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Abstract 4 

Water consumption is perhaps the main process governing Water Distribution Systems. 5 

Due to its uncertain nature, water consumption should be modeled as a stochastic 6 

process or characterized using statistical tools. This paper presents a description of 7 

water consumption using statistics as mean, variance, and correlation. The analytical 8 

equations expressing the dependency of these statistics on the number of served users, 9 

the observation time and the sampling rate, namely the scaling laws, are theoretically 10 

derived and discussed. Real residential water consumption data are used to assess the 11 

validity of these theoretical scaling laws. Results show a good agreement between the 12 

scaling laws and the scaling behavior of real data statistics. The scaling laws represent 13 

an innovative and powerful tool, allowing to infer the statistical features of overall water 14 
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consumption at each node of a network, from the process that describes the demand of a 15 

user unit without loss of information about its variability and correlation structure. This 16 

will further allow the accurate simulation of overall nodal consumptions, reducing the 17 

computational time when modeling networks. 18 

 19 

Subject Headings 20 

Water distribution systems, water use, statistics, correlation, scale effects, time series 21 

analysis. 22 

 23 

Introduction 24 

Optimal design and management solutions for Water Distribution Systems (WDS) can 25 

only be obtained when using accurate and realistic values of nodal consumptions. With 26 

the increasing computational capacity, consumption uncertainty and networks’ 27 

reliability have become increasingly important in design practices. Residential use 28 

represents a significant proportion of the total consumption and is characterized by high 29 

variability, since it depends on many factors, known as explanatory variables, like 30 

climate, urban density, household size, water use policies, price and income (Polebitsky 31 

and Palmer, 2010). Moreover, even users belonging to the same type do not exhibit the 32 

same behavior every day. The conventional modeling of WDS considers deterministic 33 

consumptions at all nodes of the system. However, from the aforementioned reasons it 34 
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seems evident that consumption is not deterministic, and its variability represents a 35 

great source of uncertainty when modeling WDS: uncertainty inherent to consumption 36 

propagates into uncertain pressure heads and flows, affecting the reliability of the 37 

system. A realistic approach for modeling WDS emerges from the explicit consideration 38 

of consumption uncertainty through its statistical characterization. In a probabilistic 39 

hydraulic analysis, nodal consumptions are assumed to be random variables, and their 40 

deterministic values are replaced by statistical information about them, such as the 41 

mean, variance and probability distributions, which express the uncertainty about the 42 

real value of the consumptions. A thorough statistical description of water consumption 43 

also requires the definition of the correlation between consumptions. Statistical 44 

correlation between residential indoor water consumptions was proved to be not 45 

negligible and to affect the hydraulic performance of a WDS (Filion et al., 2007; Filion 46 

et al., 2008). The probabilistic characterization of the performance of the network is 47 

thus essential for reliability purposes, but is difficult to solve. A considerable effort has 48 

been invested in developing methods and algorithms to solve this problem. However, 49 

the comprehension of the uncertainty itself has been overlooked. Quantities for the 50 

variance and correlation between nodal consumptions are always assumed; for instance, 51 

variance is mostly assumed to be 10% of the mean value (Kapelan et al., 2005; Babayan 52 

et al., 2004). Taking into account more realistic values for the uncertainty inherent to 53 

water consumption could significantly improve the optimization models.  54 

Buchberger and Wu (1995) developed the first stochastic model for indoor water 55 

consumption, using three parameters: frequency, intensity and duration, characterized 56 
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through a Poisson rectangular pulse process (PRP). Alvisi et al. (2003) proposed the 57 

alternative cluster Neyman-Scott rectangular pulse model (NSRP), resembling the PRP 58 

model, but differing in the means in which the total consumption and frequency of 59 

pulses are calculated, and better reflecting the daily variability of water consumption. A 60 

closer look to the arrival rate function of a PRP process intended to model automated 61 

meter reading demand data at different spatial and temporal scales is presented in 62 

Arandia-Perez et al. (2014). A predictive end-use model was developed more recently 63 

by Blokker and Vreeburg (2005), in which end-uses are simulated as rectangular pulses 64 

with specific probability distributions for the frequency, intensity and duration, attained 65 

from field surveys in the Netherlands. In Huang et al. (2014) annual urban water 66 

demand time series are forecasted, recognizing and embracing their non-stationary 67 

nature, and based on explanatory variables and the sensitivity of demand to them. The 68 

wavelet transform is used to decompose the non-stationary series, and then the kernel 69 

partial least squares and autoregressive moving average models are used to model the 70 

stationary sub-series. Another promising predictive model was developed by Aksela and 71 

Aksela (2011) and consists in the estimation of demand patterns at property level 72 

(single-family households). Estimation of nodal consumptions is taken a step further in 73 

Kang (2011) by combining the estimation of uncertain consumptions and pipe 74 

roughness coefficients with the prediction of pipe flows and pressure heads. The 75 

uncertainties in the estimated variables and pipe flows and pressure heads predictions 76 

are quantified in terms of confidence intervals using a first order second moment 77 

method. After verifying non trivial scaling of the variance of real consumption data with 78 

spatial aggregation, Magini et al. (2008) developed simple scaling laws relating the 79 
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mean, variance and covariance of water consumption series with the number of 80 

aggregated users. The expected value for the mean consumption was found to increase 81 

linearly. The expected value for the variance and lag1 covariance of consumption was 82 

found to increase according to an exponent between one and two. The subject was 83 

further investigated in Vertommen et al. (2012). While the scaling laws were derived 84 

considering different time steps, the effect of the time window of observation on the 85 

statistics, due to the auto-correlation in the consumption series, was not completely 86 

established in this first approximation. The scaling laws were developed neglecting the 87 

space-time covariance function, an assumption made for the sake of simplicity at the 88 

time. Here, the spatial and temporal correlations will both be explicitly considered. The 89 

development of scaling laws for the cross-covariance and cross-correlation coefficient, 90 

between two groups with different characteristics is also an innovative and challenging 91 

task. To validate and calibrate the theoretically developed scaling laws, real residential 92 

consumption data are used. 93 

Scale effects have been identified in a wide variety of subjects and by many different 94 

researchers. In Ghosh and Hellweger (2012) a literature overview regarding spatial 95 

scaling in urban and rural hydrology can be found. Other scaling relations, such as the 96 

mean-variance scaling translated by Taylor’s power law, are well documented in many 97 

different systems: from the variability in population abundance (Ballantyne IV and 98 

Kerkhoff, 2007), to epidemiology, precipitation and river flows, stock markets, business 99 

firm growth rates (Eisler et al., 2008), car traffic, among others. By generically relating 100 

statistics of a stochastic process at different aggregation levels, these scaling laws are 101 
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not restricted to water consumption modeling, and can be useful to different fields of 102 

science. 103 

Being part of an ongoing research work, these scaling laws will be combined with 104 

optimization models for the design of WDS and scenario evaluations. Understanding 105 

the temporal and spatial variability of nodal consumptions is a fundamental pre-106 

requisite for a risk-based approach in designing and managing WDS. At this aim, the 107 

scaling law approach will allow the development of more robust designs and 108 

management solutions for water distribution networks. 109 

 110 

Theoretical Framework 111 

The development of the scaling laws is based on the assumption that water flow in a 112 

meter, corresponding to the water consumption of a unit user, is a random variable or 113 

realization of a stationary stochastic process 𝑄1(𝑡). Herein, the water flow in a meter 114 

will be used to define the unit water consumption. This unit can refer, for instance, to 115 

one household. Hence, the spatial aggregation refers to the aggregation of meters with 116 

the same unitary consumption. Let there be 𝑛 meters identified by 𝑚𝑖 with  𝑖 =117 

1, 2, … , 𝑛, let 𝑇 denote the length of the observation time interval, and let 𝑞𝑚𝑖
(𝑡), with 118 

𝑡 ∈ [0, 𝑇], be different finite realizations of the stochastic process, representing the 119 

water consumption for the 𝑖𝑡ℎ meter. The mean and variance of water flow for the 𝑖𝑡ℎ 120 

meter, in the time interval 𝑇, are evaluated, respectively, by: 121 
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𝜇𝑚𝑖
=

1

𝑇
∫ 𝑞𝑚𝑖

(𝑡)𝑑𝑡
𝑇

0
  (1) 

𝜎𝑚𝑖

2 =
1

𝑇
∫ [𝑞𝑚𝑖

(𝑡) − 𝜇𝑚𝑖
]

2
𝑑𝑡

𝑇

0

 (2) 

 122 

The auto-covariance, 𝑐𝑜𝑣𝑚𝑖
(𝜏), and auto-correlation coefficient, 𝜌𝑚𝑖

(𝜏) at a time lag 𝜏 are 123 

given by: 124 

𝑐𝑜𝑣𝑚𝑖
(𝜏) =

1

𝑇
∫ (𝑞𝑚𝑖

(𝑡 + 𝜏) − 𝜇𝑚𝑖
)(𝑞𝑚𝑖

(𝑡) − 𝜇𝑚𝑖
)𝑑𝑡

𝑇

0

 (3) 

𝜌𝑚𝑖
(𝜏) =

𝑐𝑜𝑣𝑚𝑖
(𝜏)

𝜎𝑚𝑖
2

 
(4) 

 125 

As aforementioned, to accurately describe stochastic consumption it is also necessary to 126 

determine the correlation between the signals in different meters, 𝑚 𝑖1and 𝑚 𝑖2. This 127 

correlation can be expressed through the cross-covariance, 𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2
(𝜏), and the cross-128 

correlation coefficient,𝜌𝑚𝑖1𝑚𝑖2
(𝜏), evaluated in time interval 𝑇, respectively, as 129 

followed:  130 

𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2
(𝜏) =

1

𝑇
∫ (𝑞𝑚𝑖1

(𝑡 + 𝜏) − 𝜇𝑚𝑖1
)(𝑞𝑚𝑖2

(𝑡) − 𝜇𝑚𝑖2
)𝑑𝑡

𝑇

0

 (5) 

𝜌𝑚𝑖1𝑚𝑖2
(𝜏) =

𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2
(𝜏)

𝜎𝑚𝑖1
⋅ 𝜎𝑚𝑖2

 
(6) 
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Where, 𝜎𝑚𝑖1
 and 𝜎𝑚𝑖2

 are the standard deviations of the consumption in 𝑚 𝑖1 and 𝑚 𝑖2. 131 

If no lag is considered, these last two statistics become the lag-zero cross-covariance 132 

and lag-zero cross-correlation coefficient, given by the same expressions (5) and (6), but 133 

with 𝜏 = 0. 134 

Among the aforementioned statistics, the mean, the variance, the auto-covariance and 135 

the auto-correlation coefficient, coincide with the expected values of the stochastic 136 

process if the process is assumed to be ergodic and the observation time is long enough. 137 

The expected values assume different values depending on the ‘spatial’ aggregations in 138 

the discrete space of the positive integers associate with each meter (Magini et al., 139 

2008). The pooled water consumption, resulting from the aggregation of the 𝑛 random 140 

variables is given by: 141 

𝑞𝑛(𝑡)=∑ 𝑞𝑚𝑖
(𝑡)𝑛

𝑖=1  (7) 

Where 𝑞𝑛(𝑡) is a finite realization of a pooled stochastic process 𝑄𝑛(𝑡). The aim of this 142 

work is to determine the expected value of the above statistics for the pooled stochastic 143 

process, in a generic observation interval 𝑇, as function of the aggregation 𝑛, the length 144 

of 𝑇, assuming the expected values of the statistics for the stochastic process 𝑄1(𝑡), are 145 

known. 146 

 147 

Scaling law for the variance 148 

As aforementioned, Magini et al. (2008) developed the first equation for the expected 149 

value of the variance for 𝑛 aggregated consumption series, 𝐸[𝜎𝑛
2], which was further 150 

developed in Vertommen et al. (2012), neglecting the space-time correlation term. In 151 
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order to solve the equation for 𝐸[𝜎𝑛
2] without neglecting the referred term, the following 152 

equation obtained in Magini et al. (2008) is initially considered: 153 

𝐸[𝜎𝑛
2] =

1

𝑇2
∫ ∫ ∑ ∑ [𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2

(0) − 𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2
(𝜏)]𝑑𝑡1𝑑𝑡2

𝑛

𝑖2=1

 

𝑛

𝑖1=1

𝑇

0

𝑇

0

 (8) 

Where, 𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2
(0) is the cross-covariance at lag 𝜏 = 0 and 𝑐𝑜𝑣𝑚𝑖1𝑚𝑖2

(𝜏) is the cross-154 

covariance at lag 𝜏 = 𝑡1 − 𝑡2. This expression can further be developed into: 155 

𝐸[𝜎𝑛
2] = ∑ 𝜎𝑚𝑖

2

𝑛

𝑖=1

+ 2 ∑ ∑ 𝜎𝑚𝑖1
𝜎𝑚𝑖2

𝜌𝑚𝑖1𝑚𝑖2
(0)

𝑛

𝑖2=𝑖1+1

𝑛−1

𝑖1=1

 

−
1

𝑇2
∫ ∫ [∑ 𝜎𝑚𝑖

2

𝑛

𝑖=1

𝜌𝑚𝑖
(𝜏) + 2 ∑ ∑ 𝜎𝑚𝑖1

𝜎𝑚𝑖2
𝜌𝑚𝑖1𝑚𝑖2

(𝜏)

𝑛

𝑖2=𝑖1+1

𝑛−1

𝑖1=1

] 𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0

 

(9) 

Since the consumption random variables have the same underlying stochastic process, 156 

𝜎𝑚𝑖
= 𝜎1 and 𝜌𝑚𝑖

(𝜏) = 𝜌1(𝜏), equation (9) can be simplified into: 157 

𝐸[𝜎𝑛
2] = 𝑛𝜎1

2 + 2𝜎1
2 ∑ ∑ 𝜌𝑚𝑖1𝑚𝑖2

(0) −
𝑛𝜎1

2

𝑇2

𝑛

𝑖2=𝑖1+1

𝑛−1

𝑖1=1

∫ ∫ 𝜌1(𝜏)𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0

 

−
2𝜎1

2

𝑇2
∑ ∑ ∫ ∫ 𝜌𝑚𝑖1𝑚𝑖2

𝑇

0

(𝜏)𝑑𝑡1𝑑𝑡2 =
𝑇

0

𝑛

𝑖2=𝑖1+1

𝑛−1

𝑖1=1

 

= 𝑛𝜎1
2(1 − 𝛾1(𝑇)) + 2𝜎1

2 {∑ ∑ [𝜌𝑚𝑖1𝑚𝑖2
(0) − 𝛾𝑚𝑖1𝑚𝑖2

(𝑇)]

𝑛

𝑖2=𝑖1+1

𝑛−1

𝑖1=1

} 

(10) 
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Where, 𝛾1(𝑇) is the variance function for the consumption observed in the single 158 

meters, as defined by Vanmarcke (1983): 159 

𝛾1(𝑇) =
1

𝑇2
∫ ∫ 𝜌1(𝜏)𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0

 (11) 

And similarly, 160 

𝛾𝑚𝑖1𝑚𝑖2
(𝑇) =

1

𝑇2
∫ ∫ 𝜌𝑚𝑖1𝑚𝑖2

(𝜏)𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0

 (12) 

For the special case of spatial uncorrelated demands, expression (10) becomes: 161 

𝐸[𝜎𝑛
2] = 𝑛𝜎1

2[1 − 𝛾1(𝑇)] (13) 

And for the special case of spatial perfectly correlated demands, expression (10) 162 

becomes: 163 

𝐸[𝜎𝑛
2] = 𝑛2𝜎1

2[1 − 𝛾1(𝑇)] (14) 

Since the spatial correlation between consumptions can assume values between 0 164 

(uncorrelated consumptions) and 1 (perfectly correlated consumptions), equations (13) 165 

and (14) represent the minimum and maximum limits for the expected value of the 166 

variance of the pooled process 𝑄𝑛(𝑡). The theoretical equation (10) relies on many 167 

different variables and can therefore be difficult to use in practical cases. An alternative 168 

and simplified generic equation is proposed through the following approximation: 169 

𝐸[𝜎𝑛
2] ≅ 𝑛𝛼𝜎1

2[1 − 𝛾1(𝑇)] (15) 
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Where, the expected value of the variance of the pooled process 𝑄𝑛(𝑡), is proportional 170 

to the variance of the process 𝑄1(𝑡), according to an exponent, which varies between 1 171 

and 2. The value of the scaling exponent depends on 𝑛 and on the existing spatial 172 

correlation: if consumption signals are uncorrelated in space, the variance increases 173 

linearly, if signals are perfectly correlated in space, the variance increases according to a 174 

quadratic order. The auto-correlation, or the correlation in time, of the consumption 175 

signals reduces the variance in a finite observation period 𝑇. This reduction is expressed 176 

through the variance function. When the observation period 𝑇 is significantly larger 177 

than the scale of fluctuation, 𝜃, the variance function is simplified into 𝛾1(𝑇) =
𝜃

𝑇
 178 

(VanMarcke, 1983), and its value will be much smaller than one, having therefore little 179 

influence on the expected value of the variance of the pooled process, 𝑄𝑛(𝑡). In this 180 

case it seems reasonable to neglect the space-time covariance function, and the equation 181 

for 𝐸[𝜎𝑛
2] becomes the equation derived in Vertommen et al. (2012). The approximation 182 

for the expected value of the variance of the pooled process, 𝑄𝑛(𝑡), given by equation 183 

(15), disregards the fact that the scaling exponent could be a function of the number of 184 

aggregated meters. As a first approximation, the real demand data will be fitted to the 185 

power law, and a general and constant value of 𝛼 will be estimated. 186 

 187 

Scaling law for the cross-covariance 188 

Let there now be two different types of consumption, 𝐴 and 𝐵, each with a different 189 

underlying stationary stochastic process, 𝑄𝐴,1(𝑡) and 𝑄𝐵,1(𝑡), whose realizations are 190 
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respectively, 𝑞𝐴,𝑚𝑖
(𝑡) and 𝑞𝐵,𝑚𝑗

(𝑡), with 𝑖 = 1, 2, … , 𝑛𝐴 and 𝑗 = 1, 2, … , 𝑛𝐵. The 191 

objective is now to derive the expected value for the lag zero cross-covariance between 192 

the pooled processes 𝑄𝑛𝐴
(𝑡) and 𝑄𝑛𝐵

(𝑡), whose realizations are respectively, 𝑞𝑛𝐴
(𝑡) 193 

and 𝑞𝑛𝐵
(𝑡), i.e., the 𝑛𝐴 aggregated random variables with consumption type 𝐴, and the 194 

𝑛𝐵 aggregated variables with consumption type 𝐵. Following a similar approach as the 195 

one used to develop the scaling law for the variance, the expected value for the 196 

aforementioned cross-covariance, 𝐸[𝑐𝑜𝑣𝑛𝐴𝑛𝐵
], considering an observation time 𝑇, is 197 

given by: 198 

𝐸[𝑐𝑜𝑣𝑛𝐴𝑛𝐵
] =

1

𝑇2
∫ ∫ ∑ ∑ [𝑐𝑜𝑣𝑚𝑖𝑚𝑗

( 0) − 𝑐𝑜𝑣𝑚𝑖𝑚𝑗
( 𝜏)] 𝑑𝑡1𝑑𝑡2

𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1

𝑇

0

𝑇

0

 (16) 

Where 𝑐𝑜𝑣𝑚𝑖𝑚𝑗
( 𝜏), is the cross-covariance between the consumptions at 𝑚𝑖 and 𝑚𝑗, at 199 

time lag 𝜏, and 𝑐𝑜𝑣𝑚𝑖𝑚𝑗
( 0), is the cross-covariance between 𝑚𝑖 and 𝑚𝑗, at time lag 𝜏 =200 

0. This expression shows that the expected value for the cross-covariance between the 201 

aggregated consumptions of two different groups depends on the spatio-temporal 202 

correlation between the unit consumption variables of the two groups. If the 203 

consumption variables of group 𝐴 have no correlation with the consumption variables of 204 

group 𝐵, independently of the correlation that might exist between the variables within 205 

each group, then 𝑐𝑜𝑣𝑚𝑖𝑚𝑗
(0) = 0 and 𝑐𝑜𝑣𝑚𝑖𝑚𝑗

( 𝜏) = 0, for all pairs (𝑚𝑖, 𝑚𝑗). In this 206 

case, equation (16) becomes null. Considering now a more generic case in which the 207 

consumptions of group 𝐴 are at some level correlated with the consumptions of group 208 

𝐵, then equation (16) becomes: 209 
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𝐸[𝑐𝑜𝑣𝑛𝐴𝑛𝐵
] = ∑ ∑ 𝑐𝑜𝑣𝑚𝑖𝑚𝑗

( 0) − ∑ ∑
1

𝑇2
∫ ∫ 𝑐𝑜𝑣𝑚𝑖𝑚𝑗

(𝜏)𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0

𝑛𝐵

𝑗=1

= 

𝑛𝐴

𝑖=1

𝑛𝐵

𝑗=1

 

𝑛𝐴

𝑖=1

 

= ∑ ∑ 𝜎𝑚𝑖
𝜎𝑚𝑗

𝜌𝑚𝑖𝑚𝑗
(0) − ∑ ∑ 𝜎𝑚𝑖

𝜎𝑚𝑗

𝑛𝐵

𝑗=1

 

𝑛𝐴

𝑖=1

𝑛𝐵

𝑗=1

 𝛷𝑚𝑖𝑚𝑗
(𝑇)

𝑛𝐴

𝑖=1

= ∑ ∑ 𝜎𝑚𝑖
𝜎𝑚𝑗

[𝜌𝑚𝑖𝑚𝑗
(0) − 𝛷𝑚𝑖𝑚𝑗

(𝑇)]

𝑛𝐵

𝑗=1

 

𝑛𝐴

𝑖=1

 

(17) 

Where, 𝜎𝑚𝑖
, 𝜎𝑚𝑗

 are the standard deviations of the consumption at 𝑚𝑖 and 𝑚𝑗, 210 

respectively, 𝜌𝑚𝑖𝑚𝑗
(0) is the cross-correlation function between 𝑚𝑖 and 𝑚𝑗 at time lag 211 

𝜏 = 0, 𝜌𝑚𝑖𝑚𝑗
( 𝜏) is the cross-correlation function between 𝑚𝑖 and 𝑚𝑗 at time lag 𝜏, and 212 

where: 213 

𝛷𝑚𝑖𝑚𝑗
(𝑇) =

1

𝑇2
∫ ∫ 𝜌

𝑚𝑖𝑚𝑗
( 𝜏)𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0

 (18) 

For practical purposes, if the consumption variables from each group have the same 214 

underlying process, then it is possible to assume a mean cross-correlation coefficient, 215 

denoted by �̅�1𝐴( 0), among the meters of group 𝐴, and a mean cross-correlation 216 

coefficient, denoted by �̅�1𝐵( 0), among the meters of group 𝐵. Consequently, a mean 217 

cross-correlation coefficient �̅�1,𝐴𝐵( 0) between 𝐴 and 𝐵, can also be assumed. In this 218 

case, the theoretical equation (17) can be approximated by: 219 

𝐸[𝑐𝑜𝑣𝑛𝐴𝑛𝐵
] = 𝑛𝐴𝑛𝐵𝜎1𝐴𝜎1𝐵[�̅�1,𝐴𝐵(0) − �̅�(𝑇)] (19) 

Where, 220 
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�̅�(𝑇) = ∑ ∑
𝛷𝑚𝑖𝑚𝑗

(𝑇)

𝑛𝐴𝑛𝐵

𝑛𝐵

𝑗=1

 

𝑛𝐴

𝑖=1

 (20) 

The cross-covariance increases with the product of the spatial aggregation levels and is 221 

independent of the spatial correlation on the intern of each group. When the space-time 222 

covariance is neglected, the cross-covariance between water consumptions of two 223 

groups, scales with the product between the aggregation levels of both groups.  224 

 225 

Scaling law for the cross-correlation coefficient 226 

Finally, the objective is to derive the scaling law for the expected lag zero cross-227 

correlation coefficient between the pooled processes 𝑄𝑛𝐴
(𝑡) and 𝑄𝑛𝐵

(𝑡), which is given 228 

by:  229 

𝐸[𝜌𝑛𝐴𝑛𝐵
] =

𝐸[𝑐𝑜𝑣𝑛𝐴𝑛𝐵
]

𝐸[𝜎𝑛𝐴
] ⋅ 𝐸[𝜎𝑛𝐵

]
 (21) 

Where, 𝜎𝑛𝐴
 and 𝜎𝑛𝐵

 are the standard deviations of the pooled processes 𝑄𝑛𝐴
(𝑡) and 230 

𝑄𝑛𝐵
(𝑡), respectively. Using the more generic obtained scaling laws for the variance, 231 

equation (15), and the cross-covariance, equation (16), equation (21) becomes: 232 

𝐸[𝜌𝑛𝐴𝑛𝐵
] =

∑ ∑ [𝜌𝑚𝑖𝑚𝑗
(0) − 𝛷𝑚𝑖𝑚𝑗

(𝑇)]
𝑛𝐵
𝑗=1  

𝑛𝐴
𝑖=1

[𝑛𝐴
𝛼𝐴(1 − 𝛾1𝐴(𝑇))]

1
2 ⋅ [𝑛𝐵

𝛼𝐵(1 − 𝛾1𝐵(𝑇))]
1
2

 (22) 
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Where 𝛼𝐴, 𝛼𝐵 and 𝛾1𝐴(𝑇), 𝛾1𝐵(𝑇) are the exponents of the scaling law for the variance 233 

and the variance function specific to the meters in groups 𝐴 and 𝐵, respectively. In 234 

parallel, the simplified equation (19) for the cross-covariance produces: 235 

𝐸[𝜌𝑛𝐴𝑛𝐵
] =

𝑛𝐴𝑛𝐵[�̅�1,𝐴𝐵(0) − �̅�(𝑇)]

[𝑛𝐴
𝛼𝐴(1 − 𝛾1𝐴(𝑇))]

1
2 ⋅ [𝑛𝐵

𝛼𝐵(1 − 𝛾1𝐵(𝑇))]
1
2

 (23) 

Also, if the number of aggregated in both groups is the same, i.e., 𝑛𝐴 = 𝑛𝐵, equation 236 

(23) becomes: 237 

𝐸[𝜌𝑛𝐴𝑛𝐵
] = 𝑛𝛽

�̅�1,𝐴𝐵(0) − �̅�(𝑇)

[(1 − 𝛾1𝐴(𝑇))]
1
2 ⋅ [(1 − 𝛾1𝐵(𝑇))]

1
2

 (24) 

Where, 𝛽 = 2 −
(𝛼𝐴+𝛼𝐵)

2
. In this case the cross-correlation coefficient increases 238 

according to an exponent that is equal to the difference between the exponents of the 239 

expected value for the cross-covariance between the pooled process 𝑄𝑛𝐴
(𝑡) and 𝑄𝑛𝐵

(𝑡) 240 

(expected to be equal to two) and the average between the exponents of the expected 241 

values of the standard deviation associated to each process 𝑄𝑛𝐴
(𝑡) and 𝑄𝑛𝐵

(𝑡), 242 

respectively. Since 1 ≤ 𝛼𝐴, 𝛼𝐵 ≤ 2, the exponent of the scaling law for the cross-243 

correlation coefficient, 𝛽, will assume values between 0 and 1. These limits represent 244 

the possible extreme cases: perfectly correlated consumptions within each group, and 245 

uncorrelated consumptions within each group.  246 

Equation (23) shows that the cross-correlation coefficient between the pooled processes 247 

𝑄𝑛𝐴
(𝑡) and 𝑄𝑛𝐵

(𝑡), depends separately on the two aggregation levels, 𝑛𝐴 and 𝑛𝐵, and 248 



16 
 

not only on their product as happens with the cross-covariance. The cross-correlation 249 

coefficient between the pooled processes also depends on the cross-correlation 250 

coefficient between the realizations of each of the group individually, 𝑞𝐴,𝑚𝑖
(𝑡) and 251 

𝑞𝐵,𝑚𝑗
(𝑡), i.e., 𝜌𝑚𝑖1𝑚𝑖2

(0) and 𝜌𝑚𝑗1𝑚𝑗2
(0), other than the cross-correlations existing 252 

between the realizations of both groups, i.e., 𝜌𝑚𝑖𝑚𝑗
(0). 253 

 254 

Time step 255 

Another important aspect when modeling WDS is the choice of the adequate time step 256 

to assess water consumption. The adequate time step for design purposes is obviously 257 

not the same as for operation planning purposes. Even for the same purpose, it might be 258 

necessary to consider different temporal resolutions for feeders and peripheral pipes of a 259 

system, since the temporal variation of consumption significantly increases from the 260 

first to the last one. Considering longer time steps results in loss of information about 261 

the consumption signals, which in turn results in lower estimates of the variance 262 

(Rodriguez-Iturbe et al., 1984; Buchberger and Nadimpalli, 2004). At peripheral pipes 263 

this aspect is particularly relevant since the choice of the wrong time step will not 264 

reflect accurately the large consumption fluctuations that are, as aforementioned, 265 

characteristic of these parts of the network. It has been verified that the consumption 266 

variability deriving from different temporal aggregations specially affects flow rates and 267 

water quality at the peripheral pipes (Yang and Boccelli, 2013). 268 

Water consumptions variables can be analyzed considering different time steps; for 269 

instance, a one second time step, a one minute time step, and so on. The realizations of 270 
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the stochastic process observed at a smaller time step, can be aggregated in broader time 271 

steps. This is, a temporal aggregated water consumption variable, considering a time 272 

step ∆𝑡, is given by: 273 

𝑞𝑚𝑖,∆𝑡(𝜑)=
1

∆𝑡
∫ 𝑞𝑚𝑖(𝑡)

𝜑+∆𝑡 2⁄

(𝜑−∆𝑡 2⁄
𝑑𝑡 (25) 

Where 𝑞𝑚𝑖,∆𝑡(𝜑) is a realization of the time aggregated stochastic process 𝑄1,∆𝑡(𝜑). The 274 

temporal aggregated variable is divided by ∆𝑡 to maintain the flow units. Some of the 275 

statistics of the temporal aggregated process 𝑄1,∆𝑡(𝜑), differ from the statistics of the 276 

original process 𝑄1(𝑡). The reduction of the variance of an instantaneous signal with the 277 

time step can be measured through the aforementioned variance function proposed by 278 

VanMarcke (1983). Making use of the variance function it is possible to obtain the 279 

variance at any desired time step from the variance of the instantaneous signal. Taking 280 

this into account the scaling law for the variance, in equation (15) becomes: 281 

𝐸[𝜎𝑛,∆𝑡
2 ] = 𝑛𝛼𝜎1

2(1 − 𝛾1(𝑇))𝛾1(∆𝑡) (26) 

Where, ∆𝑡 is the desired time step, and 𝛾1(∆𝑡) is the variance function relating the 282 

variance of the original process 𝑄1(𝑡) and the variance of the temporal aggregated 283 

process 𝑄1,∆𝑡(𝜑). 284 

Similarly for the cross-covariance, in equation (19) the following is obtained: 285 

𝐸[𝑐𝑜𝑣𝑛𝐴𝑛𝐵,∆𝑡] = 𝑛𝐴𝑛𝐵𝜎1𝐴𝜎1𝐵[�̅�1𝐴𝐵(0) − �̅�(𝑇)]�̅�(∆𝑡) (27) 

Where, �̅�(∆𝑡) is the function relating the cross-covariance of the temporal aggregated 286 

process and the cross-covariance of the original process. 287 
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 288 

Validation of the analytical expressions using real consumption data 289 

Effect of the spatial aggregation 290 

The collected data consist in indoor water uses of 82 single-family residences, with a 291 

total of 177 inhabitants, from the town of Latina, Italy (Guercio et al., 2003; Pallavicini 292 

and Magini, 2007). The 82 users were monitored in four different days (4 consecutive 293 

Mondays). For each user the different days of consumptions were assumed to be 294 

different realizations of the same stochastic process. In this way the number of variables 295 

was artificially extended to about 320, preserving at the same time the homogeneity of 296 

the sample. The temporal resolution of each time series is one second. The data series 297 

were divided into one hour periods to assure a stationary underlying process. The series 298 

were then temporally aggregated considering time steps ranging from one second to 30 299 

minutes. To assess the scaling of the variance, all the consumption series were assumed 300 

to have the same underlying process and were aggregated in groups of 𝑛 =301 

10, 20, 30, … , 150. It has to be noted at this point that the data series correspond to 302 

discrete and finite sequences of demand values (and are therefore called time series), 303 

while the theoretical developments were made for continuous variables. The statistics of 304 

the real demand data are thus obtained through the appropriate and well-known 305 

estimators. This might introduce some minor bias to the estimations. Bias corrections 306 

can be made (Koutsoyiannis, 2013), but fall out of the scope of this work. The variance 307 

of each group was estimated, obtaining real value pairs (𝜎𝑛
2, 𝑛) for all the considered 308 

time steps. To assess the scaling of the cross-covariance and cross-correlation 309 
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coefficient, the time series were first randomly divided into two groups, 𝐴 and 𝐵, 310 

assuming to have two distinct underlying processes, and then aggregated in groups of 311 

𝑛𝐴 = 𝑛𝐵 = 10, … , 150. The cross-covariance and cross-correlation coefficient were 312 

estimated between all groups, obtaining real value pairs (𝑐𝑜𝑣𝑛𝐴𝑛𝐵
, 𝑛𝐴 = 𝑛𝐵) and 313 

(𝜌𝑛𝐴𝑛𝐵
, 𝑛𝐴 = 𝑛𝐵) for all the considered time steps. These pairs were used to validate the 314 

theoretical expressions for the scaling laws previously obtained and to calibrate them. 315 

For each parameter the value of the exponent 𝛼 or 𝛽 was obtained by adjusting the 316 

theoretical expression for the scaling law to the real value pairs. The least squares 317 

method was used for this adjustment. This process is repeated for all considered time 318 

steps, in order to verify its influence on the exponents of the scaling laws. The value of 319 

the variance function 𝛾1(𝑇) was estimated by numerically solving 320 

1

𝑇2 ∫ ∫ 𝜌𝑚𝑖(𝜏)𝑑𝑡1𝑑𝑡2
𝑇

0

𝑇

0
, from the single consumption signals. The value of the function 321 

�̅�(𝑇) was estimated by numerically solving 
1

𝑇2 ∫ ∫ 𝐸 [𝜌𝑚𝑖𝑚𝑗
(𝜏)] 𝑑𝑡1𝑑𝑡2

𝑇

0

𝑇

0
, from the 322 

single consumption signals. Results are summarized in Table 1. 323 

Table 1 Values of 𝜸𝟏(𝑻) and 𝜱(𝑻) for single consumption values and considering the time steps ∆𝒕 =324 
𝟏, 𝟔𝟎 𝐚𝐧𝐝 𝟔𝟎𝟎 seconds.  325 

The obtained values for 𝛾1(𝑇) and �̅�(𝑇) show that for the considered consumptions 326 

series the effect of the temporal correlation cannot be neglected. Moreover, the values 327 

increase with the considered time step. The variance function assumes average values 328 

ranging between 0.195, for the instantaneous signal, and 0.274 for a time step of ten 329 

minutes. Being connected to the scale of fluctuation of the process, these values are 330 

indicative of a significant memory between consumption signals. The values obtained 331 
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for �̅�(𝑇) range from an average of 0.062, for the instantaneous signal, to 0.180 for a ten 332 

minute time step, also indicating a considerable memory between consumption signals 333 

observed in different meters. Table 2 summarizes the obtained exponents of the scaling 334 

laws for the variance, cross-covariance and cross-correlation coefficients when 335 

considering time steps of one second, one minute and ten minutes.  336 

Table 2 Exponents of the scaling laws for the variance, cross-covariance and cross-correlation 337 
coefficients at different time steps. 338 

The variance of consumption increases slightly non-linearly with the aggregation, when 339 

considering time steps of one second and one minute. The average exponent of the 340 

scaling law for the variance is 1.033, considering a one second time step, and 1.063 341 

considering a one minute time step. However, when considering a time step of ten 342 

minutes, the non-linearity of the scaling law for the variance becomes more evident, 343 

since in this case the exponent assumes an average value equal to 1.301. The 344 

assumption of linear scaling of the variance with the number of served users can lead to 345 

underestimated values of the variability of consumption at high spatial aggregation 346 

levels, especially when broader time steps are used. Being connected to the cross-347 

correlation coefficient between consumptions, the results show that the consumption 348 

signals are slightly correlated and that this correlation increases when the time step 349 

increases. This observation can be explained by the fact that when considering longer 350 

time steps it is more likely to observe simultaneous water uses, than when very small 351 

time steps (ex.: one second) are considered. For a better understanding of these results, 352 

the scaling laws for the variance of consumption between hours 6 and 7 considering 353 

sampling times of one second, one minute and 10 minutes are graphically reported in 354 
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figure1. The dots, plus sign and asterisk represent the average values of the variance of 355 

several different sets of 𝑛 meters, for time steps of one second, one and ten minutes, 356 

respectively. “SL” stands for scaling law, and the relative error of the approximation is 357 

given by 𝛿. 358 

Figure 1 Scaling laws for the variance of consumption between 6 and 7 am, considering time steps of 1 359 
second, 1 minute and 10 minutes. 360 

Observing figure 1 it is clear that when broader time steps are considered, the variance 361 

decreases, but the exponent of the scaling law increases, due to the increase of the 362 

correlation. The relations between the variance and the exponent of the scaling law for 363 

the variance with the degree of correlation between consumptions are illustrated, one at 364 

a time, in figures 2 and 3. Figure 2 illustrates the relation between the variance and the 365 

cross-correlation coefficient. The values of the variance and cross-correlation are 366 

referring to the consumption series of 10 aggregated meters, between hours 6 and 7, 367 

evaluated at the time steps ranging from one second to 30 minutes. It is possible to 368 

observe that the variance decreases with the increase of the cross-correlation coefficient, 369 

directly related to the consideration of broader time steps, according to a power law. 370 

Figure 2 Variance versus cross-correlation coefficient for 𝒏 = 𝟏𝟎, between 6 and 7 am. 371 

The exponents of the scaling laws for the variance, obtained for the different time steps 372 

can also be related to the degree of cross-correlation at each time step. Figure 3 shows 373 

this relation.  374 

Figure 3 Exponents of the scaling laws for the variance versus the cross-correlation coefficient. 375 

The exponent of the scaling law for the variance increases according to a power law 376 

with the degree of cross-correlation between the consumption series.  377 
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Regarding the cross-covariance, when considering the same number of aggregated 378 

meters in each group, it is expected to verify a quadratic increase of the parameter. The 379 

obtained results show that the value of the exponent of the adjusted scaling law is close 380 

to two at several hours of the day. The average value of the exponent decreases with the 381 

consideration of broader sampling rates, due to the effect of �̅�(𝑇). In order to obtain an 382 

exponent equal to two when considering broader sampling rates, a longer sampling time 383 

should be considered. Similarly to the variance, the cross-covariance itself decreases 384 

when broader sampling rates are considered. Figure 4 shows a graphical representation 385 

of the scaling laws for the cross-covariance of consumption between 6 and 7 am 386 

considering sampling times of one second, one minute and 10 minutes. The dots, plus 387 

sign and asterisk represent the average values of the cross-covariance between several 388 

different sets of 𝑛, for time steps of one second, one and ten minutes, respectively. “SL” 389 

stands for scaling law, and the relative error of the approximation is given by 𝛿. 390 

Figure 4 Scaling laws for the cross-covariance of consumption between 6 and 7 am, considering time 391 
steps of 1 second, 1 minute and 10 minutes. 392 

The scaling law for the cross-correlation coefficient between consumption signals was 393 

also determined. The results show a significant increase of the correlation with 𝑛. As 394 

expected, the cross-correlation coefficient is higher when longer sampling rates are 395 

considered. The obtained results also show a flattening of the scaling curves when the 396 

sampling rate increases. This is expected to happen since in theory the exponent 𝛽 is 397 

equal to the difference between the exponents of the cross-covariance and the average 398 

between the exponents of the standard deviation in each group, and the latter increase 399 

with the sampling rate. The value of the exponent is expected to assume values between 400 
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zero and one, which is verified. The average exponent of the scaling law for the cross-401 

correlation coefficient is 0.453, considering a one second sampling time, 0.363 402 

considering a one minute sampling time, and 0.267 considering a 10 minute sampling 403 

time. A graphical representation of the scaling laws for the cross-correlation coefficient 404 

between 6 and 7 am, considering sampling times of one second, one minute and 10 405 

minutes, can be found in figure 5. The dots, plus sign and asterisk represent the average 406 

values of the cross-correlation coefficient between several different sets of 𝑛, for time 407 

steps of one second, one and ten minutes, respectively. “SL” stands for scaling law, and 408 

the relative error of the approximation is given by 𝛿. 409 

Figure 5 Scaling laws for the cross-correlation coefficient of consumption between 6 and 7 am, 410 
considering time steps of 1 second, 1 minute and 10 minutes. 411 

At some aggregation levels there seem to be some breaking points in the cross-412 

correlation coefficient. These are due to the fact that the cross-covariance between 413 

groups and the standard deviation of each group do not increase in the same way, 414 

leading to a less smooth scaling of the cross-correlation coefficient. When different 415 

hours of the day are considered, these apparent breaking points can appear at different 416 

aggregation levels, or not be evident at all.  417 

 418 

Effect of the time step 419 

Let us know consider specifically the effect of the time step on the consumption 420 

statistics. For assessing the variance of consumption at any desired time step, one needs 421 
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to know the value of the variance function at that time step. Vanmarcke (1983) 422 

suggested the following generic expression to estimate the variance function: 423 

𝛾1(∆𝑡) ≅ [1 + (
∆𝑡

𝜃
)

𝑚

]

−1
𝑚⁄

 (28) 

Where 𝜃 is the scale of fluctuation and 𝑚 is a model index parameter. For assessing the 424 

cross-covariance at any desired time step, the function �̅�(∆𝑡) can be approximated by a 425 

similar expression as used for the variance function, in this case, being 𝜃𝑎𝑏  the scale of 426 

fluctuation associated to the series of the two groups 𝐴 and 𝐵. The values of the 427 

variance and cross-covariance of consumption at different time steps were used to 428 

calibrate the variance function and the function �̅�(∆𝑡) for the consumption data of 429 

Latina. Table 3 summarizes the obtained values for the scale of fluctuation and the 430 

index parameters 𝑚, when considering 𝑛 = 1, 10, 100. 431 

Table 3 Average values for the scale of fluctuation and index parameters for the variance and cross-432 
covariance, when considering 𝒏 = 𝟏, 𝟏𝟎, 𝟏𝟎𝟎. 433 

Regarding the variance, the scale of fluctuation assumes large values, enhancing the 434 

importance of considering the effect of the time step on the consumption statistics. The 435 

scale of fluctuation increases with the spatial aggregation, which indicates that the 436 

consumption signals stay correlated for a longer period in time when more meters are 437 

considered. The same is verified with the scale of fluctuation associated to the two 438 

groups of, 𝐴 and 𝐵. The index parameters of the variance function are always smaller 439 

than one, and decrease with 𝑛. The index parameters associated to the cross-covariance 440 

also decrease with 𝑛, but are significantly larger than those obtained for the variance. 441 
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The value of the index parameter dictates the shape of the curve between the cross-442 

covariance and the time step and the number of its inflection points. From the obtained 443 

results we observed that when the index parameter is smaller than one, the curve is 444 

convex. When the index parameter is greater than one there is at least one inflection 445 

point, and the larger its value the more evident becomes the S shape of the curve. Figure 446 

6 shows a graphical representation of the evolution of the variance of the consumption 447 

with the time step, for 𝑛 = 100. 448 

Figure 6 Variance versus time step for 𝒏 = 𝟏𝟎𝟎, between 6 and 7 am. 449 

The variance of the real consumption data at different time steps is well estimated 450 

through the approximation for the variance function given by equation (4). 451 

 452 

Conclusions 453 

The accurate description of water consumption is as essential as challenging when 454 

dealing with the design and management of WDS. Understanding how, and in which 455 

measure, the statistics used to describe water consumption are affected by the spatial 456 

and temporal aggregation levels is therefore essential for an accurate description of 457 

stochastic consumption. Following up the work developed by Magini et al. (2008) and 458 

Vertommen et al. (2012), the scaling laws for the variance, cross-covariance and cross-459 

correlation coefficient are theoretically derived. The correlation structure, both in space 460 

and time are explicitly considered. The variance is found to increase with the spatial 461 

aggregation, according to an exponent between one and two, depending on the spatial 462 
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correlation between consumptions. The effect of the auto-correlation is measured 463 

through the variance function in the considered time interval and is responsible for a 464 

reduction of the overall variance. The development of scaling laws for the cross-465 

covariance and cross-correlation between two different groups, with different 466 

characteristics, is innovative and will help understand the association between different 467 

signals which is crucial for a realistic assessment of water consumption in a network. 468 

The cross-covariance between two groups is found to increase according to the product 469 

between number of meters in each group and the correlation between the groups. An 470 

effect of the considered time step is also verified and is measured through the function 471 

�̅�(𝑇). The cross-correlation coefficient depends separately on the number of meters in 472 

each group, and on the correlation within each group, other than the correlation between 473 

groups. While the equations derived in Vertommen et al. (2012) were limited to cases in 474 

which it was guaranteed that 𝑇 >> 𝜃, these new equations are not. We believe the main 475 

novelty of the paper is achieving the scaling laws that are valid for all cases, by fully 476 

developing the space time covariance function and attaining the correction term 1 −477 

𝛾1(𝑇). These scaling laws might be a contribution to not only water consumption 478 

analysis, but also to other fields of science. 479 

The theoretical scaling laws are found to well describe the scaling properties of the 480 

statistics of real residential consumption data of Latina, Italy. The values of 𝛾1(𝑇) and 481 

�̅�(𝑇), are obtained an found to be significant and to increase with the considered time 482 

step, indicating that when broader time steps are used, there is a higher auto-correlation 483 

between signals and there is a longer memory in the process. This finding highlights the 484 
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importance of considering of the auto-correlation structure of water consumption series. 485 

The time step was also found to significantly affect the obtained exponents of the 486 

scaling laws: the exponents of the scaling law for the variance increase considerably 487 

with time step, the exponents of the scaling law for the cross-covariance and the cross-488 

correlation decrease. Since the cross-correlation coefficient is closely related to the 489 

considered time step, it was possible to establish the relations between (1) the cross-490 

correlation coefficient and the variance, and (2) the cross-correlation and the exponent 491 

of the scaling law for the variance. The variance was found to decrease with the degree 492 

of correlation between consumptions. On the contrary, the exponent of the scaling law 493 

for the variance increases with the correlation, according to a power function, meaning 494 

that for more correlated consumptions, their variability scales more rapidly. A more 495 

thorough relation between this exponent and the correlation could be an interesting 496 

topic to address in the future developments, besides verifying the existence of different 497 

regimes in the process of aggregation as a function of 𝑛. It could also be interesting to 498 

relate the correlation structure and scaling parameters to the factors that influence water 499 

consumption, such as temperature, precipitation, social habits economic conditions and 500 

price of water. We further believe it would be interesting to apply the scaling laws to a 501 

data set made up by a significantly larger number of unitary uses, in order to assess if 502 

significant errors might exist due to assumptions made, and also in order to validate the 503 

scaling laws for higher spatial aggregation levels, more common in real world water 504 

distribution systems. 505 
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The reduction of the variance and cross-covariance with the increase of the time steps 506 

was adequately approximated by the proposed variance function and �̅�(𝑇) function. 507 

The obtained results clearly point out the importance of considering the scaling effects 508 

when describing or estimating nodal consumptions in a network for design or 509 

management purposes. The inclusion of uncertain consumptions in network design and 510 

management optimization problems is a challenging task, and we believe that the 511 

developed scaling laws are a step forward in unraveling it. From the developed laws it is 512 

possible to estimate the consumption statistics at any desired spatial or temporal scale. 513 

These parameters can then be used to generate consumption series for each node of the 514 

network. In this way, instead of generating random consumption series for all unitary 515 

uses at the network and aggregating them, the total consumptions at each node can be 516 

directly obtained through the scaling laws, achieving computational time savings. The 517 

network can then be simulated for all the consumption values from the series, obtaining 518 

a series of values for the pressure at each node. The approach provided by the scaling 519 

laws, which allows to take into consideration more accurate values of the consumption 520 

variability, can contribute to the design of networks capable of better enduring the 521 

stochastic nature of water consumption. 522 
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