;(li-I,xf)- ll>O), B<O, 

where xc’) = (x,,x,_,, . . .) E n’_, R. 
The idea behind the definition of these regions may be easily illustrated. Let us 

consider, e.g., the case /3 >O and xt_, > 0. Suppose that I,‘=, [210,(x,-1 ,xt) - I] >O. 
In this case, the random variables 

2&--I,&)- ~=21{,(<&,),2} - 1, t= l,%...,T 

take the value 1 more often than the value - 1; so, as the conditional median of the law 
of X, given &_, is cpx,_, , this seems to imply that cp = 0. Otherwise, if that expression 
is negative, rp = fi seems more likely. Moreover, when p(xt_ 1)/2 is very close to zero, 
the events X, < &- I)/2 or X, > j3(xl- 1)/2 have almost the same probability. So, it is 
natural to introduce a function weighting the large values of pxt_ 1. 

Denoting the model distribution and the corresponding expectation when the au- 
toregressive parameter is equal to cp by PV and by $, respectively, and supposing g 
P,-integrable, we will prove the following result: 

Theorem 3. Under the previous conditions, the sets AT, T E N, are the acceptance 
regions of a convergent sequence of tests of Ho against H,. 
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Proof. We will only consider the case where /I >O because the study for p <O is 
analogous. Let us define 

where Y(xt--l,xt)= ‘C =s(Bxt-1)[21~,(xt-1,~~) - 11. 
Using the ergodic theorem (Azencott and Dacunha-Castelle, 1984) we know that 

lim7._+03 TT = I$[ Y(&,Xt )], as. 
We will study the sign of this limit under each one of the two hypotheses; in this 

way we deduce the corresponding asymptotic separation and, as a consequence, we 
obtain the test convergence (Geffroy, 1980; Moche, 1989). 

We have 

Moreover, 

~~Kb(~OiwXO)I 

= 1,o,+co[m)~, 
( 

Xl < ;~o/& 

> 

+ I,- ‘x,O[(~O)~q 
( 

P 
Xl > -xo/x_o . 2 1 

So, under Ho, 

1 

Po[(X < +0/X0)1 if X, > 0, 

~o[(lo,(~oV& )/X_o)l = Po[(& > $X0/&)] if X0 CO, 

0 if X0 = 0. 

As the conditional law of .a[ given c+, has a unique median of zero value and as 
X0 # 0 a.s., we obtain 

~oK~D,(~oJI)/&)I> ig a.s. 

g(jxo)[2Eo( lD,(xo,xI )/X_,) - l] >O, a.s., and then limr++oo (a.s.) u/T >O which 
implies 

PO@& 80)) + 1 as T--t+co. 

On the other hand, under HI, we have 

Pp(& < ;xo/x,>, x0 > 0, 

EBK ID, (XOA )&)I = P&Y, > ;xo/x_o), x0 <o, 

0, x0 = 0, 

( 

Pfl(El < - ~~O/~~), x0 > 0, 

= &(&I > -$ol%J> xl CO, 

0, x0=0, 

as, under the considered hypotheses, cr =X_(, for every t E Z. 
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Taking into account that the conditional median is unique and null, 

~~[(~D,V~I,~~YX,)I~~, under HI. 

Then g(8&/ai)[2E~( ~Q(&,xI)/x,) - 11~0; so, we obtain limr++03 (as.) Yr <O 
and, finally, 

The asymptotic separation of the two hypotheses is then proved. 0 

3.2. Simulation experiments 

To illustrate the suitability of this test for models with conditionally heteroscedastic 
errors, a simulation study will be done in which a real process Y = (Y,, t E Z) following 
the model (1) is considered. In this model, the white noise E = (et, t E H) is the strongly 
stationary TARCH (1) process (Zakoian, 1990) defined by 

CrI = 1 + o.51&1_, 1) 

where Z,, t E Z, are i.i.d. N(0, 1) random variables. 
In order to analyse the importance of the weight function in the test statistics, we 

shall consider the case in which the observations are equally weighted (g(x) = 1) and 
that which corresponds to the weight function g(x) = Ix]. 

Moreover, to investigate the possible advantages of adopting our test, a comparison 
study is done with the Box-Pierce classical test, with a size fixed on 5%, for an 
AR( 1 )-TARCH (1) model (Gourieroux, 1992); in order to do this we have to ensure 
the existence of the fourth-order moments of the TARCH (1) model. The coefficients 
of the model presented here were chosen in order to satisfy such a condition. 

The behaviour of our test when Ho is true is evaluated by undertaking a simulation 
study for several values of T (T = 50, T = 100, T = 150) letting cp = 0 in the model. We 
then tested this model against four alternatives (/I = 0.1, p = 0.25, B = 0.5, /I = 0.9). The 
percentage of rejections of the white-noise hypothesis in 200 replications is presented 
in Table 1. 

We observe a decreasing number of rejections of the null hypothesis as /? or T 
increases; moreover, this decrease is, in general, stronger when the observations are 
really weighted. 

Also recorded was the percentage of rejections of Ha with the Box-Pierce test with 
a significance level fixed at 5%. As is clear from the definition of the test, the rejection 
probability of the test increases if one considers alternative hypotheses close to the null. 
Thus, our test does not favour the null in all circumstances, as is the case for traditional 
tests, in which the size is fixed a priori. The power simulations (see Table 2) indicate 
that this size property indeed implies better power properties. 
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Table 1 
Percentage of rejections of Ho where q~ = 0 

50 100 150 
g(x) = 1 g(x) = 1x1 BP g(x) = 1 g(x) = 1x1 BP g(x) = 1 s(n) = 1x1 BP 

(5%) (5%) (5%) 

0.1 0.41 0.42 0.135 0.35 0.3 0.2 0.35 0.305 0.215 
0.25 0.325 0.275 0.17 0.27 0.2 0.165 0.215 0.16 0.175 
0.5 0.15 0.105 0.205 0.1 0.095 0.25 0.055 0.035 0.205 
0.9 0.015 0.025 0.16 0.01 0.0 0.26 0.0 0.0 0.23 

Table 2 
Percentage of rejections of HI where cp = p (/I>O) 

50 100 150 
g(x) = 1 g(x) = 1x1 BP g(x) = 1 g(x) = 1x1 BP g(x) = 1 s(x) = 1x1 BP 

(5%) (5%) (5%) 

0.1 0.5 I 0.475 0.775 0.415 0.405 0.72 0.36 0.35 0.67 
0.25 0.295 0.28 0.58 0.2 0.24 0.345 0.185 0.185 0.165 
0.5 0.155 0.125 0.105 0.085 0.05 0.015 0.02 0.02 0.0 
0.9 0.005 0.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

In order to have some insight about the rate of convergence of the power function, we 
analyse its performance for several values of T. The test was constructed for several 
values of /I (/I = 0.1,0.25,0.5 and 0.9) and taking cp = /3 in the true model. In each 
case we recorded the percentage of rejections of the alternative (true) hypothesis in 
200 replications of the model. The results are presented in Table 2. 

We note the decreasing number of rejections of Hi produced by our test when ,!J’ 
moves away from zero or as T increases. As mentioned before, we find indeed that 
the weaker size properties of our test for alternatives close to the null, imply better 
power properties for these alternatives. The particular simulation study presented here, 
therefore, shows that our test should be considered as an alternative to more classical 
ones. The importance of the weight function is also evident. 

Finally, we point out that the simulations here presented are only intended to indicate 
the behaviour of our test and that more detailed Monte Carlo studies have been left 
for future research. 

3.3. Concluding remarks 

This test may be applied to strongly stationary and ergodic processes X = (X,, t E Z) 
with the probability law well described by the conditional distributions of X, given 
the o-field X_,_,; thus, beyond its application to classical AR( 1) models, it can also 
be applied, as we have seen in the previous paragraph, to the AR( 1) models with 
conditionally heteroscedastic errors if they are strongly stationary and ergodic. 

Moreover, this test does not impose the existence of moments of the marginal dis- 
tribution of X of order greater than one. It may then be applied to error processes that 
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: conditionally heteroscedastic and strongly stationary but not necessarily weakly 
itionary. 
A point of future research is naturally the study of the convergence rates of the 
/el and power functions. In particular, we expect to generalize the result of expo- 
ntial decay of the level sequence obtained in Goncalves et al. (1996) under stronger 
nditions than those here considered. 
All the simulation studies were programmed in the statistical software CSS: 
egafile Manager. 
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