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Abstract 

This paper addresses uncertainty inherent to water demand and proposes an approach to generate demand scenarios and 
calculate their probability of occurrence. Nodal water demands are modelled as correlated stochastic variables. The parameters 
which characterize demand vary with spatial and temporal aggregation levels. Scaling laws allow the definition of these 
parameters for different users and sampling rates. Different scenarios are generated by considering different combinations of 
demands at each node of the network. A multivariate normal distribution is used to obtain the probability of each demand 
scenario. Correlation between demands is found to significantly affect the scenarios probabilities. 
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1. Introduction 

Water distributions systems (WDS) play an essential role in the life quality and economy of modern societies 
(Cunha, 2009). The disruption of these systems affects direct consumers, the performance of other infrastructures 
and can induce significant economic losses. The well-functioning of WDS is, therefore, crucial and needs to be 
guaranteed in the present, foreseeable future and during extreme events. This means that engineers should design 
systems that are able to perform well under a variety of different scenarios, while also assuring their economic 
feasibility. 
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A great effort has been invested by researchers in the development and improvement of optimization models for 
the design and management of WDS, as well as techniques to solve these models. These optimization models are 
usually based on the assumption of perfectly defined working conditions, leading to solutions which are optimal for 
the considered inputs, but may be unreliable if reality turns out to be different. Robust optimization tackles this 
issue by considering different scenarios and by obtaining a solution which stays close to the optimum for all of 
them (Cunha and Sousa, 2010). The outcome of a robust optimization problem depends on the scenarios that are 
considered and on their probability of occurrence. Different possible future development scenarios and 
corresponding probabilities of occurrence can be obtained by consulting a panel of experts. The drawn scenarios 
can include various aspects, such as peak flows, fire conditions at certain nodes, or pipe breakage, among others. 
Being water demand one of the most vexing inputs in hydraulic models, and due to its stochastic nature, 
establishing thorough and comprehensive demand scenarios is crucial for obtaining robust solutions for the design 
of WDS. Consulting a panel of experts can have its limitations in such a mathematically sensitive problem. 

In response to these considerations, we propose an approach for the establishment of different demand scenarios 
and the mathematical determination of their probability of occurrence. Water demand is modelled as a stochastic 
variable, with a certain mean and variance, but also considering a certain correlation between demands at different 
nodes, since correlation has proved to significantly affect the performance of WDS (Filion, 2007). These 
parameters vary with the considered spatial and temporal aggregation levels. While the mean varies linearly with 
the aggregation levels, the variance and correlation do not (Magini et al., 2008; Vertommen et al., 2012). The 
scaling laws allow the definition of these parameters for any desired number of users and at any desired sampling 
rate (second, minute, hour), based on the statistical properties of the demand signal of a single-user. By knowing 
the underlying probability density function (PDF) of water demand, and its parameters at different scales, uncertain 
water demand is fully characterized at each node of the network. It is thus possible to know the probability of 
having a certain demand at each node of the network. Different scenarios can then be generated by making 
different combinations of demands at each node. The overall probability of each network scenario can obtained by 
considering a Multivariate Normal Distribution (MVN).  

We believe that by generating different demand scenarios and mathematically determining their expected 
probabilities of occurrence based on the statistical properties of nodal water demand, this approach is a step 
forward in the robust optimization problems for the design and management of WDS. 

 

2. Demand scenarios 

When a design or management problem is presented, nodal demands are often not know beforehand, and have 
to be measured or estimated. Measuring all nodal demands in an existing network can be a lengthy and expensive 
procedure, and is unattainable in the case of the design of a new network, or when adding new nodes to an existing 
one.  When estimating water demands, often these are assumed to be deterministic. However, water demand is 
stochastic by nature and should be modelled as so. In more recent works, demands are assumed to be random 
variables with arbitrated values for the variance and correlation; for instance, variance is mostly assumed to be 
10% of the mean value (Kapelan et al., 2004, 2005; Babayan et al., 2004; Sun et al., 2011). However, the 
observation of real consumption data has revealed the presence of a non-trivial scaling of the second order 
moments with the number of customers (Magini et al., 2008; Vertommen et al. 2012). Thus, properly assessing the 
values of the variance and correlation between demands will certainly improve the optimization problems. 

In this paper we present a method for generating demand scenarios and calculating their occurrence probability, 
taking into account the natural variability and correlation structure of water demand. The effect of the correlation 
between demands on the scenarios probabilities is explicitly taken into account. The layout of the network of 
Alperovitz and Shamir (1977), represented in figure 1, is considered for setting the scene for the generation of 
scenarios, this is, with the purpose of aiding a visual understanding of how the scenarios are built.  
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Figure 1. Network of Alperovitz and Shamir (1977). 

The first step of our approach is to generate stochastic demand series. As aforementioned, water demand is 
modelled as a stochastic variable, and water demands of all different users are assumed to be correlated. To define 
the demand statistics, we make use of the scaling laws (Vertommen et al., 2012). The scaling laws, allow us to 
obtain the values of the demand statistics for any desired number of users, based on the demand signal of one 
single-user. According to the scaling laws, the expected value for the mean demand of  aggregated users is given 
by: 

 
 (1) 

 
Where,  is the mean, and  the mean of a single-user.  
The expected value for the variance of demand of  aggregated users is given by: 
 

 (2) 
 
Where,  is the variance of demand, is the variance of demand of a single-user, and  is the scaling 

exponent. 
The expected value for the cross-covariance between two groups of users  and , is given by: 
 

 (3) 
 
Where  is the cross-covariance between  aggregated users of group , and   aggregated users 

of group ,  is the cross-correlation coefficient between the demands of single-users of groups  and ,  is 
the standard deviation of demand of a single-user in group , and  is the standard deviation of demand of a 
single-user in group .  

At last, the expected value for the cross-correlation coefficient between the same groups of users  and , is 
given by: 

 

 
(4) 
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For the definition of the single-user demand statistics we used real indoor water demand data. The demand data 

correspond to 300 measurement series taken from single-family homes, in a building belonging to the IIACP 
(Italian Association of Council Houses) in the town of Latina, Italy (Guercio et al., 2003; Pallavicini and Magini, 
2007).  

 The demand series were divided into one hour intervals, and for each we obtained the mean, variance, cross-
covariance and cross-correlation coefficient. The scaling laws were calibrated for these same data. For the 
following steps of our approach we considered the parameters corresponding to the demand series falling between 
6 and 7 am. 

Making use of the scaling laws, we obtained the overall mean and variance at each node of the network, as well 
as the cross-covariance and cross-correlation matrixes between the nodes. Since we intended to assess the effect of 
the degree of cross-correlation coefficient between nodal demands on the outcoming scenarios probabilities, 
different cross-covariance matrixes were obtained by considering different values for the cross-correlation 
coefficient between single-user demands.  

Table 1 summarizes the demand parameters at each node. 
 

Table 1. Mean and standard deviation of aggregated demand at each node of the network. 

Node Users (n) μ(n) (l/min) σ(n) (l/min) 

1 0 0 0 

2 124 46.536 22.739 

3 118 44.193 21.940 

4 18 8.273 6.014 

5 101 38.368 19.469 

6 140 51.911 24.396 

7 188 69.183 28.463 

 
Table 2 summarizes the cross-covariance matrixes between nodal demands, for the different considered cross-

correlation coefficients between single-user demands. 

Table 2. Cross-covariance matrixes between nodal demands, for different values of cross-correlation coefficient between single-user demands. 

ρ1=0.00009 ρ1=0.0009 

Node 2 3 4 5 6 7 Node 2 3 4 5 6 7 

2 549.617 5.374 0.448 4.510 6.502 8.989 2 549.617 52.187 7.217 44.550 62.009 83.159 

3 5.374 520.203 0.408 4.262 6.153 8.514 3 52.187 520.203 6.850 42.367 58.976 79.097 

4 0.448 0.408 64.648 0.297 0.554 0.876 4 7.217 6.850 64.648 5.807 8.192 11.083 

5 4.510 4.262 0.297 437.772 5.171 7.175 5 44.550 42.367 5.807 437.772 50.353 67.549 

6 6.502 6.153 0.554 5.171 628.799 10.259 6 62.009 58.976 8.192 50.353 628.799 93.951 

7 8.989 8.514 0.876 7.175 10.259 871.960 7 83.159 79.097 11.083 67.549 93.951 871.960 

ρ1=0.009 ρ1=0.099 

Node 2 3 4 5 6 7 Node 2 3 4 5 6 7 
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2 549.617 279.701 51.197 246.729 319.918 399.932 2 549.617 497.252 148.217 453.428 549.804 652.554 

3 279.701 520.203 49.212 237.207 307.575 384.504 3 497.252 520.203 143.943 440.362 533.960 633.750 

4 51.197 49.212 64.648 43.382 56.323 70.469 4 148.217 143.943 64.648 131.249 159.164 188.925 

5 246.729 237.207 43.382 437.772 271.320 339.190 5 453.428 440.362 131.249 437.772 486.902 577.898 

6 319.918 307.575 56.323 271.320 628.799 439.775 6 549.804 533.960 159.164 486.902 628.799 700.725 

7 399.932 384.504 70.469 339.190 439.775 871.960 7 652.554 633.750 188.925 577.898 700.725 871.960 
 

At this point, the stochastic demand at each node was fully characterized, and it was possible to determine the 
demand deciles at each node of the network. Since the number of users at each node is different, the demand 
corresponding to each decile is different for each of the nodes. These probabilities refer to each node individually, 
without taking into consideration what is happening at the other nodes of the network. For design and management 
purposes, more often it is necessary to know the networks behavior as a whole. When dealing simultaneously with 
more than one random variable, it is necessary to define a joint probability density function (JPDF). For instance, 
considering the random variables , the joint cumulative density function (JCDF) is given by: 

 
 (5) 

 
Equation (5) represents the probability that random variable  is less or equal to , and that  is less or equal 

than , and that  is less or equal to . Since we assumed that nodal demands are correlated, we make use of the 
multivariate normal distribution (MVN) to extend the one-dimensional normal distribution to higher dimensions. 
The MVN describes sets of correlated real-valued random variables, and for a k-dimensional random vector 

 is expressed as:  
 

 (6) 

 
Where,  is the mean vector, and , 

is the covariance matrix. So, in order to determine the probability of occurrence of certain demand scenarios, the 
only information missing, was the definition of the scenarios. Innumerous scenarios could be considered. We 
assumed the following, listed in table 3.  

Table 3. Description of the demand scenarios.  

Scenario Description  Scenario Description  

1 Demand at all nodes falls below the 1st decile. 10 Demand at all nodes falls between the 9th and 10th deciles 

2 Demand at all nodes falls between the 1st and 2nd 
deciles. 11 Demand at nodes 2,3,4,5 and 7 fall between 1st and 2nd deciles. 

Demand at node 6 falls between 7th and 8th deciles. 

3 Demand at all nodes falls between the 2nd and 3rd 
deciles. 12 Demand at nodes 2,3,4,5 and 7 fall between 1st and 2nd deciles. 

Demand at node 6 falls between 9th and 10th deciles. 

4 Demand at all nodes falls between the 3rd and 4th 
deciles. 13 Demand at nodes 2,3,4,5 and 7 fall between 4th and 5thd 

deciles. Demand at node 6 falls between 9th and 10th deciles. 
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5 Demand at all nodes falls between the 4th and 5th 
deciles. 14 Demand at nodes 2,3,4,5 and 7 fall between 4th and 5th deciles. 

Demand at node 6 falls between 9th and 10th deciles. 

6 Demand at all nodes falls between the 5th and 6th 
deciles. 15 Demand at nodes 2,3,5,6 and 7 fall between 1st and 2nd deciles. 

Demand at node 4 falls between 7th and 8th deciles. 

7 Demand at all nodes falls between the 6th and 7th 
deciles. 16 Demand at nodes 2,3,5,6 and 7 fall between 1st and 2nd deciles. 

Demand at node 4 falls between 9th and 10th deciles. 

8 Demand at all nodes falls between the 7th and 8th 
deciles. 17 Demand at nodes 2,3,5,6 and 7 fall between 1st and 2nd deciles. 

Demand at node 4 falls between 9th and 10th deciles. 

9 Demand at all nodes falls between the 8th and 9th 
deciles. 18 Demand at nodes 2,3,5,6 and 7 fall between 1st and 2nd deciles. 

Demand at node 4 falls between 9th and 10th deciles. 

 
Each demand scenario was evaluated considering different values of the cross-correlation coefficient between 

demands. The cross-correlation between single-user demands was assumed to take the values of 0.00009, 0.0009, 
0.009 and 0.099. The probability of each considered scenario, and for each considered cross-correlation coefficient 
between single-user demands, was obtained by implementing the MVN in MatLab (2010). 

 

3. Results 

Scenarios 1 to 10 refer to demand scenarios in which the demands at all nodes of the network fall between pre-
defined deciles, i.e., the demands at nodes , fall between the same deciles, for example, deciles 1 and 2, 2 
and 3, …, 9 and 10. These scenarios are appropriate for a better understanding of how the overall scenario 
probability relates to the individual nodal probabilities, and of how the cross-correlation coefficient between 
demands affects the overall scenario probability. Scenarios 11 to 18, correspond to scenarios in which demands at 
five nodes fall between the same deciles, and the demand at one node falls between different deciles. These 
scenarios are appropriate not only to evidence the flexibility of our approach, i.e., the possibility of considering 
different demand intervals at different nodes, but also to assess how the demand at a particular node can affect the 
working conditions of the entire network. This can be useful in the identification of more sensitive nodes at a 
network. Table 4 summarizes the obtained results. 

Table 4. Probability of all considered demand scenarios, considering different values for the cross-correlation between demands. 

Scenario 1 Probability % Scenario 1 Probability % Scenario 1 Probability % 

1 

0.09900 4.8121 

7 

0.09900 9.9979 

13 

0.09900 8.2244 

0.00900 0.4248 0.00900 9.4283 0.00900 5.4689 

0.00090 0.0036 0.00090 7.1447 0.00090 2.5098 

0.00009 0.0003 0.00009 6.2944 0.00009 1.7717 

2 

0.09900 5.9103 

8 

0.09900 11.4103 

14 

0.09900 8.2200 

0.00900 1.2710 0.00900 13.0756 0.00900 5.4967 

0.00090 0.0569 0.00090 12.8521 0.00090 2.8139 

0.00009 0.0123 0.00009 12.5614 0.00009 2.1462 

3 0.09900 6.6630 9 0.09900 13.7233 15 0.09900 6.9646 
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0.00900 2.2786 0.00900 19.1307 0.00900 2.0801 

0.00090 0.2678 0.00090 23.1087 0.00090 0.1349 

0.00009 0.0954 0.00009 24.0986 0.00009 0.0353 

4 

0.09900 7.3727 

10 

0.09900 23.0227 

16 

0.09900 6.9739 

0.00900 3.4803 0.00900 39.0379 0.00900 2.2463 

0.00090 0.7920 0.00090 50.1234 0.00090 0.1644 

0.00009 0.3957 0.00009 52.4504 0.00009 0.0458 

5 

0.09900 8.1232 

11 

0.09900 6.09741 

17 

0.09900 9.10969 

0.00900 4.9841 0.00900 1.57822 0.00900 6.14151 

0.00090 1.8565 0.00090 0.13343 0.00090 2.56754 

0.00009 1.1836 0.00009 0.04599 0.00009 1.69306 

6 

0.09900 8.9645 

12 

0.09900 6.09278 

18 

0.09900 9.19072 

0.00900 6.8886 0.00900 1.58144 0.00900 6.97478 

0.00090 3.7943 0.00090 0.14600 0.00090 3.23798 

0.00009 2.9079 0.00009 0.05603 0.00009 2.22325 

 
The first scenario corresponds to a situation in which the demands at all nodes of the network fall below the 1st 

decile. Thus, at each node individually the probability of occurrence of the demand is equal to 10%. Considering 
all the nodes together it is expected that this probability will decrease. For a cross-correlation between single-users 
equal to 0.099, the probability of the first scenario is equal to 4.812%. This probability decreases when the cross-
correlation coefficient between single-users decreases. For a cross-correlation equal to 0.00009, the probability of 
occurrence of the first scenario is only 0.0003%. 

The second scenario refers to a situation in which the demands at all nodes of the network fall between the 1st 
and 2nd deciles. The probability of the scenario decreases with the cross-correlation coefficient, ranging from 
5.910% to 0.012%.  

Similar results are obtained for scenarios 3 to 7. The overall probability is lower than the individual probability 
at each node, and decreases with the decrease of the cross-correlation coefficient. However, the reduction of the 
scenario probability with respect to the individual demand probability at each node, decreases when higher 
percentiles are considered. This is, when considering scenario 1, its probability ranges from 0.0003% to 4.812%, 
which corresponds to 30 000 to two times less of the decile value. When considering scenario 7, which consists in 
demands at all nodes falling between the 6th and 7th deciles, the scenario probability takes values from 9.998% to 
6.294%, which corresponds to almost the same to 1.589 times less of the decile value.  

For scenarios 8 to 10, the overall scenario probability is higher than the one decile considered interval, and 
increases when the cross-correlation coefficient decreases. For instance, for scenario 8, the probability of the 
scenario ranges from 11.410% to 12.561%, for cross-correlation coefficients ranging from 0.099 to 0.00009. This 
increase becomes even more pronounced in scenarios 9 and 10.  

For a better understanding of these observations, the JCDFs of the scenarios were drawn against the CDFs of 
each node. As an example, figure 2 represents the CDF at node 1 and the JCDF of demand scenarios considering 
different values for the cross-correlation coefficient between single-user demands, represented at two dimensions. 
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Figure 2. JCDF of overall network demand scenario considering different cross-correlation coefficients vs CDF at node 1. 

The shape of the JCDF is different than the shape of the CDF curve corresponding to one node. This difference 
becomes more pronounced when cross-correlation coefficient decreases. When the cross-correlation decreases, the 
convex part of the JCDF curve becomes more pronounced and the concave part becomes less pronounced and 
steeper.  This effect influences the scenario probability of demands taking values in a defined interval. Due to the 
steeper JCDF curve for higher percentiles, the probability of occurrence of a scenario, increases with the cross-
correlation coefficient. This turning point is situated at the 70th percentile, i.e., when considering demands below 
the 70th percentile, the probability of scenarios in which demands fall in a certain interval, decreases with the 
cross-correlation coefficient. When considering demands above the 70th percentile, the probability of scenarios 
increases with decreasing cross-correlation coefficients. 

Scenarios 11 to 14 consider a situation in which demands at nodes 2, 3, 4, 5 and 7 fall between the same deciles, 
and demand at node 6 falls between different deciles. In scenarios 11 and 12 the demand at nodes 2, 3, 4, 5 and 7 
falls between the 1st and 2nd deciles. Demand at node 6 falls between the 7th and 8th decile in scenario 11, and 
between the 9th and 10th deciles in scenario 12. Results for these two scenarios are very similar. The probability of 
these scenarios is slightly higher than the probability of having all nodal demands between the 1st and 2nd deciles 
(scenario 2). Scenarios 13 and 14, consider that the demands at nodes 2, 3, 4, 5 and 7 fall between the 4th and 5th 
deciles, and demand at node 6 falls between the 7th and 8th, and 9th and 10th deciles, respectively. The distance 
between the deciles of nodes 2, 3, 4, 5, 7 and the deciles at node 6 is less pronounced, than in scenarios 11 and 12. 
The probability of occurrence of scenarios 13 and 14 is higher than the probability of occurrence of scenarios 11 
and 12. This probability is also very similar to the probability of scenario 5, in which all nodal demands fall 
between the 4th and 5th deciles, for a cross-correlation coefficient of 0.099. However, when decreasing the cross-
correlation coefficient the probabilities of scenarios 13 and 14 become higher than those regarding scenario 5.  

Scenarios 15 to 18 consider similar situations, but the node with a different demand is node 4 instead of 6. Node 
4 has significantly less users than the others nodes in the network, and consequently the total correlation between 
node 4 and the other nodes in the network is smaller than between the other nodes. The probability of having a 
demand falling in a different decile at this node, is slightly higher in this situation, except when the cross-
correlation coefficient of 0.00009 is considered. For scenario 18, the probability is always higher than that of 
scenario 14. These differences might become more pronounced when larger networks, and with more users at each 
node, are considered.  
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4. Conclusions 

This paper proposes an approach for the generation of demand scenarios for a water distribution network and 
corresponding probabilities of occurrence. Stochastic correlated demands at each node are generated using scaling 
laws. From the probability density functions of demands at each node of the network, different demand intervals 
are defined. Demand scenarios are built by combining the demand intervals of each node, and their probability of 
occurrence is obtained using a multivariate normal distribution. The approach is also flexible towards the width of 
the demand intervals at each node.  

The scenarios and their occurrence probabilities were obtained considering different values for the correlation 
between demands. The correlation between demands was found to significantly affect the occurrence probability of 
the considered demand scenarios. By decreasing the correlation between demands, the scenario probabilities also 
decrease. Thus, a thorough estimation of the correlation between demands, is essential for the accurate assessment 
of the demand scenarios.  

For each scenario it is possible to assign representative demand values to all nodes of the network. The network 
can then be simulated for all the considered scenarios, obtaining results that are associated to the scenarios 
probabilities. Being able to mathematically determine stochastic demand scenarios and their probabilities of 
occurrence, the presented work has potential to improve the robust optimization models for the design and 
management of water distribution systems.  
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