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ABSTRACT. – We study a mixed boundary value problem for an operator ofp-Laplacian type. The main
feature of the problem is the fact that the exact domain where it is considered is not knowna priori and
is to be determined so that a certain integral condition is satisfied. We establish the existence of a unique
solution to the problem, by means of the analysis of the range of an appropriate real function, and we show
the continuous dependence with respect to a family of operators. These results can be applied to the study of
unidirectional non-Newtonian flows of power-law type, in particular to solve a simplified problem arising
in theoretical glaciology and to show the existence of a Bingham flow in an open channel; the uniqueness
in this case is an open problem. Elsevier, Paris

Keywords:p-Laplacian operator, Free boundary problems, Continuous dependence, Unidirectional
non-Newtonian flows

RÉSUMÉ. – On étudie un problème aux limites mixte pour un opérateur du type dup-Laplacian. L’intérêt
principal du problème est dans le fait que le domaine exact où on le considère n’est pasa priori connu et il
faut le determiner de façon telle qu’une certaine condition intégrale soit satisfaite. On démontre l’existence
et l’unicité d’une solution du problème par l’analyse d’une fonction réele appropriée et on obtient aussi
un résultat de dépendence continue pour une famille d’opérateurs. Ces résultats peuvent être appliqués
à l’étude de l’écoulement unidirectionel de fluides non-newtoniens, en particulier, à la résolution d’un
problème simplifié de la glaciologie théorique et à la démonstration de l’éxistence d’un écoulement de
Bingham dans une conduite cylindrique ; l’únicité reste dans ce cas un problème ouvert. Elsevier, Paris

1. Introduction and statement of the problem

We consider a free boundary value problem for a quasi-linear degenerate elliptic equation of
the form

−∇ · [α(|∇u|)∇u]= 1,(1)

the model for the operator on the left hand side of (1) being thep-Laplacian, that corresponds to
the choiceα(|∇u|)= |∇u|p−2, with 1<p <∞.

The new feature in this paper is the fact that the exact domain where the boundary value
problem is to be considered is not knowna priori. More precisely, it belongs to the class of open

1 Partially supported by FCT(JNICT), Praxis XXI and Praxis/2/2.1/MAT/125/94. E-mail: rodrigue@lmc.fc.ul.pt.
2 Partially supported by CMUC/FCT(JNICT) and Praxis XXI. E-mail: jmurb@mat.uc.pt.
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subsets ofRN of the form

Ωξ =
{
x = (x ′, xN) ∈RN : h(x ′) < xN < ξ

}
, ξ ∈R,(2)

whereh is a given continuous function defined inRN−1. The unknown heightξ of the flat top
surface of the domain is to be determined such that the solutionu of the boundary value problem
for (1) inΩξ satisfies the integral condition∫

Ωξ

udx =Q,(3)

whereQ> 0 is a given constant.
The boundary conditions considered on the domainΩξ are of mixed type. Along the

surface defined byh we take an homogeneous Dirichlet condition, and on the top surface an
homogeneous Neumann condition.

This problem corresponds to the mathematical formulation of a family of interesting physical
situations arising in classical fluid mechanics, for which recent interest has been raised by
a problem in theoretical glaciology (see [5] and [12], for references). Although of simple
formulation, it seems that few mathematical results exist, in spite of its study being possible
in the framework of variational solutions. As we intend to show here, this allows a considerable
degree of generality, in particular, in what concerns the low regularity of the domains, a possible
consequence of the geometry of physical problems.

We denote

Γ
ξ
H = (H ∩ ∂Ωξ ) \Πξ =

{
x ∈RN : h(x ′) < ξ, xN = h(x ′)

}
,(4)

Γ
ξ
Π = (Πξ ∩ ∂Ωξ) \H =

{
x ∈RN : h(x ′) < ξ, xN = ξ

}
,(5)

whereΠξ = {x ∈ RN : xN = ξ} andH = {x ∈ RN : xN = h(x ′)} stands for the graph ofh. The
abridged classical formulation of the problem then reads:

PROBLEM (P). –GivenQ> 0, find a real numberξ and a functionuξ such that:
(1)


∇ · [α(|∇uξ |)∇uξ ]=−1 in Ωξ ,

uξ = 0 onΓ ξH ,

∂uξ /∂xN = 0 onΓ ξΠ ,

(2)
∫
Ωξ

uξ =Q.

Remark1. – We are considering a constant second member in the equation. All the results in
this paper can be easily extended to the case of a second memberf = f (x ′), i.e., independent of
xN , and such thatf (x ′) < 0. We could also have considered a dependence inx ′ throughα.

Since classical solutions are not to be expected in general, we next consider the problem in a
weak form and state the assumptions under which we are able to establish an unique solvability
result.

Let C1
H (Ωξ ) denote the subspace ofC1(Ωξ ) consisting of those functions that vanish in a

neighbourhood ofH and define the space of test functions:

W
1,p
H (Ωξ)= closure ofC1

H

(
Ωξ

)
in W1,p(Ωξ), 1<p <∞.
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It is a reflexive Banach space where a Poincaré type inequality is valid; the usualW1,p-norm of
a function is then equivalent to theLp norm of its gradient and this is the one that will be used.

Remark2. – Note that with this definition we avoid some delicate questions concerning the
regularity of the domain, namely the ones posed by the use of traces and those considered in the
theory of elliptic problems in nonsmooth domains (see [6]).

A standard formal integration by parts, taking the boundary conditions into account, leads to
the following:

DEFINITION. – A weak solution to(P) is a pair (ξ, uξ ) ∈R+ ×W1,p
H (Ωξ ) such that

∫
Ωξ

α
(|∇uξ |)∇uξ · ∇v = ∫

Ωξ

v, ∀v ∈W1,p
H (Ωξ);(6)

∫
Ωξ

uξ =Q.(7)

This definition makes sense according to the following set of

ASSUMPTIONS. –
(A1) α :R+→R+ is a continuous function andlimr→0+ α(r)r = 0;
(A2) ∃C1,C2> 0,C3> 0 such thatC1r

p−26 α(r)6 C2r
p−2+C3r

−1, ∀r > 0;
(A3) [α(|ξ |)ξ − α(|η|)η] · [ξ − η]> 0, ∀ξ 6= η ∈RN \ {0};
(A4) h :RN−1→R is a continuous function,lim|x ′|→∞ h(x ′)=+∞ andminx ′∈RN−1 h(x ′)= 0.

Remark3. – In accordance with (A1),α(|∇uξ |)∇uξ is defined to be zero at each point where
∇uξ = 0.

Remark4. – Concerning (A4), we remark that the assumption minx ′∈RN−1 h(x ′) = 0 stands
only to simplify the writing and allows us to search for a positiveξ . The fact thath is continuous
and the coercivity condition lim|x ′|→∞ h(x ′)= +∞ assure that, for eachξ > 0,Ωξ is an open
and bounded subset ofRN . Observe that no further regularity onh is required.

For each fixedζ > 0, we call (Pζ ) the problem consisting of solving (6). The assumptions onα

assure that each (Pζ ) has a unique solution, by the general theory of (strictly) monotone operators
(see [10], for instance). Moreover, we can formulate each (Pζ ) as a minimization problem. We
introduce the real function

A(r)=
r∫

0

α
(|s|)s ds, r ∈R,

which, due to (A1) is differentiable inR, withA′(r)= α(|r|)r. From (A3) we conclude thatA is
strictly convex. Hence (6) is the Euler–Lagrange variational equation for

min
v∈W1,p

H (Ωζ )

[∫
Ωζ

A
(|∇v|)− ∫

Ωζ

v

]
,(8)

so the solutionuζ is the corresponding unique minimizer.
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The regularity results for the solution, that we shall not use, are also well known. In fact, with
our assumptions we can apply the results of [3] and conclude that we have:

uζ ∈ C1,α
loc (Ωζ ).

As is pointed out there, this is the best regularity that is to be expected in general.
The mathematical analysis of degenerate elliptic equations has deserved considerable attention

and is now well documented in the literature (see for example the recent books [8] and [11] and
their references). To our knowledge, the corresponding problems in free domains have not been
considered for mixed boundary conditions. In the nondegenerate case, a problem of this type
was studied in [7] and an existence result was obtained without the assumption of a plane top
boundary, i.e., taking the surface tension into account.

This paper is organized as follows. After establishing some auxiliary results in Section 2, we
prove the existence and uniqueness of a weak solution to problem (P) in Section 3, by making a
detailed analysis of the problem(Pζ ) whenζ varies inR+. In Section 4, we prove a continuous
dependence with respect to variations of the operator, i.e., to the functionα in the class (A1)–
(A3). The main difficulty here is that the domainΩζ also varies in order that (7) is kept. Finally, in
the last section, we give two examples of applications of the preceding results in fluid mechanics,
namely to the study of steady non-Newtonian flows in open channels or valleys. In particular, we
solve a problem arising in theoretical glaciology and extend the existence theorem to the case of
a Bingham flow, by adapting the continuous dependence result. The uniqueness of solution for
this last problem seems to be an interesting open question.

2. Some auxiliary results

In this section we introduce some notation and gather a few lemmas that will be used later,
simplifying the main proofs.

We start with the question of the extension of a Sobolev function defined in a setΩζ , ξ > 0, of
the form (2) to a larger set of this type. The fact that the top surface ofΩζ is flat allows us to use
the results concerning the extension ofW1,p functions by reflection. Introducing the reflected set
ofΩζ , Ω̂ζ = {x ∈RN : ζ < xN < 2ζ − h(x ′)}, we denote the open subset

Ω∗ζ =
{
x ∈RN : h(x ′) < xN < 2ζ − h(x ′)},

which is Ωζ ∪ Ω̂ζ together with the interior of their common boundary. Given a function

w ∈W1,p
H (Ωζ ), we define its extensionw∗ toΩ∗ζ , through reflection with respect toΠζ , i.e.,

w∗(x ′, xN)=
{
w(x ′, xN) if (x ′, xN) ∈Ωζ ,
ŵ(x ′, xN) if (x ′, xN) ∈ Ω̂ζ ,

whereŵ(x ′, xN)=w(x ′,2ζ − xN). We have the following result:

LEMMA 1. – Givenw ∈W1,p
H (Ωζ ), its extension is such thatw∗ ∈W1,p

0 (Ω∗ζ ) and it satisfies
the estimate

‖w∗‖
W

1,p
0 (Ω∗ζ )

6 2‖w‖W1,p (Ωζ )
.(9)
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Moreover, we have

∇w∗ =
((

∂w

∂x1

)∗
, . . . ,

(
∂w

∂xN−1

)∗
,

(
∂w

∂xN

)◦)
,

denoting, forw defined inΩζ ,

w◦(x ′, xN)=
{
w(x ′, xN) if (x ′, xN) ∈Ωζ ,

−ŵ(x ′, xN) if (x ′, xN) ∈ Ω̂ζ .

Proof. –The fact thatw∗ ∈ W1,p(Ω∗ζ ), the expression for its gradient and the estimate (9)

follow from standard arguments (see for instance [1, p. 158]). To show thatw∗ ∈ W1,p
0 (Ω∗ζ ),

observe that, sincew ∈W1,p
H (Ωζ ), we have:

w = limwn in W1,p(Ωζ ), wn ∈ C1
H

(
Ωξ

)
.

We can extend eachwn by reflection, obtaining functionsw∗n ∈W1,p(Ω∗ζ ) with compact support

in Ω∗ζ . Hence, they belong toW1,p
0 (Ω∗ζ ) and since this space is closed we conclude from

‖w∗n −w∗‖W1,p
0 (Ω∗ζ )

= ∥∥(wn −w)∗∥∥W1,p
0 (Ω∗ζ )

6 2‖wn −w‖W1,p (Ωζ )
→ 0. 2

If we want to extend a functionw ∈ W1,p
H (Ωζ ) to a setΩK for K > 2ζ , we first obtain

w∗ ∈W1,p
0 (Ω∗ζ ) and then extend it canonically by zero toΩK , obtaing a function inW1,p

0 (ΩK),
still denoted withw∗. For an extension toΩK , with K 6 2ζ , we extend the function to some
ΩK ′ , K ′ > 2ζ , as before, and then restrictw∗ toΩK . We also denote this restriction withw∗ if
it is clear from the context in which domain the function is to be considered.

As a consequence of the previous lemma, we obtain the following compactness result, that is
valid for anyΩζ , ζ > 0, irrespective of its regularity.

COROLLARY 1. – The injectionW1,p
H (Ωζ ) ↪→ Lp(Ωζ ) is compact.

Proof. –The injection can be seen as the following composition

W
1,p
H (Ωζ ) → W

1,p
0

(
Ω∗ζ
)
↪→ Lp

(
Ω∗ζ
) → Lp(Ωζ ),

w 7→ w∗ 7→ w∗ 7→ w∗|Ωζ =w,

the first function being continuous due to Lemma 1, the second compact due to the theorem
of Rellich–Kondrachov and the last one also continuous, since it is a restriction of anLp

function. 2
We proceed introducing some notation. Given a functionw, the restriction ofw to a subset

S of its domain is as usually denoted byw|S . If w is defined in a set likeΩζ , its restriction to
Ωζ−η, for 0< η < ζ , is simply denoted byw|(ζ−η).

Another recurrent tool in this work is the translation of a functionw defined in a subsetD of
RN with respect to a vector parallel toEeN . Givenρ > 0, we define the translated set

TρD =
{
x ∈RN : (x ′, xN − ρ) ∈D

}
,

and the translated functionτρw(x ′, xN)=w(x ′, xN − ρ), for all (x ′, xN) ∈ TρD.
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The next lemma will be used in Section 3. Given 0< η < ζ andw ∈W1,p
H (Ωζ−η), define in

Ωζ , the function:

τηw(x
′, xN)=

{
0 if h(x ′) < xN 6 h(x ′)+ η,
τηw(x

′, xN) if h(x ′)+ η < xN < ζ

that clearly belongs toW1,p
H (Ωζ ).

LEMMA 2. – If v ∈W1,p
H (Ωζ ), then asη→ 0, τηv|(ζ−η)→ v strongly inW1,p(Ωζ ).

Proof. –Adapt in the obvious way the well known result on translations ofLp functions
(see [1, p. 75], for example), noting that∇τηv|(ζ−η) = τη[∇v|(ζ−η)]. 2

The last lemma concerns a certain kind of approximation of extended functions, that will
be essential in Section 4. Consider a sequence of positive real numbersζε→ ζ , with ζε 6M,
∀ε > 0. ChooseK > 2M and for eachv ∈W1,p

H (Ωζ ), define the sequence(v3ε )ε>0, with

v3ε =
{
v∗ if ζε > ζ ,
(v|Ωζε )∗ if ζε < ζ ,

both the reflections being followed by extensions by zero toΩK .

LEMMA 3. – For each ε > 0, the functionv3ε ∈ W1,p
0 (ΩK) and v3ε = 0 in ΩK \ Ω∗ζε .

Moreover, asζε→ ζ ,

v3ε → v∗ strongly inW1,p(ΩK).(10)

Proof. –Only the convergence result is non trivial. We just show that

∂v3ε
∂xi
→ ∂v∗

∂xi
, strongly inLp(ΩK), 16 i 6N − 1,

since the strong convergencev3ε → v∗ in Lp(ΩK) is similar but simpler and the case for the
derivative with respect toxN only differs from this one in a few irrelevant minus signs. We have,
for 16 i 6N − 1, using Lemma 1:

∥∥∥∥∂v3ε∂xi − ∂v
∗

∂xi

∥∥∥∥
Lp(ΩK)

=


0 if ζε > ζ ,∥∥∥∥(( ∂v∂xi
)∣∣∣∣
Ωζε

)∗
−
(
∂v

∂xi

)∗∥∥∥∥
Lp(ΩK)

if ζε < ζ .

We focus on the relevant caseζε < ζ :∥∥∥∥(( ∂v∂xi
)∣∣∣∣
Ωζε

)∗
−
(
∂v

∂xi

)∗∥∥∥∥p
Lp(ΩK)

=
∫
Aε

∣∣∣∣ ∂v∂xi (x ′, xN)
∣∣∣∣p + ∫

Bε

∣∣∣∣ ∂v∂xi (x ′,2ζε − xN)− ∂v

∂xi
(x ′, xN)

∣∣∣∣p

+
∫
Cε

∣∣∣∣ ∂v∂xi (x ′,2ζε − xN)− ∂v

∂xi
(x ′,2ζ − xN)

∣∣∣∣p + ∫
Dε

∣∣∣∣ ∂v∂xi (x ′,2ζ − xN)
∣∣∣∣p,

where we have:
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Aε =
{
x ∈ΩK : 2ζε − h(x ′) < xN < ζ

}
,

Bε =
{
x ∈ΩK : ζε < xN <min

(
2ζε − h(x ′), ζ

)}
,

Cε =
{
x ∈ΩK : ζ < xN < 2ζε − h(x ′)

}
,

Dε =
{
x ∈ΩK : max

(
2ζε − h(x ′), ζ

)
< xN < 2ζ − h(x ′)}.

When we letζε → ζ−, |Aε| → 0 and |Dε| → 0 and so the corresponding integrals vanish.
Concerning the integral overBε , we find, withEε = {x ∈ΩK : max(2ζε − ζ,h(x ′)) < xN < ζε},∫
Bε

∣∣∣∣ ∂v∂xi (x ′,2ζε − xN)− ∂v

∂xi
(x ′, xN)

∣∣∣∣p 6 2p
(∫
Bε

∣∣∣∣ ∂v∂xi (x ′,2ζε − xN)
∣∣∣∣p + ∫

Bε

∣∣∣∣ ∂v∂xi (x ′, xN)
∣∣∣∣p)

= 2p
(∫
Eε

∣∣∣∣ ∂v∂xi (x ′, xN)
∣∣∣∣p + ∫

Bε

∣∣∣∣ ∂v∂xi (x ′, xN)
∣∣∣∣p)→ 0,

because also|Bε| → 0 and|Eε| → 0. The remaining integral also vanishes since∫
Cε

∣∣∣∣ ∂v∂xi (x ′,2ζε − xN)− ∂v

∂xi
(x ′,2ζ − xN)

∣∣∣∣p 6 ∥∥∥∥τ2(ζ−ζε) ∂v∂xi − ∂v

∂xi

∥∥∥∥p
Lp(RN)

→ 0,

since∂v/∂xi extended by zero toRN belongs toLp(RN). 2

3. Existence and uniqueness

In this section we establish our main result, namely:

THEOREM 1. – Under assumptions(A1)–(A4), given anyQ> 0, there exists a unique weak
solution to(P).

The proof will be reduced to the analysis of the function of one real parameter

Φ :R+ 3 ζ 7→ (Ωζ ,uζ ) 7→
∫
Ωζ

uζ ∈R,

whereuζ is the solution of (Pζ ), and to the question: Does the range ofΦ contain the given
Q> 0?

We can consider the problem corresponding to the choiceα(r) = rp−2, r > 0, in the non
physical one dimensional case, to see what happens in this simpler situation. We haveΩζ =
(0, ζ ) and the problem (Pζ ) consists of solving the ordinary boundary value problem(|u′ζ |p−2u′ζ

)′ = −1 in (0, ζ ),

with boundary conditionsuζ (0)= 0 andu′ζ (ζ )= 0. We find

uζ (z)= 1− p
p

[
(−z+ ζ ) p

p−1 − ζ p
p−1
]

and Φ(ζ )=
ζ∫

0

uζ = p− 1

2p− 1
ζ

2p−1
p−1 ,
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826 J.F. RODRIGUES, J.M. URBANO

so,Φ being bijective, givenQ> 0, we just have to choose

ξ =
(

2p− 1

p− 1
Q

) p−1
2p−1

,

and the solution of the problem is

u(z)= 1− p
p

[{
−z+

(
2p− 1

p− 1
Q

) p−1
2p−1

} p
p−1 −

(
2p− 1

p− 1
Q

) p
2p−1

]
in

(
0,

(
2p− 1

p− 1
Q

) p−1
2p−1

)
.

The analysis of the general case cannot be done explicitly in higher dimensions for generalα

andh. Therefore, we fixζ and choosev =−u−ζ in (6), to find, from (A2):

C1

∫
Ωζ∩{uζ<0}

|∇uζ |p 6
∫

Ωζ∩{uζ<0}
α
(|∇uζ |)|∇uζ |2

=−
∫
Ωζ

α
(|∇uζ |)∇uζ · ∇u−ζ =− ∫

Ωζ

u−ζ 6 0.

This implies
∫
Ωζ
|∇u−ζ |p = 0, henceu−ζ = 0 anduζ > 0. SoΦ(ζ )> 0, ∀ζ ∈ R+ and it would

be zero only ifuζ = 0 a.e. inΩζ , which is not possible. So the range ofΦ is contained inR+,
thus choosingQ> 0 is necessary. It turns out that it is also sufficient by the following result, that
clearly implies Theorem 1.

PROPOSITION 1. – The functionΦ :R+ → R is a continuous, strictly increasing function,
whose range is the set(0,+∞). Hence, it is a bijection inR+.

Proof. –For future reference, note that, using (A2), the unique solution of (Pζ ), ζ ∈ (0,∞),
obviously satisfies

C1

∫
Ωζ

|∇uζ |p 6
∫
Ωζ

α
(|∇uζ |)|∇uζ |2= ∫

Ωζ

uζ =Φ(ζ ).(11)

(i) Monotonicity: For eachζ̂ > ζ , put û≡ u
ζ̂

andu≡ uζ . Let % = ζ̂ − ζ > 0 and define the
translation of the setΩζ

ω% = T%(Ωζ )=
{
x ∈RN : h(x ′)+ % < xN < ζ + %

}
.

It is clear that the functionτ%u, defined inω%, satisfies

(P%) τ%u ∈W1,p
H+%(ω%):

∫
ω%

α
(|∇τ%u|)∇τ%u · ∇v = ∫

ω%

v, ∀v ∈W1,p
H+%(ω%),

whereH + % denotes the graph of the functionh+ %.
We now show that:

Φ(ζ̂ )=
∫
Ω
ζ̂

û >

∫
ω%

û>
∫
ω%

τ%u=
∫
Ωζ

u=Φ(ζ ).(12)
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The equality is an obvious consequence of translation and the strict inequality follows from
the fact thatû can not vanish in the open setO =Ω

ζ̂
\ ω%. In fact, if û= 0 a.e. inO, then also

|∇û| = 0 a.e. inO and by Remark 3 that would contradict the fact thatû solves there the equation
∇ · (α(|∇û|)∇û)=−1, in the sense of distributions. To conclude it suffices to show thatû> τ%u
a.e. inω%. Take the function:

v =
{
(û− τ%u)− in ω%,

0 inΩ
ζ̂
\ ω%,

which can be used as a test function both in (P%) and (P̂
ζ
).

We obtain∫
ω%

α
(|∇τ%u|)∇τ%u · ∇(û− τ%u)− = ∫

ω%

(û− τ%u)− =
∫
ω%

α
(|∇û|)∇û · ∇(û− τ%u)−.

Subtracting, we get∫
ω%∩{û<τ%u}

[
α
(|∇τ%u|)∇τ%u− α(|∇û|)∇û] · ∇(τ%u− û)= 0,

and using (A3) we conclude that:∥∥∇(û− τ%u)−∥∥Lp(ω%) = 0, i.e., û> τ%u a.e. inω%.

(ii) Continuity: We start with right continuity. We want to show that, for fixedζ ,Φ(ζ + η)→
Φ(ζ ) whenη→ 0+. We start by showing that∫

Ωζ+η\Ωζ
uζ+η→ 0.(13)

With 0< η < 1, consider the translation

ω(1−η) = T(1−η)(Ωζ+η \Ωζ )=
{
x ∈RN : ζ + 1− η6 xN < ζ + 1, xN > h(x ′)+ 1− η}.

The same reasoning used to obtain (12), yields in this context

06
∫

Ωζ+η\Ωζ
uζ+η 6

∫
ω(1−η)

uζ+1→ 0,

because|ω(1−η)|6 C{(ζ + 1)− [max[h(x ′), ζ ] + (1− η)]}6 Cη→ 0.
Then from

Φ(ζ + η)=
∫

Ωζ+η\Ωζ
uζ+η +

∫
Ωζ

uζ+η,
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and (13), we need only show the second term converges toΦ(ζ ). First observe that, due to (11)
and the monotonicity ofΦ,

‖∇uζ+η‖pLp(Ωζ ) 6
∫

Ωζ+η

|∇uζ+η|p 6 1

C1
Φ(ζ + η)6 1

C1
Φ(ζ + 1), ∀0< η < 1,

and so(uζ+η) is bounded inW1,p
H (Ωζ ) and we can extract a subsequence such thatuζ+η ⇀ u

in W
1,p
H (Ωζ )-weak, for someu ∈ W1,p

H (Ωζ ). If we show thatu is a solution to the limit
problem (Pζ ) we get as a consequence, due to the uniqueness, thatu= uζ . Since the imbedding

W
1,p
H (Ωζ ) ↪→ L1(Ωζ ) is compact, due to Corollary 1, this gives∫

Ωζ

uζ+η→
∫
Ωζ

uζ =Φ(ζ ).

So take an arbitraryv ∈W1,p
H (Ωζ ) and consider its extensionv∗ (see Section 2), that can be

used as a test function in (Pζ+η). We obtain:

06
∫

Ωζ+η

(
α
(|∇uζ+η|)∇uζ+η − α(|∇v∗|)∇v∗) · (∇uζ+η −∇v∗)

=
∫

Ωζ+η\Ωζ
(uζ+η − v∗)−

∫
Ωζ+η\Ωζ

α
(|∇v∗|)∇v∗ · (∇uζ+η −∇v∗)

+
∫
Ωζ

(uζ+η − v)−
∫
Ωζ

α
(|∇v|)∇v · (∇uζ+η −∇v).

Now we take the limit asη→ 0+, getting∫
Ωζ

(u− v)−
∫
Ωζ

α
(|∇v|)∇v · (∇u−∇v)> 0,

because all the integrals overΩζ+η \ Ωζ vanish. In fact, for two of them this is obvious, for
another we can use (13) and for the remaining note that we have:∣∣∣∣ ∫
Ωζ+η\Ωζ

α
(|∇v∗|)∇v∗ · ∇uζ+η∣∣∣∣6 ( ∫

Ωζ+η\Ωζ

∣∣α(|∇v∗|)∇v∗∣∣p′)1/p′( ∫
Ωζ+η\Ωζ

|∇uζ+η|p
)1/p

,

and here the first factor goes to zero while the second one is bounded by[ 1
C1
Φ(ζ + 1)]1/p for

0< η < 1, thus yielding the result.
We can now use the technique of Minty for monotone operators. Sincev is arbitrary, choose

v = u− δw, with δ ∈ R andw ∈W1,p
H (Ωζ ) and then takeδ to zero, using the hemicontinuity,

and conclude that ∫
Ωζ

α
(|∇u|)∇u · ∇w = ∫

Ωζ

w, ∀w ∈W1,p
H (Ωζ ),
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thus proving thatu is a solution to (Pζ ).
Concerning left continuity, we show thatΦ(ζ − η)→ Φ(ζ ) whenη→ 0+. The sequence

(τηuζ−η)η is bounded inW1,p(Ωζ ), independently ofη. In fact, recalling the definition from
Section 2 and using (11) and the monotonicity, we have

‖τηuζ−η‖pW1,p(Ωζ )
= ‖uζ−η‖pW1,p(Ωζ−η) 6

1

C1
Φ(ζ − η)6 1

C1
Φ(ζ );

we can then extract a subsequence such that

τηuζ−η ⇀ u in W1,p
H (Ωζ )-weak.(14)

Once we show that this weak limit solves the problem inΩζ , we obtain, from the uniqueness,
u= uζ and we conclude from

06Φ(ζ )−Φ(ζ − η)=
∫
Ωζ

uζ −
∫

Ωζ−η

uζ−η =
∫
Ωζ

α
(|∇uζ |)∇uζ · ∇(uζ − τηuζ−η)→ 0.

To this end, it is enough to show that∫
Ωζ

α
(|∇u|)∇u · ∇v = ∫

Ωζ

v, ∀v ∈W1,p
H (Ωζ ).

Given such av and starting from

06
∫
Ωζ

[
α
(|∇τηuζ−η|)∇τηuζ−η − α(|∇τηv|(ζ−η)|)∇τηv|(ζ−η)] · ∇(τ ηuζ−η − τηv|(ζ−η)),

we can conclude as before, through Minty’s lemma, if we are able to pass to the limit. This can
be done, having in mind the equation, the convergence (14) and Lemma 2.

(iii) Range: First we show thatΦ(ζ )→ 0 whenζ → 0. In fact, using the inequalities of Hölder
and Poincaré, we get:

Φ(ζ )=
∫
Ωζ

uζ 6 |Ωζ |
1
p′ ‖uζ ‖Lp(Ωζ ) 6 C|Ωζ |

1
p′ + 1

N ‖∇uζ ‖Lp(Ωζ )

6C|Ωζ |
1
p′ + 1

N

(
1

C1

) 1
p

Φ(ζ )
1
p ,

using (A2) and withC depending only onp andN . We ultimately obtain

06Φ(ζ )6 C′|Ωζ |1+
p

N(p−1) ,

and letζ converge to zero to conclude.
Next, we prove thatΦ(ζ ) → ∞ when ζ → ∞. In fact, due to (8), we have, for any

v ∈W1,p
H (Ωζ ),

−Φ(ζ )6
∫
Ωζ

A
(|∇uζ |)− ∫

Ωζ

uζ 6
∫
Ωζ

A
(|∇v|)− ∫

Ωζ

v
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and consequently, using (A2),

Φ(ζ )>
∫
Ωζ

v −
∫
Ωζ

A
(|∇v|)> ∫

Ωζ

v − C2

p

∫
Ωζ

|∇v|p −C3

∫
Ωζ

|∇v|, ∀v ∈W1,p
H (Ωζ ).(15)

We now make an appropriate choice of a sequencevζ , such that the second member of (15) will
tend to infinity withζ thus concluding that the same happens withΦ. Without loss of generality,
we may chooseρ > 0 andσ > 0 such that, for allζ > σ + 1, the cylinderCζ = B ′(ρ)× (σ, ζ )
is contained inΩζ , whereB ′(ρ) denotes the ball inRN−1 with center at the origin and radiusρ.

Definevζ ∈W1,p
H (Ωζ ), as

vζ (x
′, xN)=

{
f (x ′)gζ (xN) if (x ′, xn) ∈ Cζ ,
0 if (x ′, xN) ∈Ωζ \ Cζ ,

wheregζ : (σ, ζ )→R is the function

gζ (xN)=
{
xN − σ if xN ∈ (σ,σ + 1],
1 if xN ∈ (σ + 1, ζ )

andf :B ′(ρ)→R is a radial function defined, forr = |x ′|, by

f (r)=
{

1 if 06 r 6 ρ
2 ,

2− 2
ρ
r if ρ

2 < r < ρ.

We have∇vζ = (gζ∇′f,fg′ζ ) and|∇vζ |p 6 2(
p−2

2 )+[gpζ |∇′f |p + f p|g′ζ |p]. Using the theorem
of Fubini, we have:∫

Ωζ

vζ − C2

p

∫
Ωζ

|∇vζ |p −C3

∫
Ωζ

|∇vζ |

>
ζ∫
σ

gζ

∫
B ′(ρ)

f − C2

p
2(

p−2
2 )+

[ ζ∫
σ

g
p
ζ

∫
B ′(ρ)

|∇′f |p +
∫

B ′(ρ)

f p

ζ∫
σ

|g′ζ |p
]

−C3

[ ζ∫
σ

gζ

∫
B ′(ρ)

|∇′f | +
∫

B ′(ρ)

f

ζ∫
σ

|g′ζ |
]

= (ζ − σ)
[ ∫
B ′(ρ)

f −C3

∫
B ′(ρ)

|∇′f | − C2

p
2(

p−2
2 )+

∫
B ′(ρ)

|∇′f |p
]
+C,(16)

with C a constant independent ofζ . This last identity holds since

ζ∫
σ

gζ = ζ − σ − 1

2
,

ζ∫
σ

g
p
ζ = ζ − σ −

p

p− 1
and

ζ∫
σ

|g′ζ |p =
ζ∫
σ

|g′ζ | = 1.
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We now compute∫
B ′(ρ)

f = C(N)ρN−1 and
∫

B ′(ρ)

|∇′f |p = C(N,p)ρN−p−1, p > 1,

and, from (15), we obtain, through (16),

Φ(ζ )> (ζ − σ)ρN−2[k1ρ − k2− k3ρ
1−p]+C,

for positive constantsk1, k2 andk3 depending only onN , p and the constants in (A2). Now
the second member in this inequality goes to infinity withζ providedk1ρ − k2− k3ρ

1−p > 0.
Since this expression goes to infinity whenρ goes to infinity this holds true if we chooseρ large
enough, which is always possible due to our assumption (A4) onh and choosingσ also large
enough. 2

Remark5. – In the case of thep-Laplacian, the proof of the left continuity can be done in a
very easy way, that we briefly describe. Since we can useuζ as a test function in (Pζ−η), i.e.,
in (6) for uζ−η, we so obtain:

∫
Ωζ−η

uζ =
∫

Ωζ−η

|∇uζ−η|p−2∇uζ−η · ∇uζ 6
( ∫
Ωζ−η

|∇uζ−η|p
) 1
p′
( ∫
Ωζ−η

|∇uζ |p
) 1
p

,

using Hölder’s inequality. Using (11), this can be written in the form

Φ(ζ − η)>
(∫
Ωζ−η uζ

)p′
( ∫
Ωζ−η |∇uζ |p

) p′
p

.

Taking the limit whenη→ 0+, this implies limη→0+ Φ(ζ − η)>Φ(ζ ).

4. Continuous dependence on the operator

In this section we obtain some continuous dependence results with respect to perturbations of
the operator. Consider a family of functionsαε,α0 :R+→R, satisfying assumptions (A1)–(A3)
uniformly in ε and let(ξε, uξε ) be the solution of the problem corresponding toε > 0:

(Pε)



(ξε, uξε ) ∈R+ ×W1,p
H (Ωξε )∫

Ωξε

αε
(|∇uξε |)∇uξε · ∇v = ∫

Ωξε

v, ∀v ∈W1,p
H (Ωξε),

∫
Ωξε

uξε =Q.

We want to show that, asε→ 0, (ξε, uξε ) converge to(ξ0, uξ0) in some sense to be made clear.
We show that the following theorem holds:
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THEOREM 2. – If αε→ α0 uniformly on compacts ofR+ asε→ 0, then the solutions of the
corresponding problems satisfy

ξε→ ξ0 in R,

u∗ξε ⇀ u in W1,p(ΩK), for someK > 0,

whereu is such thatu|Ωξ0 = uξ0.

Proof. –We start with ana priori estimate, showing that there exists a constantC > 0,
independent ofε, such that

0< ξε < C.(17)

Suppose not. This means that we can extract a subsequence (denoted with the same index) such
thatξε→+∞. Now observe that, like in (15), we can write

Φε(ξε)=
∫
Ωξε

uξε >
∫
Ωξε

v − C2

p

∫
Ωξε

|∇v|p −C3

∫
Ωξε

|∇v|, ∀v ∈W1,p
H (Ωξε )

and so a sequence(vξε ) can be chosen, using the same reasoning of the previous section, such that
the right hand side of this inequality goes to infinity. Note that this is possible sinceξε→+∞.
We reach a contradition since the left hand side is constant and equal toQ. We can then extract
a subsequence (denoted with the same index) such that, asε→ 0,

ξε→ ξ, ξ > 0.

We now observe that still due to thea priori estimate (17),Ω :=Ω2C contains all the setsΩ∗ξε .
For theuξε corresponding to this subsequence, we obtain, from (9) and (11), the independence
of ε estimate for its extensions

‖u∗ξε‖pW1,p
0 (Ω)

6 2p‖uξε‖pW1,p(Ωξε )
6 2p

C1

∫
Ωξε

αε
(|∇uξε |)|∇uξε |2= 2pQ

C1
.(18)

We can then extract another subsequence such that

u∗ξε ⇀ u in W1,p
0 (Ω)-weak,Lp(Ω)-strong and pointwise a.e.(19)

for a certain elementu ∈W1,p
0 (Ω).

We first observe that for(x ′, xN) ∈ Ω \ Ω∗ξ and ε sufficiently small,u∗ξε (x
′, xN) = 0; the

convergence (19) ofu∗ξε to u gives

u= 0 a.e. inΩ \Ω∗ξ .(20)

Next we prove thatu is symmetric with respect toΠξ . For any functionw defined inΩ ,
consider its reflection with respect toΠξ :

(w ◦R)(x ′, xN)=
{
w(x ′,2ξ − xN) if (x ′, xN) ∈Ω∗ξ ,
0 if (x ′, xN) ∈Ω \Ω∗ξ .
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What we want to show is thatu= u ◦R, say inLp(Ω). We start from:

‖u− u ◦R‖Lp(Ω) 6 ‖u− u∗ξε‖Lp(Ω) + ‖u∗ξε − u∗ξε ◦R‖Lp(Ω) + ‖u∗ξε ◦R− u ◦R‖Lp(Ω)(21)

and show that each term of the second member goes to zero thus obtaining the result. For the first
it is obvious, due to (19). The same applies to the third one since

‖u∗ξε ◦R− u ◦R‖Lp(Ω) 6 ‖u∗ξε − u‖Lp(Ω).

The second term is more delicate. To begin with, we write

‖u∗ξε − u∗ξε ◦R‖pLp(Ω) =
∫

Ω\Ω∗ξ

|u∗ξε − u|p + ‖u∗ξε − u∗ξε ◦R‖pLp(Ω∗ξ )

and since the first term goes to zero, we are left with the second one. Now we need to consider
two separate cases:

(i) ξε > ξ : In this case, we haveΩ∗ξ ⊂Ω∗ξε , so

‖u∗ξε − u∗ξε ◦R‖pLp(Ω∗ξ ) =
∫
Ω∗ξ

∣∣u∗ξε (x ′,2ξε − xN)− u∗ξε (x ′,2ξ − xN)∣∣p dx

=
∫
Ω∗ξ

∣∣∣∣∣
2ξε−xN∫

2ξ−xN

∂

∂xN
u∗ξε (x

′, η)dη
∣∣∣∣∣
p

dx 6
[
2(ξε − ξ)

]p−1

2ξε−xN∫
2ξ−xN

∫
Ω∗ξ

∣∣∣∣ ∂∂xN u∗ξε (x ′, η)
∣∣∣∣p dx dη,

and this goes to zero, since we have an estimate foru∗ξε inW1,p(Ω) and|2ξε − xN − 2ξ + xN | → 0.
(ii) ξε < ξ : Here we have

‖u∗ξε − u∗ξε ◦R‖pLp(Ω∗ξ ) =
∫
Ω∗ξ

∣∣u∗ξε (x ′, xN)− u∗ξε (x ′,2ξ − xN)∣∣p dx

=
∫
Aε

∣∣u∗ξε (x ′, xN)∣∣p dx +
∫
Bε

∣∣u∗ξε (x ′,2ξε − xN)− u∗ξε (x ′,2ξ − xN)∣∣p dx

+
∫
Cε

∣∣u∗ξε (x ′,2ξ − xN)∣∣p dx,

where we have:

Aε =
{
x ∈Ω∗ξ : h(x ′) < xN < h(x ′)+ 2(ξ − ξε)

}
,

Bε =
{
x ∈Ω∗ξ : h(x ′)+ 2(ξ − ξε) < xN < 2ξε − h(x ′)

}
,

Cε =
{
x ∈Ω∗ξ : 2ξε − h(x ′) < xN < 2ξ − h(x ′)}.

Now we see that|Aε| → 0, |Cε| → 0 and so the estimate onu∗ξε cancels both those integrals. For
the integral overBε , which can be empty, we use the reasoning of case (i). We conclude that (21)
converges to zero as we wanted.
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Now, observe that for anyv ∈W1,p
0 (Ω∗ξε ),∫

Ω

αε
(|∇u∗ξε |)∇u∗ξε · ∇v = ∫

Ω

χΩ∗ξε v.(22)

In fact, with

∇− =
(
∂

∂x1
, . . . ,

∂

∂xN−1
,− ∂

∂xN

)
and, for a vectorv= (v1, . . . , vn), v̂= (v̂1, . . . , v̂n), we obtain, using Lemma 1,∫

Ω̂ξε

αε
(|∇u∗ξε |)∇u∗ξε · ∇v = ∫

Ω̂ξε

αε
(|∇̂−uξε |)∇̂−uξε · ∇v = ∫

Ωξε

αε
(|∇−uξε |)∇−uξε · ∇̂v

=
∫
Ωξε

αε
(|∇−uξε |)∇−uξε · ∇−v̂ = ∫

Ωξε

αε
(|∇uξε |)∇uξε · ∇v̂

=
∫
Ωξε

v̂ =
∫
Ω̂ξε

v,

becausêv also belongs toW1,p
H (Ωξε ). Now, given anyv ∈W1,p

H (Ωξ), we have, using (22):

06
∫
Ω

[
αε
(|∇u∗ξε |)∇u∗ξε − αε(|∇v3ε |)∇v3ε ] · ∇(u∗ξε − v3ε )

=
∫
Ω

χΩ∗ξε
(
u∗ξε − v3ε

)− ∫
Ω

αε
(|∇v3ε |)∇v3ε · ∇(u∗ξε − v3ε ),

and passing to the limit, using Lemma 3 and having in mind thatχΩ∗ξε → χΩ∗ξ in Lp(Ω), for all
16 p <∞, we get ∫

Ω

χΩ∗ξ (u− v∗)−
∫
Ω

α0
(|∇v∗|)∇v∗ · ∇(u− v∗)> 0.

This is equivalent to ∫
Ωξ

(u− v)−
∫
Ωξ

α0
(|∇v|)∇v · ∇(u− v)> 0,

which can be shown using the same arguments that led to (22), having the symmetry in mind.
We finally obtain, using the usual reasoning,∫

Ωξ

α0
(|∇u|)∇u · ∇w = ∫

Ωξ

w, ∀w ∈W1,p
H (Ωξ).

We also have

2Q=
∫
Ω

u∗ξε→
∫
Ω

u
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and so, using (20), we obtain: ∫
Ωξ

u= 1

2

∫
Ω∗ξ

u=Q.

Sinceu ∈ W1,p
0 (Ω) implies thatu|Ωξ ∈ W1,p

H (Ωξ ), by the uniqueness, we have shown that
(ξ, u|Ωξ )= (ξ0, uξ0) is the solution of the limit problem.2

Remark6. – In the case of a regular domain, for example if∂Ωξ ∈ C0,1 (for which it is

sufficient to considerh convex), we could further conclude thatu ∈ W1,p
0 (Ω∗ξ ) and so in that

case, we would haveu= u∗ξ0.

Remark7. – We could have obtained the symmetry ofu using regularity results. Take any
(x ′, xN) ∈Ωξ ; sinceξε→ ξ , we can chooseε0 such that

ε < ε0⇒ |ξε − ξ |< xN − h(x ′)
4

.

We then have that, forε < ε0,

(x ′,2ξε − xN) ∈ B
(
(x ′,2ξ − xN), xN − h(x

′)
2

)
⊂Ω∗ξε ,

whereB(x, δ) stands for the ball inRN with centre inx and radiusδ. Now, in this ball we can
obtain an estimate for the Holder norm ofu∗ξε . Observe that, due to (22),u∗ξε solves the following
Dirichlet problem:

w ∈W1,p
0 (Ω∗ξε ):

∫
Ω∗ξε

αε
(|∇w|)∇w · ∇v = ∫

Ω∗ξε

v, ∀v ∈W1,p
0 (Ω∗ξε ).

So we can use the results in [9], namely Theorem 7.2 (p. 290), to obtain the estimate

|u∗ξε |γ,B 6 C,

which can be seen to be uniform inε, due to the fact theαε satisfy (A2) uniformly. This means,
in particular, thatu∗ξε → u uniformly in the ballB, and we have:

u(x ′, xN)← u∗ξε (x
′, xN)= u∗ξε (x ′,2ξε − xN)→ u(x ′,2ξ − xN).

We conclude thatu is symmetric in(x ′, xN), for a.e.(x ′, xN) ∈Ωξ .

5. Applications in fluid mechanics

5.1. Fluids of power-law type

The results of the previous sections can be applied to the study of the motion of a general
fluid in an infinite channel or valley, in the particular case in which the flow is unidirectional and
parallel to its axis.
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We consider an incompressible and viscous fluid, with a constant densityρ ≡ 1. In the steady-
state case, the basic equations from continuum mechanics that describe the motion are the
equations of conservation of mass and momentum (see [4], for instance)

∇ · u= 0,(23)

u · ∇u=∇ · σ + f.(24)

Hereσ = [σij ] is the stress tensor,f represents the external forces andu = (ui) is the velocity
field, which for a motion of the type we are considering, is given byu= (u,0,0), if the geometric
setting (inR3) considers thex1 axis,OEe1, in the direction of the flow, thex2 axis across stream
and thex3 axis upwards. We can then simplify Eq. (24), observing that, from (23),∂u/∂x1= 0
and sou is a function ofx2 andx3 alone. In particular,u ·∇u= 0 and (24) reduces to∇ ·σ =−f.

We next introduce a (possibly nonlinear) constitutive relation for the incompressible non-
Newtonian fluid

σij =−pδij + τij ,
p being the pressure andτ = [τij ] the viscous stress tensor. We then need to relateτ and the
deformation tensorD, that, in this context, takes the form:

D=
(

1

2

(
∂ui

∂xj
+ ∂uj
∂xi

))
ij

= 1

2

 0 ∂u
∂x2

∂u
∂x3

∂u
∂x2

0 0
∂u
∂x3

0 0

 ,
by considering a viscosity coefficient dependent on the second scalar invariantDII (u) =
1
2DijDij = 1

4|∇u|2, with ∇ = ( ∂
∂x2
, ∂
∂x3
):

τij = ν
(
DII (u)

)
Dij = α

(|∇u|)Dij .(25)

We can recognize some classical examples of fluids of the differential type, whenα is given,
for r = |∇u|, for some viscosity parameterµ> 0, by:

α(r)= 2µ, Newtonian fluid,

α(r)=µ
[
r

2

]q−2

, non-Newtonian fluid,

which is called a pseudo-plastic fluid if 1< q < 2 and a dilatant fluid ifq > 2. An expression for
generalized non-Newtonian fluids, like

α(r)= 2µ

(√
2

2
r

)
,

whereµ satisfies appropriate assumptions, includes some important asymptotically Newtonian
models in whichµ(r)→µ∞ whenr→∞, (see [2], for example).

Going back to (25), we have:

τ11= τ22= τ33= τ23= 0,

τ12= α
(|∇u|)∂u

∂y
and τ13= α

(|∇u|)∂u
∂z
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and so, assuming constant external forcesf = (k1, k2, k3), with k1 > 0, the equations of
motion (24) read

∂p

∂x1
=∇ · (α(|∇u|)∇u)+ k1,

∂p

∂x2
= k2,

∂p

∂x3
= k3.

From the second and third equations we see that∂p/∂x1 is a function ofx1 alone and so the left
hand side of the first equation depends only onx1 while the right hand side depends only onx2
andx3; there is then a constant, called drop in pressure per unit length, such that∂p/∂x1=−c.
We can then determine the pressure up to this constant and, dividing byc+ k1> 0, we are left
with the degenerate elliptic equation

∇ · (α(|∇u|)∇u)=−1

of the previous sections, now withN = 2 and∇ = ( ∂
∂x2
, ∂
∂x3
).

The domain where the problem was considered corresponds to a cross section, which is in
accordance with the fact thatu is independent ofx1; in this setting we have the unknown open
subset ofR2

Ωξ =
{
(x2, x3) ∈R2: h(x2) < x3< ξ

}
,

where the functionh describes the bed of the valley;ξ is unknown and is to be determined so
that the flux of fluid is exactly equal to a given constantQ> 0:∫

Ωξ

u · Ee1=
∫
Ωξ

udx2 dx3=Q.

The boundary conditions correspond to no slip at the base and absence of mass transfer through
the top surface, which is then supposed to be flat but having unknown height.

As a particular case, we can solve a problem arising in [5] concerning the motion of a glacier in
a valley. We briefly describe the model under consideration and show that in fact it falls into the
general setting described previously. The material under consideration here is the ice. As is usual
in theoretical glaciology, we assume that the flow of the glacier is so slow that we can restrict
ourselves to the steady case. The glacier is taken to be isothermal, which means that we neglect
heat transfer. The external forces correspond to the action of the gravity vectorg. Denoting with
θ the mean valley slope, we can writeg= (g sinθ,0,−g cosθ).

The constitutive law that we consider is the usual one in glaciology, namely the nonlinear flow
law of Glen

τij = 2τ1−nDij ,(26)

whereτ is the stress second invariant, given by 2τ2= τij τij . The physical constantn is obtained
from experimental data and the valuen= 3 is now often accepted. The limit cases correspond to
a viscous Newtonian fluid (n= 1) and an ideal plastic material (n=∞).

A major simplification occurs with the shallow ice approximation. The idea is that the depth
of the glacier is very small compared to its length. After an appropriate rescaling of the variables,
in [5] this corresponds to considering a laminar unidirectional flow, in which the velocity
is parallel to the axis of the valley and we can go through the simplifications made in the
introduction. We get

τ = |∇u| 1n ,
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and from the equations of conservation of mass and momentum we can obtain in the same way,
the dimensionless equation

1puξ ≡∇ ·
(|∇u|p−2∇u)=−1 inΩξ,

wherep = 1+ 1
n
, 1< p < 2, that corresponds to the choiceα(r) = rp−2, that clearly satisfies

assumptions (A1) to (A3).
The boundary conditions considered are appropriate to deal with a cold glacier but are

inadequate for temperate glaciers. This problem was considered in [12], where part of the present
results were announced.

5.2. Bingham flows

Here we adapt the results of Section 4 to obtain a solution to the problem analogous to (P)
when a fluid of Bingham is considered. In this case, we have (see [4])

α(r)= µ+ γ r−1,

the constantsµ and γ standing for the viscosity and the threshold of plasticity, respectively.
We can not apply Theorem 1 directly since thisα does not satisfy (A1) and the corresponding
A(r)= µr2/2+γ |r| is not differentiable. But, for eachζ , we can still consider the minimization
problem (8) for thisA, and since it also has a unique solution, define the functionΦ in the same
way and ask whether its range exhaustsR+ or not. The problem is easily seen to be equivalent to

(PB) Find (ξ, uξ ) ∈R+ ×W1,2
H (Ωξ ) such that

∫
Ωξ

uξ =Q and

µ

∫
Ωξ

∇uξ · ∇(v − uξ )+ γ
∫
Ωξ

|∇v| − γ
∫
Ωξ

|∇uξ |>
∫
Ωξ

(v− uξ ), ∀v ∈W1,2
H (Ωξ).

The fact thatA is not differentiable leads us to a variational inequality instead of an equation.
We shall prove the following existence result:

PROPOSITION 2. –The problem(PB) has at least one solution.

Proof. –The idea is to consider

αε(r)= µ+ γ rε−1, 0< ε < 1,

that clearly satisfy the assumptions (A1)–(A3) withp = 2 and solve the corresponding problems
using Theorem 1. Then letε→ 0, and using the results of Section 4, obtain the solution to the
Bingham case in the limit.

We then have the approximating problems:

(Pε)



(ξε, uξε ) ∈R+ ×W1,2
H (Ωξε )∫

Ωξε

µ∇uξε · ∇v +
∫
Ωξε

γ |∇uξε |ε−1∇uξε · ∇v =
∫
Ωξε

v, ∀v ∈W1,2
H (Ωξε ),

∫
Ωξε

uξε =Q
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and, introducing the convex function

ϕεζ (v)=
1

1+ ε
∫
Ωζ

|∇v|1+ε, 06 ε < 1,

we know that every solution of the first equation in(Pε) also satisfies the variational inequality
(see [4]):

µ

∫
Ωξε

∇uξε · ∇(v− uξε )+ γ ϕεξε (v)− γ ϕεξε (uξε )>
∫
Ωξε

(v − uξε ), ∀v ∈W1,2
H (Ωξε ).(27)

We now proceed as in the proof of Theorem 2, obtaining the estimates (17) and (18) and the
convergences

ξε→ ξ in R,

u∗ξε ⇀ u in W1,2
0 (Ω).

Using the same type of arguments as before, we can show thatu= 0 outside ofΩ∗ξ and thatu is

symmetric with respect toΠξ . Moreover, for anyv ∈W1,2
H (Ωξ ), we have

µ

∫
Ω

∇u∗ξε · ∇
(
v3ε − u∗ξε

)+ γ ϕε(v3ε )− γ ϕε(u∗ξε )> ∫
Ω

χΩ∗ξε
(
v3ε − u∗ξε

)
,

with

ϕε(w)= 1

1+ ε
∫
Ω

|∇w|1+ε, 06 ε < 1.

We can pass to the limit, using the lower semi-continuity, and obtain:

µ

∫
Ω

∇u · ∇(v∗ − u)+ γ ϕ0(v∗)− γ ϕ0(u)>
∫
Ω

χΩ∗ξ (v
∗ − u),

which, due to the symmetry, reduces to

µ

∫
Ωξ

∇u · ∇(v − u)+ γ
∫
Ωξ

|∇v| − γ
∫
Ωξ

|∇u|>
∫
Ωξ

(v − u).

We find also, as before, that ∫
Ωξ

u=Q,

showing that the problem has the solutionu|Ωξ ∈W1,2
H (Ωξ ). 2

Remark8. – The uniqueness in this case was not obtained. We recall from [4] that, in the
absence of the condition

∫
u = Q, the solutionu of the Bingham problem may be zero forγ

sufficiently large, more precisely forγ > γc, this critical value being dependent on the domain.
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This fact shows that, in general, the solution of the Bingham problem may vanish in connected
regions that correspond to zones of rigid motion. Therefore, obtaining the strict monotonicity of
the functionΦ becomes a delicate matter and an open problem in this case.
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