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Abstract 

The weak convergence of  the empirical process of  strong mixing or associated random variables is studied in LP(0, 1 ). 
We find minimal rates of  convergence to zero of  the mixing coefficients or the covariances, in either case, supposing 
stationarity of  the underlying variables. The rates obtained improve, for p not too large, the corresponding results in the 
classical D(0, 1) framework. (~ 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

Let (Un, n>~l) be a stationary sequence of uniform random variables on [0, 1] and define, as usual, the 
uniform empirical process ~n by 

n 
~,(t) = n -1/2 Z (~[0,,](Ui) - t), t E [0, 1]. 

i=1 
(1) 

When the Ui are independent, (~n, n~> 1) is well known to converge weakly in the Skorokhod space D(0, 1) 
to the Brownian bridge. This functional central limit theorem has been widely extended to dependent Ui's, 
giving a limiting process ¢, which is Gaussian centered with covariance 

L 0(3 
F ( s , t ) = s A t - s t +  (P(Ul<~s, Uk<~t)-st)+Z(P(Uk<~s, U l ~ t ) - s t  ). 

k=2 k=2 
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In each particular dependence context, results are stated using some "dependence rate", which can be a mixing 
coefficient or the covariance Cov(U1, Uk) in case of associated Ui's. A natural bound for this dependence rate 
is clearly the best-known rate to obtain the finite-dimensional CLT for the random variables l(s,t](Ui). Those 
bounds were obtained under p-mixing (see Shao and Yu, 1996) and under r-mixing up to a logarithmic 
factor (see Doukhan et al. (1995)). As for the strong mixing case or the associated one, this achievement 
remains an open question. Yoshihara (1975) proved the weak D(0, 1) convergence of (~ ,  n>~l) under the 
strong mixing rate 0fin)= O(n -a ) with a > 3, which was later improved by Shao (1986) requiring only a > 2. 
For associated Ui's, Yu (1993) obtained the weak D(0, 1) convergence of (~ ,  n i> 1) under the assumption 
Cov(U1,Un)=O(n -a) with a>7.5.  Shao and Yu (1996) improved this result proving that it is enough to 
have a>(3  + v /~) /2  -~ 4.373. 

The classical framework to study the weak convergence of (~ ,  n ~> 1 ) to a Gaussian process is the Skorokhod 
topology. This approach provides useful results about the asymptotic behaviour of a large class of functionals. 
From a statistical point of view, one can be interested in weakening the dependence rate assumptions for a class 
of functionals of paths continuous in a weaker topology than Skorokhod's one. For instance, the Cramrr-von 
Mises 092 test statistic, the Watson (1996) statistic, the Shepp (1982) statistic, the Anderson Darling (1952) 
statistics, some von Mises functionals, some functionals of the type f G(t, ~ , ( t ) )p(dt)  require only the L e or 
L p topology on the space of paths (Cremers and Kadelka, 1986). In Oliveira and Suquet (1995), the authors 
obtained the L2(0, 1) weak convergence of ( ~ )  to the same process ~ as above, under the hypotheses 

~(n)<oo in the a-mixing stationary case, (2) 
n~>l 

Cov1/3(U1, Urn)< CO in the associated stationary case. (3) 
n~>l 

Let us observe that (2) is simply the condition giving the lbragimov's unidimensional CLT for bounded strong 
mixing random variables (Ibragimov and Linnik, 1971). In this case the sequence (l(s,t](U~), n~> 1 ) is strong 
mixing with mixing coefficients dominated by those of (Un, n/> 1 ). In the associated case, the best-known de- 
pendence rate to obtain the unidimensional CLT for the Ui's is the summability of the sequence Cov(U1, Un). 
Unfortunately, the sequence (l(s,t](U~), n ~> 1) does not inherit the association property from (U,, n ~> 1 ) and 

1 the control of covariances of indicators explains the extra exponent 7" 
As one can see, there is an hiatus for intermediate results allowing applications to a larger set of functionals 

than L2(0, 1) continuous ones, at a lower cost than D(0, 1)'s conditions. For a-mixing stationary underlying 
variables Ui, Suquet (1996) proves the LP(O, 1)-weak convergence of ~ under the conditions ~(n)= O(n -a) 
with a > p/2. The main tool used in Oliveira and Suquet (1995) and Suquet (1996) is some special wavelets 
multiresolution analysis of L p spaces. In this paper we propose a more classical approach of LP(O, 1) weak 
convergence allowing a unified treatment of strong mixing and associated cases obtaining a general condition 
which gives us back the results of Suquet (1996). 

Our results are stated in Section 2 together with some tightness conditions which can have their own interest. 
Proofs are given in Section 3 and some applications to functionals of paths are presented in Section 4. 

2. Resul ts  

Theorem 1. Let (~,, n >/1) be a sequence of  random elements in LP(O, 1), p~> 1, verifying: 
(i) For some 7>1, supn>. 1 nz[[~nl[~ <oo, 

(ii) limh_~0 sup,~> 1 n:[[~,(. + h) - ~,(.)[[P =0.  
Then (in, n>~l) is tight in LP(O, 1). 
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Corollary 2. A sufficient condition for the sequence of  random functions (in, n >1 1) to be tight in LP(O, 1 ), 
p>~ 1, is the existence of  positive exponents q<~p<r such that 
(a) For some constant c, 

n: l~ . ( t ) l r~<c ,  tE[0,1],  n~>l, 

(b) For some function e (h )=o (1 )  as h ~ O, 

El~,(t+h)-¢~(t)[q<<.e(h), 0~<h<l ,  O<<.t<~l-h, n>>.l. 

In the next theorem, we suppose that p>~2, {U~, n~>l} is a stationary sequence of [0, 1]-uniformly dis- 
tributed random variables and ¢~ denotes the uniform empirical process defined by (1). 

Theorem 3. Assume the sequence { Un, n ~ 1 } is either strong mixing with rate 

~(n) < cc if p = 2 ,  (4) 
n~>l 

e (n )=O(n  -~) for some a>p/2 ,  / f p > 2 ,  (5) 

either associated with 

Covl/3(Ul,U,)<c~ if p = 2 ,  (6) 
n~>l 

Cov(UI, U,) = O(n -~) for some a>3p/2, i f  p > 2 .  (7) 

Then the uniform empirical process ~n weakly converges in LP(O, 1) to a centered Gaussian process ~ with 
a.s. continuous paths and covariance F: 

F ( s , t ) = s A t - s t +  (P(U]<~s, Uk<~t)-st)+~-~(P(Uk<~s,  Ul<~t) -s t ) .  
k=2 k=2 

3. Proofs 

Proof of Theorem 1. We shall use a convolution approximation. To avoid notational complications, we define 
~n( t )=0 for any t outside [0, 1]. Let ~ be a probability density with support [ -1 ,  1]. We suppose moreover 
that ~: is Lipschitz, that is 

IK(t) - ~(s)[ 
H~CllLip :-- sup 

s¢, It - sl 
< O O .  

For any positive integer j ,  define ~cj(t)=jK(jt). The sequence (xj, j~> 1) is an approximate identity. 
Using the classical trick 

f 
* in(x) - ~.n(X)= [ {(n(X - t) - ~n(x)}~cj(t)dt Kj 

JIt [~l/j 
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and the Jensen inequality with respect to the probability measure Kj(t)dt, we easily obtain 

F- f~ lKj  * ~n (x ) -  ~n(x)lP dx <" ~- fltl<~l/jKj(t)dt f~  ' ( n ( x -  t ) -  ~n(x)lp dx 

~< sup ~l]~.(') - ~.(" + t)ll p" 
Itl<~l/j 

Hence by (ii), 

lim sup tllKj * ~n -- CnllP=0- (8) 
j ~ a o  n~>l 

Now, it is easily checked that 

 11,9 * IIKjlI  sup  11 ;11,. 
i~>l 

and for any 0 ~< s < t ~< 1' 

~[Kj • ~,(t) - Kj • ~,(s)l' ~ IlKjll[ip sup ~ll~;ll~' I t - 47. 
i>~I 

It follows (see for instance Theorem 12.3, p. 95 in Billingsley (1968)) that for each fixed j the sequence 
(Kj * ~n, n~> 1) is tight in C(0, 1) and hence also in LP(0, 1). 

For fixed r/>0, define r/i =2- i t /  (i>~ 1 ) and choose a sequence of positive ei decreasing to 0. By (8) and 
the Markov inequality, we can extract a subsequence of indexes j; such that 

e(ll n-Ks,*g, llp>e;)<n,, i> l. (9) 

By the LP(O, 1)-tightness of the sequence (Kj;. ~n, n~> 1), there is some compact Ci in LP(O, 1) such that 

P(Kj,*~n~Ci)<qi, n>~l, i>~l. (10) 

From (9) and (10) we deduce 

P ( ~ n E A ) > I - 2 q ,  n ~ l ,  

where 

A = { f  ELP(O, 1), Kj; * f ECi and lit(j, * f - f l lp~ei,  i/>1}. 

Clearly for any fixed 6 >0,  A can be recovered by a finite number of balls with radius 26. As LP(O, 1) is 
complete, the compacity of A follows and (¢,, n ~> 1) is tight in LP(O, 1). [] 

Proot r of Corollary 2. If q = p it is evident that (b) implies (ii). Suppose now that q < p and denote by 1/u 
and 1/v the barycentric coordinates of p in the segment (q,r), that is 

1 1 1 1 
p = u q + - r ,  - + - = 1 ,  u,v>O. 

I) u 1) 

The H61der inequality applied to any nonnegative random variable Y writes: 

~_YP <~ F_l/uyq~l/vy r. 
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Choosing Y = I~,(t + h) - ~,(t)l and integrating with respect to t, we get 

EII¢°(-+h) - ¢.(')llg f + h) - ~,(t)lqF-ll~[~,(t+h) - (~(t)lr dt 

<~ (U-lc)l/~e(h) 1/u, 

using (a) and (b). Hence ~11~.(' + h )  - ~ . ( . ) l l  p converges to zero, uniformly in n, as h goes to zero and the 
hypotheses of Theorem 1 are satisfied. [] 

Proof of Theorem 3. We first check the tightness of (~n, n/> 1 ). 
Case p = 2 :  By stationarity of (Ui, i>~ 1), we have 

~-,~n(t)- ~n(s)12=g,(s,t) + 2 ~-]~ ( 1 -  k ) gk(s,t), 
k=2 

where 

g k ( S , t ) =  Cov(~.(s,t](U1),n(s,t](Uk)), s, tE[0,1] ,  k~>l. 

In the strong mixing case, the bound Igk(s,t)l <~(k -  1) follows obviously from the definition of the mixing 
coefficients. In the associated case, Lemma 4.5 of Yu (1993) provides the uniform bound 

I~k(s,t)l ~< 16Covl/3(Ul, Uk), s,t E [0, 1]. (11) 

So under (4) or (6), 

OG 

El~(t) - ~n(s)l 2 <.gl(s, t) + 2 Z [gk(s,t)} (12) 
k=2 

where the right-hand side is a normally convergent series of continuous functions. Its sum, say g(s,t), is 
uniformly continuous on the square [0, 1] 2 and vanishes on the diagonal. This gives the uniform estimate 

El~.(t+h)-~.(t)12<. sup g(s,s+h)=e(h), tC[0,1],  n~>l. (13) 
0~<s~<l 

So we have condition (b) of Corollary 2 and hence (ii) of Theorem 1 is verified. Condition (i) with 7- -2  is 
easily obtained choosing s = 0 in (12). 

Case p > 2 :  We use Corollary 2. From (13), condition (b) is satisfied with q = 2 .  
By Theorem 2 of Yokoyama (1980) condition (a) holds in the strong mixing case if the sequence 

(nr/2-1~(n), n>~ 1) is summable. Choosing p<r<2a, this follows from our assumption (5). 
In the associated case, the random variables ~[o, tj(Ui) are associated as nonincreasing functions of associated 

variables. So combining the moment inequality of Birkel (1988) with Eq. (11), we obtain condition (a) of 
Corollary 2 by choosing p < r < 2a/3. 

Once the tightness of (~,) established, to prove the weak LP(O, 1) convergence of ~, to ~, it suffices to 

verify the convergence in distribution of fd f(t)~n(t)dt to f~ f(t)~(t)dt for each f in LP'(O, 1) the dual 
space of LP(O, 1). Observe now that 

/0 1£(/: ) f(t)~n(t)dt= ~ i=l , f ( t ) d t -  [E , f ( t ) d t  . 

As LP'(O, 1)CLI(0,  1), the function F ( x ) =  f ) f ( t ) d t  is absolutely continuous. In the strong mixing case, 
Ibragimov's (1971 ) central limit theorem for strong mixing bounded random variables applies to the F(Ui)'s 
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and gives the desired convergence and the covariance function of 3. In the associated case, the same conclusion 
is obtained from the following theorem. [] 

Theorem 4. (Newman, 1984). Let (Y,), >, 1 be strictly stationary associated random variables and X, = F(}1, ), 
where F is an absolutely continuous function. Put X ,  =F(Y,)  where F ( t ) =  f[0,t] [F'(u)[ du. I f  

fig F'(x)F'(y)F(x, y) dx dy < ~ ,  (14) 
, I]  2 

F being defined by 

F(x, y) = F1 (x, y) + Z (rk(x, Y) + Fk(y,x)), 
k >~2 

where 

rk(x ,y )= P(Y1 >x, Yk > y )  - P(Yl >x)  P(Yk >y) ,  

then )71 is square integrable and n -1/2 ~ = 1  (Xj. - L~j) converges weakly to a centered Gaussian random 
variable with variance 

tr 2 = [ F'(x)F'(y)F(x, y)  dx dy. 
Jro ,1] 2 

4. Some functionals of paths 

As an application, we consider now some examples of functionals of paths T(~,) whose convergence in 
distribution follows from the LP(O, 1) weak convergence of the empirical process ¢,. 

Example 1. Watson statistic. 
Watson (1961) proposed the following statistic for testing the "goodness of fit" on a circle in the i.i.d. 

case: 

ljol o So (/o)? W 2 = ~ [in(t) -- ~,(S)] 2 ds dt = ~,(t) 2 dt - in(t) dt . 

Clearly, this functional of paths is continuous in the L2(0, 1 ) topology. 

Example 2. Weighted Mallows statistics. 
The convergence of the Mallows statistic Mn = f~ [¢,(t)[ dt needs only the L1(0, 1) weak convergence of 

~n. More generally, for any nonnegative weight function qJ in LP'(O, 1), the dual space of LP(O, 1), we have 
the convergence in distribution of 

f0 
1 

M.,U, = qJ(t)l~.(t)l dt, 

under LP(0 ,  1) weak convergence of 3,. 

Example 3. Some Anderson Darling statistics. 
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Anderson and Darling (1952) studied the asymptotic behaviour of the statistics 

A2q, = ~n(t)2q/(t)dt 

for nonnegative weight functions ~k. The choice of the suitable LP(O, 1) space depends on ~. Indeed, to check 
the continuity of the functional T : f  H f~ f2~dt ,  H61der inequality provides the bound 

1 1 
ITf - Tol~lltPllr.llf -g l l2s . l l f  +gllzs, - + - = 1 .  

r s 

So if ~ belongs to U(0, 1) we can take p=2s.  For instance, choosing the weight f f ( t )=t -a(1  - t )  -a, 
with a <  1, we obtain the convergence in distribution of A2,~, under the LP(O, 1) weak convergence of ~n 
for p>2/ (1  - a). The case a = 1 seems out of reach of the LP(O, 1) method. Its study would require more 
knowledge about the regularity of the limiting process ~. 

Example 4. H61der functions and local time. 
Define the local time of ~n (Shorack and Wellner, 1986, p. 398) by 

Ln (x) = n -  1/2 { number of times ~n (t) = x, 0 ~< t ~< 1 } 

For any suitable Borel function f we have 

/0 f(~n(t)) dt = f(x)Ln(x) dx. 

Suppose now f E d;p(N), p ~  N, the homogeneous H61der space of order p (Meyer, 1990, p. 177), so we 
have the representation 

Epl .f(k)(xo), 
f ( x ) = Z  ~ tx-xo)k+R(xo,  x), Xo, xE~ ,  

k=0 

where JR(x0, x)] ~< Clx -xo] p, together with the estimate 

[f([Pl)(xo) I <~ C'(f([P])(O) + [xolP-[Pl). 

It follows that IfCk)(x0)l ~<C'(1 + Ix01 p-k) for 0~<k~<[p], so the existence and continuity of the functional 

T:h H f2 f (h( t))dt  on LP(O, 1) is easily checked. 
Consider now the occupation measure/~ of ¢ defined by 

/~(B)=2{t E [0, 1]: ~(t)CB} 

for any Borel subset B of ~ (2 denotes the Lebesgue measure). Following Berman ((1969), Ex. 3.2), a 
sufficient condition for/~ to be absolutely continuous with respect to 2 is 

fro Q(s't)-l/2 dsdt<c~' where Q(s, t )=F(s,s)+ F( t , t ) -  2F(s,t). 
,1] 2 

Define analogously Ql(s,t) with Fl(s,t)=s/x t -  st and Q(s,t) with F ( s , t ) = F ( s , t ) -  Fl(s,t). Then Q is 
nonnegative on [0, 1] 2, so the integrability of Q-1/2 follows from integrability of Q11/2 that is from 

(to It --sl-l/2(1 - - [ t - s l ) - l / 2 d s d t < o o ,  
,1] 2 
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which is easily checked. So the occupation measure # has a density L (the local time of ~) and for each 
f E CP(R) 

folf(~(t))dt= folf(t)l~(dt)= faf(x)L(x)dx. 
Finally by LP(O, l) continuity of the functional T for any f E CP(R), the moments faf(x)Ln(x)dx of the 
local time Ln converge in distribution to the corresponding moments of the local time L of ~. 

References 

Anderson, T.W., Darling, D.A., 1952. Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Ann. Math. 
Statist. 23, 193-212. 

Berman, S.M., 1969. Local times and sample function properties of stationary Gaussian processes. Trans. Am. Math. Soc. 137, 277-299. 
Billingsley, P., 1968. Convergence of Probability Measures. Wiley, New York. 
Birkel, T., 1988. Moment bounds for associated sequences. Ann. Probab. 16, 1184-1193. 
Cremers, H., Kadelka, D., 1986. On weak convergence of integral functionals of stochastic processes with applications to processes taking 

paths in L~. Stochastic Process Appl. 21, 305-317. 
Doukhan, P., Massart, P., Rio, E., 1995. Invariance principles for the empirical measure of a weakly dependent process. Ann. Inst. H. 

Poincari 31, 393-427. 
lbragimov, I.A., Linnik, Y.V., 1971. Independent and stationary sequences of random variables. Wolters Nordhoof, Groningen. 
Meyer, Y., 1990. Ondelettes et Oprrateurs I, Hermann, Paris. 
Newman, C., 1984. Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Inequalities 

in Statistics and Probability, IMS Lecture Notes - Monograph Series 5, 127-140. 
Oliveira, P.E., Suquet, Ch., 1995. L2(0,1) weak convergence of the empirical process for dependent variables. In: Antoniadis, A., 

Oppenheim, G. (Eds.), Lecture Notes in Statistics 103, Wavelets and Statistics, pp. 331-344. 
Shao, Q.M., 1986. Weak convergence of multidimensional empirical processes for strong mixing sequences. Chinese Ann. Math. Ser. A 

7, 547-552. 
Shao, Q.M., Yu, H., 1996. Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. 24, 2052-2078. 
Shepp, L.A., 1982. On the integral of the absolute value of the pinned Wiener process. Ann. Probab. 10, 234-239. 
Shorack, G.R., Wellner, J.A., 1986. Empirical Processes with Applications to Statistics. Wiley, New York, 1986. 
Suquet, Ch. 1996. Tightness in Schauder decomposable Banach spaces. Translations of A.M.S., Proc. of the St. Petersburg Math. Soc., 

vol. 5. 
Yoshihara, K., 1975. Billingsley's theorems on empirical processes of strong mixing sequences. Yokohama Math. J. 23, 1-7. 
Yokoyama, R. 1980. Moment bounds for stationary mixing sequences. Z. Wahrsch. Verw. Gebiete 52, 45-57. 
Yu, H. 1993. A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. Probab. Theory Relat. 

Fields 95, 357-370. 
Watson, G.S., 1961. Goodness-of-fit tests on a circle. Biometrika 48, 109-114. 


