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ABSTRACT. — We study a mixed boundary value problem for an operatgrbéplacian type. The main
feature of the problem is the fact that the exact domain where it is considered is not knarani and
is to be determined so that a certain integral condition is satisfied. We establish the existence of a unique
solution to the problem, by means of the analysis of the range of an appropriate real function, and we show
the continuous dependence with respect to a family of operators. These results can be applied to the study of
unidirectional non-Newtonian flows of power-law type, in particular to solve a simplified problem arising
in theoretical glaciology and to show the existence of a Bingham flow in an open channel; the uniqueness
in this case is an open problem Elsevier, Paris

Keywords:p-Laplacian operator, Free boundary problems, Continuous dependence, Unidirectional
non-Newtonian flows

RESUME. — On étudie un probléme aux limites mixte pour un opérateur du typgeldaplacian. L'intérét
principal du probleme est dans le fait que le domaine exact ou on le considéere n’agirmas connu et il
faut le determiner de facon telle qu'une certaine condition intégrale soit satisfaite. On démontre I'existence
et l'unicité d’'une solution du probléme par I'analyse d’'une fonction réele appropriée et on obtient aussi
un résultat de dépendence continue pour une famille d’opérateurs. Ces résultats peuvent étre appliqués
a I'étude de I'écoulement unidirectionel de fluides non-newtoniens, en particulier, a la résolution d'un
probléme simplifié de la glaciologie théorique et a la démonstration de I'éxistence d'un écoulement de
Bingham dans une conduite cylindrique ; I'inicité reste dans ce cas un probléme Quistsévier, Paris

1. Introduction and statement of the problem

We consider a free boundary value problem for a quasi-linear degenerate elliptic equation of
the form

1) -V [a(IVul)Vu] =1,
the model for the operator on the left hand side of (1) beingth@placian, that corresponds to
the choicex(|Vu|) = |Vu|?~2, with 1 < p < oo.

The new feature in this paper is the fact that the exact domain where the boundary value
problem is to be considered is not knoapriori. More precisely, it belongs to the class of open
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820 J.F. RODRIGUES, J.M. URBANO

subsets oR”" of the form
(2) Qe ={x="xn) eRY: h(x) <xy <E}, £€R,

whereh is a given continuous function definedit —1. The unknown heigh of the flat top
surface of the domain is to be determined such that the solutddnthe boundary value problem
for (1) in £2¢ satisfies the integral condition

3) /udx=Q,

2

whereQ > 0 is a given constant.

The boundary conditions considered on the dom&in are of mixed type. Along the
surface defined by we take an homogeneous Dirichlet condition, and on the top surface an
homogeneous Neumann condition.

This problem corresponds to the mathematical formulation of a family of interesting physical
situations arising in classical fluid mechanics, for which recent interest has been raised by
a problem in theoretical glaciology (see [5] and [12], for references). Although of simple
formulation, it seems that few mathematical results exist, in spite of its study being possible
in the framework of variational solutions. As we intend to show here, this allows a considerable
degree of generality, in particular, in what concerns the low regularity of the domains, a possible
consequence of the geometry of physical problems.

We denote
(4) FE,:(HHE).Q;)\Hg:{x eRY: h(x') <&, xy =h(x"},
(5) If =T N02) \ H={x eR: h(x') <&, xy =&},

wherells = {x e RN: xy =&} andH = {x e R¥: xy = h(x’)} stands for the graph df. The
abridged classical formulation of the problem then reads:

PrROBLEM (P). —GivenQ > 0, find a real numbe& and a functiorug such that

V- [a(|Vug|)Vug | = -1 in £,
(1) yue=0 on Ffl,
dug /dxy =0 Onf}éy,
) /us =0.
2

Remark 1. — We are considering a constant second member in the equation. All the results in
this paper can be easily extended to the case of a second m¢mabgrx’), i.e., independent of
xn, and such thaf (x”) < 0. We could also have considered a dependengétimougha.

Since classical solutions are not to be expected in general, we next consider the problem in a
weak form and state the assumptions under which we are able to establish an unique solvability
result.

Let CL (£2¢) denote the subspace 6f (2 ) consisting of those functions that vanish in a
neighbourhood off and define the space of test functions:

Wé’p(ﬂé) = closure ofC},(Q_g) in WhP(2¢), 1<p<oo.
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DEGENERATE ELLIPTIC PROBLEMS IN A CLASS OF FREE DOMAINS 821
It is a reflexive Banach space where a Poincaré type inequality is valid; theWiswahorm of
a function is then equivalent to tHe&” norm of its gradient and this is the one that will be used.

Remark2. — Note that with this definition we avoid some delicate questions concerning the
regularity of the domain, namely the ones posed by the use of traces and those considered in the
theory of elliptic problems in nonsmooth domains (see [6]).

A standard formal integration by parts, taking the boundary conditions into account, leads to
the following:

DEFINITION. —A weak solution t¢P)is a pair (¢, ug) € R x W}I”J(QE) such that

(6) /oz(|Vug|)Vug - Vv =/v, Yv e WI%I’p(.Qg);
2 2
™ [ue=c.
2

This definition makes sense according to the following set of

ASSUMPTIONS —

(Al) o:R* — R™T is a continuous function anlin,_, g+ a(r)r = 0;

(A2) 3C1, C2 > 0,C3 > 0suchthatC1r? 2 < a(r) < Cor?24 Car~ L, Vr > 0;

(A3) [a(|EDE —a(Inhnl - [ —n] >0, V& #£n e RV \ {0};

(A4) h:RN-1 5 Ris a continuous functiodim /|, oo £ (x") = 400 andmin,, cgny-1 A(x") = 0.

Remark3. — In accordance with (A1¥(|Vug ) Vue is defined to be zero at each point where
Vug = 0.

Remark4. — Concerning (A4), we remark that the assumption,mjiv-1 ~(x") = 0 stands
only to simplify the writing and allows us to search for a posiv&he fact that: is continuous
and the coercivity condition ligy|—, o 2(x") = +oc assure that, for each> 0, £2¢ is an open
and bounded subset & . Observe that no further regularity a@ris required.

For each fixed > 0, we call (R) the problem consisting of solving (6). The assumptiona on
assure that each {JPhas a unique solution, by the general theory of (strictly) monotone operators
(see [10], for instance). Moreover, we can formulate eagh) 48 a minimization problem. We
introduce the real function

r

A(r):/a(|s|)sds, r e R,
0

which, due to (A1) is differentiable iR, with A’(r) = «(|r|)r. From (A3) we conclude that is
strictly convex. Hence (6) is the Euler—Lagrange variational equation for

® 3L A7)

2 2
so the solution, is the corresponding unique minimizer.
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822 J.F. RODRIGUES, J.M. URBANO

The regularity results for the solution, that we shall not use, are also well known. In fact, with
our assumptions we can apply the results of [3] and conclude that we have:

ug € Cipd (2;).

As is pointed out there, this is the best regularity that is to be expected in general.

The mathematical analysis of degenerate elliptic equations has deserved considerable attention
and is now well documented in the literature (see for example the recent books [8] and [11] and
their references). To our knowledge, the corresponding problems in free domains have not been
considered for mixed boundary conditions. In the nondegenerate case, a problem of this type
was studied in [7] and an existence result was obtained without the assumption of a plane top
boundary, i.e., taking the surface tension into account.

This paper is organized as follows. After establishing some auxiliary results in Section 2, we
prove the existence and uniqueness of a weak solution to problem (P) in Section 3, by making a
detailed analysis of the proble(®;) when¢ varies inR™. In Section 4, we prove a continuous
dependence with respect to variations of the operator, i.e., to the funciiothe class (Al)-

(A3). The main difficulty here is that the domain also varies in order that (7) is kept. Finally, in

the last section, we give two examples of applications of the preceding results in fluid mechanics,
namely to the study of steady non-Newtonian flows in open channels or valleys. In particular, we

solve a problem arising in theoretical glaciology and extend the existence theorem to the case of
a Bingham flow, by adapting the continuous dependence result. The uniqueness of solution for
this last problem seems to be an interesting open question.

2. Some auxiliary results

In this section we introduce some notation and gather a few lemmas that will be used later,
simplifying the main proofs.
We start with the question of the extension of a Sobolev function defined inf:set > 0, of
the form (2) to a larger set of this type. The fact that the top surface;as flat allows us to use
the results concerning the extensiorit? functions by reflection. Introducing the reflected set
of ¢, fz} ={x eRN: ¢ <xy < 2¢ — h(x")}, we denote the open subset

2f = {x eRY: h(x)) <xny <2¢ —h(x")},

which is £, U 2, together with the interior of their common boundary. Given a function
w e W,li’”(Qg), we define its extensiom™ to 2/, through reflection with respect 1@, , i.e.,

w(x'. xN) = {w(x/’xN) if (x',xn) € 82,
NI wx', xy) if (x/,xN)efZ\{,

wherew (x’, xy) = w(x’, 2¢ — xy). We have the following result:

LEMMA 1.— Givenw € W}I’"(Q{), its extension is such that* € W&”’

the estimate

(Q,’ik) and it satisfies

(9) ||w*||Wé,p(_Q§) < 2||w||wlyp(9{)~
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S~ dw\* dow \* [ 0w \°
wi=|{=—=]. o et N E
dx1 dxXN-1 dxn

denoting, forw defined ing2,,

Moreover, we have

wx’, xy) if (x',xn) € 82,

or../ — 0,
w® (x', xN) = {—w(x’,xzv) if (x',xN) € $2¢.

Proof. —The fact thatw* e leP(Qg), the expression for its gradient and the estimate (9)

follow from standard arguments (see for instance [1, p. 158]). To showuthat Wol”’(Qg),

observe that, since W},’"(Q;), we have:

w=limw, in WP (2,),  w, € CH(%2%).

We can extend eaah, by reflection, obtaining functions; € leP(Qj) with compact support
in Qgik Hence, they belong tWOl’p(Qg) and since this space is closed we conclude from

||w: - w*”WOL”(Qz‘) = ” (wp — w)*” WOLP(Q;) < 2|lwy — w”lel’(Qg) — 0. u

If we want to extend a functiomw e W,%,”’(Q;) to a set2g for K > 2¢, we first obtain

w* e W&’p(sz*) and then extend it canonically by zerosx, obtaing a function irW&”’(QK),
still denoted withw*. For an extension t&@2x, with K < 2¢, we extend the function to some
Rk, K' > 2¢, as before, and then restriet' to 2. We also denote this restriction with* if
it is clear from the context in which domain the function is to be considered.
As a consequence of the previous lemma, we obtain the following compactness result, that is
valid for anys$2,, ¢ > 0, irrespective of its regularity.

COROLLARY 1.— The injectionWé’”(Q{) — LP(82;) is compact.

Proof. —The injection can be seen as the following composition
Wi (20) — Wyl (2F) < LP(2F) - LP(S2),

w — w* = wt - w*|9{ =w,

the first function being continuous due to Lemma 1, the second compact due to the theorem
of Rellich—Kondrachov and the last one also continuous, since it is a restriction & an
function. O

We proceed introducing some notation. Given a functigrthe restriction ofw to a subset
S of its domain is as usually denoted bys. If w is defined in a set like2,, its restriction to
2, for0O<n<¢,is simply Qenoteq bw |- . . . .

Another recurrent tool in this work is the translation of a functiodefined in a subse® of
RN with respect to a vector parallel &;. Givenp > 0, we define the translated set

T,D=|x¢ RY: (x',xy —p) € D},
and the translated functiapw(x’, xy) = w(x’, xy — p), forall (x’, xn) € T, D.
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824 J.F. RODRIGUES, J.M. URBANO

The next lemma will be used in Section 3. Giver:@ < ¢ andw € W},’p(!z;_,,), define in
£2¢, the function:

if h(x") <xy <h() + 7,

— !/ —
WX, xN) = { ', xy) ifA(x) +n<xy <¢

that clearly belongs tWé”’(Q{).

LEMMA 2.—Ifve Wi;p(gg), then as) — 0, T,v|(c—y) — v strongly inW17(£2,).

Proof. —Adapt in the obvious way the well known result on translationd.éf functions
(see [1, p. 75], for example), noting that, v|;_, =T, [Vvlc—pl. O

The last lemma concerns a certain kind of approximation of extended functions, that will
be essential in Section 4. Consider a sequence of positive real numberg, with ¢, < M,
Ve > 0. ChooseX > 2M and for each € W},’”(Qg), define the sequen¢e§>)€>o, with

o [v* if ¢ >¢,
Yo T (et i<,

both the reflections being followed by extensions by zer@a

LEMMA 3.— For eache > 0, the functionv? e Wol”’(.QK) and v =0 in 2k \ 2F.
Moreover, as;; — ¢,

(10) v® — v* strongly inWh? (2k).

&

Proof. —Only the convergence result is non trivial. We just show that

vy v :
I strongly inL?(2x), 1<i<N-1,
8)6[ axi

since the strong convergenc§ — v*in L? (k) is similar but simpler and the case for the
derivative with respect toy only differs from this one in a few irrelevant minus signs. We have,

for1<i <N —1,using Lemma1:
* 8U k
) - G)

0
— v
LP(2) x;

We focus on the relevant cage< ¢:

(Gl.) -G
axl Q{g 8)61 Lp(-QK)

d
=/‘8—;(x’,xzv)
A

€ &

if g >¢,
S v ’

8—)61' 8)6[

if ¢ <¢.

Lr($2k)

p

P v v
+/ — ', 20 —xn) — — (', xN)
0x; 0x;

1

p

9

v v P v
+/ —(x', 20 —xn) — — (X', 20 — xp) +/ — ', 20 —xp)
3)6,‘ 3)6,' 3)6,'

where we have:
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Agz{xeﬁK: 2§€—h(x/)<xN<§},

B€={xe.QK: e < XN < min(2§€ —h(x/),g)},
Cg:{.XEQK: { <xn <2§g—h(x’)},

D, = {x € Qg: max(2;; — h(x), ) <xny <2¢ —h(x")}.

When we let;, — ¢~, |A:| — 0 and|D,| — 0 and so the corresponding integrals vanish.
Concerning the integral ovel,, we find, WithE, = {x € Q2g: max(2¢. — ¢, h(x")) < xy < e},

d d P 0 P 0 p
/ W2 —xw) — ——(xxy)| <2P / 2L (¢, 2 — xn) +/ L xw)
ox; ox; ox; 0x;

& & &
14
)—)O,

0 P d
=2p(/}—v (', xn) +/’—U (x', xN)
3)6,' 3)6,‘

& Bé?

because alspB.| — 0 and|E.| — 0. The remaining integral also vanishes since

p
<

v v |?

T2t —— — — 0,

v v
/ ’8—()6’, 20 —xn) — — (X', 2 — xn)
Xi i L/’(RN)

0x

&

sincedv/dx; extended by zero tR”Y belongs toL”(RY). O

3. Existence and uniqueness

In this section we establish our main result, namely:

THEOREM 1. — Under assumptionA1)—(A4), given anyQ > 0, there exists a unique weak
solution to(P).

The proof will be reduced to the analysis of the function of one real parameter

D :RT5¢ > (20,up) > /u; eR,
2
whereu, is the solution of (), and to the question: Does the rangedofcontain the given
0 >07?
We can consider the problem corresponding to the cheieg = r?~2, r > 0, in the non

physical one dimensional case, to see what happens in this simpler situation. We have
(0, ¢) and the problem (B consists of solving the ordinary boundary value problem

(lup1P~2u}) = =1 in(0,¢),

with boundary conditions; (0) =0 andug (¢) =0. We find

1-— p
Mg(Z)ZTP[(_ZH)p,l_U,l] and @)=

Mg-:

o—_.
N
~ S
[ ]!
e
w
R
il
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826 J.F. RODRIGUES, J.M. URBANO

so,® being bijective, giverQ > 0, we just have to choose

op_1 \ %=

— p—

s=<” Q) ,
p—1

and the solution of the problem is

=1 p P =
u(z) = l__p|:{_z+(2p— 1Q) 2p1}pl B (Zp— 1Q> 2p1i| i <0, (2p— lQ) 2p1>'

The analysis of the general case cannot be done explicitly in higher dimensions for general
andh. Therefore, we fix and choose = —u, in (6), to find, from (A2):

[ wuer< [ a(Vic) Vel

.Q{ﬂ{u§<0} .Q{ﬂ{u§<0}
=_/a(|w{|)w{ .Vu,;:—/ug <O0.
2 2

This impliesfgz |Vug|p =0, hencer; =0 andu; >0. So®(¢) >0, V¢ € R* and it would

be zero only ifu; = 0 a.e. ins2,, which is not possible. So the range ®fis contained inR ™,
thus choosin@ > 0 is necessary. It turns out that it is also sufficient by the following result, that
clearly implies Theorem 1.

ProPOSITION 1. — The function® : Rt — R is a continuous, strictly increasing function,
whose range is the s€d, +00). Hence, it is a bijection iR ™.

Proof. —For future reference, note that, using (A2), the unique solutiorPg), ¢ < (0, o),
obviously satisfies

(12) C1/|W;|”<fa(|w;|)|w;|2=fu;=q><;).

Q{ .Q{ .Q{

(i) Monotonicity For eachi > ¢, putii = up andu = u;. Leto = — ¢ > 0 and define the
translation of the se®@,

wo =Ty(82;) = {x eRV: h(x)+o0<xy<¢ +Q}.
It is clear that the functiom,u, defined inw,, satisfies
1, . 1
(Po) ToU € WHf:Q(wQ). /a(|VtQu|)Vrgu - Vo :/v, Yv e WH_iQ(a)g),
@o ®o

whereH + o denotes the graph of the functiant o.
We now show that:

(12) qﬁ(&):/ﬁ>/ﬁ>/rgu=/u=q>(;).
'Qf [o%) [0

¢
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The equality is an obvious consequence of translation and the strict inequality follows from
the fact thati can not vanish in the open s6t= 92 \ wp. Infact, if & = 0 a.e. inO, then also

|Vi| = 0 a.e. in® and by Remark 3 that would contradict the fact thablves there the equation

V- (a(|Vi|) Vi) = -1, in the sense of distributions. To conclude it suffices to showiiBat, u

a.e. inw,. Take the function:

(It — Tou)~  INwy,
0 in .Q& \a)Q,

which can be used as a test function both ip)(&hd (Fg).
We obtain

/a(IVTQuI)VtQu V(@i —Tou)” = /(12 — Tou)” =/a(|V12|)V12 V(i — Tou)”.

@o @o @o
Subtracting, we get
/ [a(IVToul)Viou — a(|Vil)Vi] - V(rou — it) =0,
woNit<Ttou}
and using (A3) we conclude that:

||V(12 — IQM)_HLP(wQ) =0, ie, #>=rtu a.e.inw,.

(ii) Continuity We start with right continuity. We want to show that, for fixed® (¢ + n) —
@ (¢) whenn — 0. We start by showing that

Qe19\$2¢
With 0 < n < 1, consider the translation
w—n) = T(1—n) (2449 \ 2¢) = {x eRV: t4+1—n<xy<c+1 xy>h(x)+1— r/}.
The same reasoning used to obtain (12), yields in this context
0< / U4y < / ur+1— 0,
Qcn\82¢ O(1—-n)

becausgw_p | < C{(¢ +1) — [maxhi(x),c]+ (A -]} < Cn— 0.
Then from

PG +n)= / “§+n+/"‘§+nv

Qr4n\$2¢ ¢
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and (13), we need only show the second term converg@s40. First observe that, due to (11)
and the monotonicity o®,

1 1
p
||V“§+n||LP(.Q{)< / |VM{+:7|pgc—ld)(é“i‘n)gc—l@(@-i-l), YO<n <1,

¢4

and so(u;4,) is bounded inWi,’”(Qg) and we can extract a subsequence suchithat — u

in W;P(Q{)-weak, for someu € W},’p(ﬁg). If we show thatu is a solution to the limit
problem (R) we get as a consequence, due to the uniqueness, that . Since the imbedding

W},’”(Qg) < LY(£2;) is compact, due to Corollary 1, this gives

/u{Jrn_)/M{:d)({)'
£2;

¢

So take an arbitrary € Wi;p(gg) and consider its extensiarf (see Section 2), that can be
used as a test function in{P,). We obtain:

0< / (O[(|VM§+,7|)VM§+,7 — Ol(lVU*DVU*) . (VM§+,7 — VU*)

Q¢4
= / (Uggn — V") — / a(IVV*) Vo™ - (Vg 1y — Vo¥)
249\ 2¢ 249\ 2¢
+ /(”£+n —v) — /a(Wvl)Vv - (Vugyy — Vo).
£2; 2

Now we take the limit ag — 0™, getting

/(u —v) — /a(Wvl)Vv -(Vu —Vv) >0,
£2;

¢

because all the integrals ov&; 1, \ §2; vanish. In fact, for two of them this is obvious, for
another we can use (13) and for the remaining note that we have:

Y 1/p
‘ / a(|Vo*)Vo* - Vi, << / ‘oz(|Vv*|)Vv*’p) ( / |Vu{+,7|p> ,

Qp49\$2¢ Q040 \$2¢ Qp49\$2¢

and here the first factor goes to zero while the second one is bounc{ega}cby; + D1YP for
0 < 5 < 1, thus yielding the result.

We can now use the technique of Minty for monotone operators. Sing@rbitrary, choose
v=u—dw,withd eRandw € Wé’p(f?{) and then takeé to zero, using the hemicontinuity,
and conclude that

/a(quI)VwVw:/w, VweWI%I’p(.Qg),
2; 2
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thus proving that is a solution to ().

Concerning left continuity, we show that(¢ — ) — ®(¢) whenn — 0. The sequence
(Tytz—y)y is bounded inW17(£2,), independently of. In fact, recalling the definition from
Section 2 and using (11) and the monotonicity, we have

— 1 1
||T77u{*77||€vl,p(9{) = ||u{*77||€‘/1,p(95_”) < C_]_@(; - 7)) g C_]_@(C),

we can then extract a subsequence such that

(14) Ty —u in Wi (2,)-weak

Once we show that this weak limit solves the problens2n we obtain, from the uniqueness,
u = u; and we conclude from

0<P@)—DP(—1n) :/ug — / Ur_p= /a(IVugl)Vu{ -V(ur =Tyue—y) — 0.
2 2y 2;

To this end, it is enough to show that
/a(qul)Vu-Vv:/v, Vo e Wi (2).
2 2

Given such a and starting from

0< / [e(IVTyus ) VEqute—n — a(IVTy0lc—n) ) VIVl - | - V@t -y = Tyl c—n).
2;

we can conclude as before, through Minty’s lemma, if we are able to pass to the limit. This can
be done, having in mind the equation, the convergence (14) and Lemma 2.

(iii) RangeFirst we show that (¢) — 0 when¢ — 0. In fact, using the inequalities of Holder
and Poincaré, we get:

L L+d
¢(§)=/M; <1217 Nug e, < CI12:|7 Y IVueliLe(e,)
¢

1

1
1L/ 1\>r
<Cl2 |7 <—)' P()7,
C1
using (A2) and withC depending only op andN. We ultimately obtain
0< &) < €182 |7 70T,

and let¢ converge to zero to conclude.
Next, we prove thatd () — oo when ¢ — oo. In fact, due to (8), we have, for any

ve Wh(2¢),
0@ < [ AV~ [uc< [agve) - [o
2 12 2 12
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and consequently, using (A2),

(15) ¢(§)>/v—/A(|Vv|)2/v—%/|Vv|p—C3/|Vv|, vUeW;’P(Q;).
2; 2;

2; 2 2;

We now make an appropriate choice of a sequepcsuch that the second member of (15) will
tend to infinity with¢ thus concluding that the same happens withwVithout loss of generality,
we may choosg > 0 ando > 0 such that, for alt > o + 1, the cylindeiC; = B'(p) x (o, ¢)
is contained inf2;, whereB’(p) denotes the ball iRV —1 with center at the origin and radiys

Definev, € Wy (2;), as

fxgr(xn) if (x,x,) €Cy,

/ J—
v{(x’xN)_{O if (x',xn) € 82:\ Cy,

whereg; : (o, ) — R is the function

xy —o ifxye(o,o0+1],

g‘(’”v):{l if xy (0 +1¢)

andf: B’(p) — R is aradial function defined, for= |x|, by

1 ifo<r<

2— 2y if%<r<

L
27
o p

f(r)={

—2
We haveVu, = (g:V'f, fg}) and|Vu|? < 2(pT)+[g§|V/f|P + fP1g;171. Using the theorem
of Fubini, we have:

c
/U¢—?2/|W{|P—03/|wg|
2; 2; 2
¢ c ¢ ¢
2 —2
>fg; f f—;z"’T”[/gg’ / IV F1P + f f”/lggl”}

o B'(p) o B’(p) B'(p) o
¢ ¢
—C3|:/g§ [ v+ [ f/lggl}
o B’(p) B'(p) ©
(16) =<z—o)[ / f—Cs f v 1 - 2ot f |V’f|P}+c,
B'(p) B'(p) i B'(p)

with C a constant independent of This last identity holds since

¢ 1 ¢ ¢ ¢
e _ = P _ s+ _L / _ Iy
/gf—C o >’ /gg ={—0 p—1 and /lg{|p—/|g{|—1-
o o

o [
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We now compute

/ f=C(N)p"1 and / V' fIP =C(N, p)p" P71, p>1,
B'(p) B'(p)

and, from (15), we obtain, through (16),
() > (¢ —0)pNP[kip — ko — kap "]+ C,

for positive constants, k> and k3 depending only onV, p and the constants in (A2). Now
the second member in this inequality goes to infinity witprovidedkip — ko — k3p=? > 0.
Since this expression goes to infinity whemgoes to infinity this holds true if we choogdarge
enough, which is always possible due to our assumption (A4) and choosings also large
enough. O

Remark5. — In the case of thg-Laplacian, the proof of the left continuity can be done in a
very easy way, that we briefly describe. Since we canugsas a test function in (R.,), i.e.,

in (6) for u;_,, we so obtain:
1
P
</ |Vu;|p) ,

— P
/u;z / |Vug—nl? ZVu;_,,-VLQg( / IW;—n|p)

¢y ¢y ¢y ¢y

> |

using Hoélder’s inequality. Using (11), this can be written in the form

»
o —m > —a") -
(fa, , [Vucl?) "

Taking the limit wherny — O™, this implies lim, o+ @& —n) = D).

4. Continuous dependence on the operator

In this section we obtain some continuous dependence results with respect to perturbations of
the operator. Consider a family of functioms oo : R™ — R, satisfying assumptions (A1)—(A3)
uniformly in ¢ and let(&;, ug,) be the solution of the problem corresponding te O:

1,
(8, ug,) € RT x Wy (%2,)

/ ae(|Vug, [)Vug, - Vo= / v, Yve ng’p(.Qgg),
(PS) ¢, 2,

We want to show that, as— 0, (&, ug,) converge ta&o, ug,) in some sense to be made clear.
We show that the following theorem holds:
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THEOREM 2. — If a; — ag uniformly on compacts &* ase — 0, then the solutions of the
corresponding problems satisfy

& — & InR,

uf —~u inWh?(2), for somek >0,
whereu is such thai| o, = uz,.

Proof. —We start with ana priori estimate, showing that there exists a consi@nt 0,
independent of, such that

(17) O0<é& <C.

Suppose not. This means that we can extract a subsequence (denoted with the same index) such
thaté, — +oo. Now observe that, like in (15), we can write

C
d’e(és):/usg?/v——zf|VU|p—C3/|VU|, Vo e WP (2)
p

Qg ¢, 2, ¢,

and so a sequence, ) can be chosen, using the same reasoning of the previous section, such that
the right hand side of this inequality goes to infinity. Note that this is possible ginee+oo.

We reach a contradition since the left hand side is constant and eg@aMf can then extract

a subsequence (denoted with the same index) such that»a@,

& — &, &0

We now observe that still due to thepriori estimate (17)§2 := §22¢ contains all the sete; .
For theug, corresponding to this subsequence, we obtain, from (9) and (11), the independence
of ¢ estimate for its extensions

)4

2 2rQ
P 2 _
SN lyapgg,,, S & / 0 (| Vg, )| Vg, |* = ==
S,

l * 1P

We can then extract another subsequence such that

(19) uf —~u in W&”’(Q)-weak,LP(Q)-strong and pointwise a.e.

for a certain element e Wol’p(sz).

We first observe that fotx’, xy) € 2 \ Qg and ¢ sufficiently small,ug‘s (x',xy) = 0; the
convergence (19) ofgg tou gives
(20) u=0 ae.in2\ ;.

Next we prove thai is symmetric with respect tél¢. For any functionw defined ins2,
consider its reflection with respect I :

, w(x’, 26 —xy) if (x',xy) € .Qg‘,
(wOR)(x”‘N)Z{o if (v, xy) € 2\ 2F.
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What we want to show is that=u o R, say inL”(£2). We start from:
(21) llu—uoRllLr(e) < lu —ug llr@) + lug, —ug o RllLr(e) + lug, oR —uoRlLr(g)

and show that each term of the second member goes to zero thus obtaining the result. For the first
it is obvious, due to (19). The same applies to the third one since

luz, oR —uoRliLrie) < lug, —ullLr(e).
The second term is more delicate. To begin with, we write
||u§€ — ugg oR||i,,(_Q) = / |"‘§€ —ul? + ||u§€ — ugg oR||€p(9§)
2\2;

and since the first term goes to zero, we are left with the second one. Now we need to consider
two separate cases:
(i) & > &: Inthis case, we hav@;‘ C £2{,s0

llug, — ug, ORllip(gg) =/ }u; (x', 28 —xn) —uf (x', 28 — xn)|” dx

2
§

2F "2%—xy

28 —xN

0 p 1 P
—uf (¥, n)dn dr < [2(& — ©)] dx dn,

axy

28 XN.Q*

and this goes to zero, since we have an estimaﬁegdn wlr(2)and|2¢ — xy — 25 +xy| — O.
(ii) & < &: Here we have

lug, = ug, o RILp gz = / Juf, O, xw) — ug, (', 26 — xy)|

.
12

=/ ’ug‘g(x’,xN)’pdx—i—/ ’ugg(x’,Zég —xN)—ugg(x/, 2§—xN)’pdx
+/|u§5(x/, 2t —xp)|" d,
c

where we have:

Ae={x e 2f h(x) <xny <h(x')+2(¢ — &)},
Be ={x € 2f: h(x') +2(€ — &) <xn <26 —h(x)},
Co={xe Qf: 26 —h(x)) <xy < 2£ — h(x')}.
Now we see thatA.| — 0, |C.| — 0 and so the estimate (mgi cancels both those integrals. For

the integral oveB,, which can be empty, we use the reasoning of case (i). We conclude that (21)
converges to zero as we wanted.
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Now, observe that for any € Wol’p(Qg‘s),

(22) /ocg(Wugl)Vu; 'Vv=/xg§ v.
2 2
In fact, with
_ a d 9
Visl— . o— ——
0x1 0xXy_1 O0xXN
and, for a vectov = (v1, ..., v,),V= (01, ..., Uy), We obtain, using Lemma 1,
/ag(|vugg|)w§€-w=/ag(w/—\u&ov/—\u&-wz/a€(|v—u&|)v—u&-ﬂ
-(/2; -é; $2,
=/ozg(IV*ugSDV*ugg'V”v\:/ocg(Wuggl)Vugg'Vﬁ
Q¢ Q¢
:/’U\:/U’
Qg fzg

becausé also belongs t(VVI:_LI’p(.Q&). Now, given any € W[]:[’p(.Qg), we have, using (22):

0< / [eve (1 VUt 1) Vg, — e (IVVS 1) Vo] - V(ug, — v?)

2
:/ xa, (g, = o) = / o (1Yo ) Vo7 - V(g —v7),
f2 2

and passing to the limit, using Lemma 3 and having in mind ﬂgij?t = X in L?(£2), for all
1< p < oo, we get

/ng(u —v™) — /ao(IVv*DVv* -V —v*)>0.
2 2
This is equivalent to
/(u —v) — /a0(|Vv|)Vv -V(u—v) >0,
2 2

which can be shown using the same arguments that led to (22), having the symmetry in mind.
We finally obtain, using the usual reasoning,

/a0(|Vu|)Vu-Vw:/w, Vw € W' ().
2 2

2Q:/u§€—>/u
2 2

We also have

TOME 78 — 1999 N° 8



DEGENERATE ELLIPTIC PROBLEMS IN A CLASS OF FREE DOMAINS 835

[r=3 =0
$2¢ .Qg

Sinceu € Wol’p(Q) implies thatu|g, € WI%I”’(QS), by the uniqueness, we have shown that
(&, ulg.) = (%0, ug,) is the solution of the limit problem. O

and so, using (20), we obtain:

Remark6. — In the case of a regular domain, for example@ §: € C%® (for which it is

sufficient to considek convex), we could further conclude thate W&’”(Qg) and so in that

case, we would have = ugo.
Remark7. - We could have obtained the symmetryuofising regularity results. Take any
(x/, xn) € §2¢; since&, — &, we can choosey such that

xy —h(x")

e<eo= & —&| < 7

We then have that, far < g,

(x', 25, —xy) € B((x’, 28 — xn), Lzh(“) C 2,

whereB(x, §) stands for the ball ilRY with centre inx and radiuss. Now, in this ball we can
obtain an estimate for the Holder normug. Observe that, due to (22/); solves the following
Dirichlet problem:

we Wyl (20): /otg(le)Vw-Vv:/v, Ve Wy P (27).

o

5% &e

e
So we can use the results in [9], namely Theorem 7.2 (p. 290), to obtain the estimate
|u§€ |y,B <C,

which can be seen to be uniformdndue to the fact the, satisfy (A2) uniformly. This means,
in particular, thaugs — u uniformly in the ballB, and we have:

u(x', xy) < uf (', xn) =uf (x', 25 —xy) — u(x’, 28 — xn).

We conclude that is symmetric in(x’, xy), for a.e.(x’, xn) € $2¢.

5. Applications in fluid mechanics
5.1. Fluids of power-law type

The results of the previous sections can be applied to the study of the motion of a general
fluid in an infinite channel or valley, in the particular case in which the flow is unidirectional and
parallel to its axis.
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We consider an incompressible and viscous fluid, with a constant density. In the steady-
state case, the basic equations from continuum mechanics that describe the motion are the
equations of conservation of mass and momentum (see [4], for instance)

(23) V-u=0,
(24) u-vu=V-.o +f.

Hereo = [0;] is the stress tensadrrepresents the external forces anek (u;) is the velocity
field, which for a motion of the type we are considering, is givenby (u, 0, 0), if the geometric
setting (inR3) considers the; axis, O¢1, in the direction of the flow, the, axis across stream
and thexs axis upwards. We can then simplify Eq. (24), observing that, from @8)9x1 =0
and sa is a function ofx2 andxs alone. In particulan) - Vu = 0 and (24) reduces @ - o = —f.

We next introduce a (possibly nonlinear) constitutive relation for the incompressible non-
Newtonian fluid

oij = —pdij + Tij,

p being the pressure and= [7;;] the viscous stress tensor. We then need to relaiad the
deformation tensob, that, in this context, takes the form:

0 at'?_u a(”_u
1/0u; du; 1, Y2 0x3
D={=-{— ==L 0 o],
(2(3)6]' + ax; ))ij 2 %Xuz 0 0

Ax3

by considering a viscosity coefficient dependent on the second scalar invarjaat) =
iD;;D;j = %|Vu|?, with V = (aixz, %):

(25) TijZU(D”(u))Dij =(¥(|VM|)DZ'J'.

We can recognize some classical examples of fluids of the differential type, aisegiven,
for r =|Vu|, for some viscosity parametar> 0, by:

a(r) =2, Newtonian fluid,

r197?
a(r) = M[E} ,  non-Newtonian fluid,
which is called a pseudo-plastic fluid ifd ¢ < 2 and a dilatant fluid ify > 2. An expression for
generalized non-Newtonian fluids, like

a(r)= ZH«(%Z"),

whereu satisfies appropriate assumptions, includes some important asymptotically Newtonian
models in whichu (r) — pe Whenr — oo, (see [2], for example).
Going back to (25), we have:

T11=T22 =133 =123=0,

du du
t12=ca(|Vu|)— and ti3=o(|Vu|)—
12=of] I)ay 13=of] I)8Z
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and so, assuming constant external fores (k1, k2, k3), with k1 > 0, the equations of
motion (24) read

B
14 —v.
0x1

(@(Vul)Vi) 4k, Lk 2P

, k3.
dx2 0x3 3

From the second and third equations we seedpadx1 is a function ofx; alone and so the left
hand side of the first equation depends onlygmvhile the right hand side depends only en
anduxs; there is then a constant, called drop in pressure per unit length, sudpitéat; = —c.
We can then determine the pressure up to this constant and, dividing-tiy > 0, we are left
with the degenerate elliptic equation

V. (oz(|Vu|)Vu) =-1

of the previous sections, now withi = 2 andV = (%, %).

The domain where the problem was considered corresponds to a cross section, which is in
accordance with the fact thatis independent of1; in this setting we have the unknown open
subset ofR?

2t = {(x2, x3) € R% h(x2) < x3 <&},

where the functiork describes the bed of the valley;is unknown and is to be determined so
that the flux of fluid is exactly equal to a given constant- O:

/U'E]_:/dede3=Q.

2 2

The boundary conditions correspond to no slip at the base and absence of mass transfer through
the top surface, which is then supposed to be flat but having unknown height.

As a particular case, we can solve a problem arising in [5] concerning the motion of a glacier in
a valley. We briefly describe the model under consideration and show that in fact it falls into the
general setting described previously. The material under consideration here is the ice. As is usual
in theoretical glaciology, we assume that the flow of the glacier is so slow that we can restrict
ourselves to the steady case. The glacier is taken to be isothermal, which means that we neglect
heat transfer. The external forces correspond to the action of the gravity ge€tenoting with
0 the mean valley slope, we can wrie= (g sin6, 0, —g c0s9).

The constitutive law that we consider is the usual one in glaciology, namely the nonlinear flow
law of Glen

(26) Tij = 2‘El_nD,‘j,

wherer is the stress second invariant, given by 2 7; ;7ij. The physical constantis obtained
from experimental data and the value- 3 is now often accepted. The limit cases correspond to
a viscous Newtonian fluid«(= 1) and an ideal plastic material & c0).

A major simplification occurs with the shallow ice approximation. The idea is that the depth
of the glacier is very small compared to its length. After an appropriate rescaling of the variables,
in [5] this corresponds to considering a laminar unidirectional flow, in which the velocity
is parallel to the axis of the valley and we can go through the simplifications made in the
introduction. We get

1
T = |V[,{|71,

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



838 J.F. RODRIGUES, J.M. URBANO

and from the equations of conservation of mass and momentum we can obtain in the same way,
the dimensionless equation

Apug =V - ([VulP™Vu) =1 in £,

wherep =1+ ;1 1< p < 2, that corresponds to the choie¢) = r?~2, that clearly satisfies
assumptions (A1) to (A3).

The boundary conditions considered are appropriate to deal with a cold glacier but are
inadequate for temperate glaciers. This problem was considered in [12], where part of the present
results were announced.

5.2. Bingham flows
Here we adapt the results of Section 4 to obtain a solution to the problem analogous to (P)
when a fluid of Bingham is considered. In this case, we have (see [4])

a(r)=p+yr i,

the constantg. andy standing for the viscosity and the threshold of plasticity, respectively.
We can not apply Theorem 1 directly since thisloes not satisfy (A1) and the corresponding
A(r) = ur?/2+ y|r| is not differentiable. But, for each, we can still consider the minimization
problem (8) for thisA, and since it also has a unique solution, define the funaidam the same
way and ask whether its range exhau&tsor not. The problem is easily seen to be equivalent to

(Ps) Find (£, us) € RT x Wi2(£2) such that/ ug = Q and
2

M/VugoV(v—ug)—l—y/WvI—y/IVugl2/(1}—145), VUEWI%I’Z(.QS).

o Q¢ 2 2
The fact thatA is not differentiable leads us to a variational inequality instead of an equation.
We shall prove the following existence result:
PrROPOSITION 2. —The problemPg) has at least one solution.
Proof. —The idea is to consider

a:(r)=p+yrt O0<e<l,

that clearly satisfy the assumptions (A1)—(A3) with= 2 and solve the corresponding problems
using Theorem 1. Then let— 0, and using the results of Section 4, obtain the solution to the
Bingham case in the limit.

We then have the approximating problems:

(&, uz,) € RT x Wh(2e,)

/ wVug, - Vo + / )/|Vug£|s_1Vugg Vv = / v, Yve WI%I’Z(.Q&),
(PF) Q¢ ¢, ¢,
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and, introducing the convex function

1
e _ 1+e
@, (v) = Tre / [Vu[*™*, 0<e<l,
£2;
we know that every solution of the first equation(l®,) also satisfies the variational inequality
(see [4]):

@7 wu / Vug, - V(v —ug,) + vl (v) — vl (ug,) > /(v —ug), YveWrA(2g).
Q¢ ¢,

We now proceed as in the proof of Theorem 2, obtaining the estimates (17) and (18) and the
convergences

& — & INR,
up —~u inWy(R).
Using the same type of arguments as before, we can show th& outside ofﬂg‘ and thatu is
symmetric with respect tél. Moreover, for any e W,%,’Z(Qg), we have

,l,L/VI,t;9 . V(U;> — ug‘s) + y(pa(v(?) — y(pa(ugg) > / X_Qgs (U;> - u;),
2 2
with
@°(w) = L / Vw1, 0<e<1
1+¢ ’ = ’
Q2
We can pass to the limit, using the lower semi-continuity, and obtain:
,u/Vu VO —u) +ye0(v*) — yOu) > / X2 W* —u),
2 Q2
which, due to the symmetry, reduces to
,u/Vu-V(v—u)—i—y/IVM—y/|Vu|2/(1}—14).
$2¢ $2¢ $2¢ $2¢

We find also, as before, that
[o-e
2
showing that the problem has the solutigp, € W,%,’Z(Qg). O

Remark8. — The uniqueness in this case was not obtained. We recall from [4] that, in the
absence of the conditiofiu = Q, the solutionu of the Bingham problem may be zero for
sufficiently large, more precisely for > y., this critical value being dependent on the domain.
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This fact shows that, in general, the solution of the Bingham problem may vanish in connected
regions that correspond to zones of rigid motion. Therefore, obtaining the strict monotonicity of
the function® becomes a delicate matter and an open problem in this case.
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