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Abstract

In this paper we study convergence of numerical discretizations of hyperbolic nonhomogeneous scalar conservation laws.
Particular attention is devoted to point source problems. Standard numerical methods, obtained by a direct discretization
of the di�erential form, fail to converge, even in the linear case. We consider the equation in integral form in order to
construct a class of convergent accurate methods. Numerical examples are included. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In this paper we study the convergence of numerical discretizations of nonhomogeneous scalar
conservation laws of type

ut + fx(u) = qx(x; t); −∞¡x¡∞ and t ¿ 0; (1)

where f is a given function of u, depending in general nonlinearly on u. We will assume that f is
a smooth convex function (f′′(u)¿ 0 for all u), and q is a bounded, piecewise smooth function.
Hyperbolic conservation laws with source terms have recently been analysed by several authors

(see, e.g., [1–3,8,9]). In particular, the authors in [2] study a conservation law of type (1) with a
steady source term. They construct L∞ stable Godunov-type di�erence schemes, which have a similar
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equilibrium structure to the continuous case. However, convergence problems are not considered.
Koren in [3] suggests that by taking the source term as the derivative of a certain function, more
accurate results may be achieved.
In this work we present a class of pure advection–reaction problems where the reaction term is

represented by time-dependent point sources. In order to represent a point source localized at x=0,
we consider for instance

q(x) =
{
bl; x¡ 0;
br ; x¿ 0;

thus obtaining in the distributional sense, qx(x) = (bl − br)�(x), where � is the Dirac delta function.
Standard numerical methods obtained by a direct discretization of the di�erential form fail to

converge, even in the linear case. In order to construct a class of convergent accurate methods,
to approximate the solution of the point source problem, we consider the equation in its integral
form. Also we discretize it with a certain �nite volume approach, making use of the fact that
a Dirac delta function is the distributional derivative of a Heaviside function. We prove that the
class of methods thus obtained produces solutions that converge to a weak solution of the problem.
Furthermore, this convergence result, for hyperbolic conservation laws with point sources, leads to an
extended version of Lax–Wendro� theorem [6]. As what concerns stability we introduce a nonlinear
form, which enables us to prove convergence results. An entropy condition is presented. Su�cient
conditions, that guarantee the convergence of the numerical solution to the entropy solution, are also
established.
The paper is structured as follows. In Section 2 we construct a weak solution of a time-dependent

point source problem. In Section 3, we begin by constructing a convergent method via an integral
formulation. An important part of the section is devoted to the establishment of a convergence result
for a class of numerical discretizations of (1). We end the section by analysing the stability problem
and the entropy conditions. In Section 4 two numerical examples are considered. Finally, in Section
5 some comments are presented.

2. Formal solutions and weak solutions

We begin by considering a linear problem with f(u) = �u, �∈R. Let us consider the linear
advection–reaction problem with a point source

ut + �ux = �(x − ai); x∈R; t ¿ 0;
u(x; 0) = u0(x); x ∈ R: (2)

Integrating along the characteristic lines dx=dt = �, and knowing that, in the distributional sense,
(dHi(x)=dx) = �(x − ai); where Hi is the Heaviside function de�ned by

Hi(x) =
{
0; x¡ai;
1; x¿ai;

it is easy to establish that

u(x; t) =
Hi(x)− Hi(x − �t)

�
+ u0(x − �t): (3)
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Let us consider now the following advection–reaction problem

ut + �ux = g(t)�(x − ai); x ∈ R; t ¿ 0;

u(x; 0) = u0(x); x ∈ R; (4)

where the reaction term is represented by a time-dependent point source. We construct, in an anal-
ogous way, its formal solution, obtaining

u(x; t) =




u0(x − �t); x¡ai ∨ x¿ai + �t;

1
�g

(
ai−(x−�t)

�

)
+ u0(x − �t); ai6x¡ai + �t:

(5)

We observe that in the case of point sources, the density u(x; t) given by (3) (resp. (5)) satis�es
only formally (2) (resp. (4)). The question arises then: — Are the formal solutions, previously
constructed, weak solutions?
We now prove that the formal solution given by (3) is, in fact, a weak solution of (2).
A weak solution of (2) satis�es the integral equation∫ xj+1=2

xj−1=2

u(x; tn+1) dx −
∫ xj+1=2

xj−1=2

u(x; tn) dx =
∫ tn+1

tn
[− �u(xj+1=2; t) + Hi(xj+1=2)] dt

+
∫ tn+1

tn
[�u(xj−1=2; t)− Hi(xj−1=2)] dt; ∀tn; tn+1; xj; xj+1 (6)

with xj±1=2 = xj ± h=2, where h is a known spatial stepsize. To verify that (3) is a solution of (6),
we replace in this last equation u(x; t) by (Hi(x)−Hi(x − �t))=�, where, without loss of generality,
we have considered u0(x) = 0; x ∈ R.
Using a suitable change of variables we prove that (6) is equivalent to∫ xj+1=2−�tn+1

xj−1=2−�tn+1
Hi(�) d�−

∫ xj+1=2−�tn

xj−1=2−�tn
Hi(�) d�=

∫ xj+1=2−�tn+1

xj+1=2−�tn
Hi(�) d�−

∫ xj−1=2−�tn+1

xj−1=2−�tn
Hi(�) d�: (7)

Considering that∫ xj+1=2−�tn+1

xj−1=2−�tn+1
Hi(�) d�=

∫ xj−1=2−�tn

xj−1=2−�tn+1
Hi(�) d�+

∫ xj+1=2−�tn+1

xj−1=2−�tn
Hi(�) d�;

∫ xj+1=2−�tn

xj−1=2−�tn
Hi(�) d�=

∫ xj+1=2−�tn+1

xj−1=2−�tn
Hi(�) d�+

∫ xj+1=2−�tn

xj+1=2−�tn+1
Hi(�) d�;

we easily conclude that (7) is veri�ed and, consequently, that (3) is a solution of (6), that is, the
formal solution is a weak solution.
We can prove in an analogous way that u(x; t) given by (5) is a weak solution of (4), because it

satis�es the integral equation∫ xj+1=2

xj−1=2

u(x; tn+1) dx −
∫ xj+1=2

xj−1=2

u(x; tn) dx=
∫ tn+1

tn
[− �u(xj+1=2; t) + gi(t)Hi(xj+1=2)] dt

+
∫ tn+1

tn
[�u(xj−1=2; t)− gi(t)Hi(xj−1=2)] dt: (8)
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3. Convergence of numerical discretizations

3.1. A convergent �nite volume discretization

Standard numerical methods obtained by a direct discretization of the di�erential form fail to
converge even in the linear case.
Let us consider the following discretization of (4):

un+1
j − un

j

k
+ �

un
j − un

j−1
h

= gi(tn)�(xj − ai); n= 0; 1; : : : ; j = 0;±1; : : : : (9)

If we assume that h= �k we obtain un
j = un

j−1 + kgi(tn)�(xj − ai); n= 0; 1; : : : ; j = 0;±1; : : : ; and
if we consider u0j = 0; j = 0;±1;±2; : : : ; we obtain un

j = k
∑n−1

l=0 gi(tl)�(xj+l−(n−1) − ai). We have
un
j →
h; k→0

0 and the numerical solution does not converge to the weak solution (5).

We consider now the integral formulation (6) of (2). Let in (6)∫ xj+1=2

xj−1=2

u(x; tn+1) dx ≈ hun+1
j ;

∫ tn+1

tn
u(xj+1=2; t) dt ≈ kun

j ;
∫ tn+1

tn
Hi(xj+1=2) dt ≈ kHi(xj):

We then have

un+1
j − un

j

k
+ �

un
j − un

j−1
h

− Hi(xj)− Hi(xj−1)
h

= 0: (10)

Solving (10) with h= �k we obtain (assuming that u0j = 0; j = 0;±1; : : :)

un
j =

Hi(xj)− Hi(xj−n)
�

: (11)

Comparing (11) with (3) (with u0(x) = 0), we conclude that (11) gives the exact solution. We
recall that, considering h = �k, we are integrating along the characteristics lines. It is well known
that, in the case of a pure advection equation with no source, backward di�erentiation gives the
exact solution if the Courant number is equal to one.
Let us now consider the integral form (8) of (4). In the case of a time-dependent point source,

we obtain (proceeding as before)

un+1
j − un

j

k
+ �

un
j − un

j−1
h

= g(tn)
Hi(xj)− Hi(xj−1)

h
:

Assuming again that, u0j = 0; j = 0;±1; : : : ; and h = �k. We obtain the numerical solution, un
j =

1
�

∑n−1
l=0 gi(tl)[Hi(xj−n+1+l)− Hi(xj−n+l)] or,

un
j =

{
0; xj ¡ai ∨ xj−n¿ai;
1
�g(t); xj−n ¡ai6xj;

(12)

where, 066n− 1 ( ∈ N) ( depends on the position of ai in the interval ]xj−n; xj]).
In this case the weak solution (5) takes the form

u(xj; tn) =

{
0; xj ¡ai ∨ xj−n¿ai;
1
�g(t�); xj−n ¡ai6xj;

(13)
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where �= (ai − xj−n)=h. For xj−n ¡ai6xj, � ∈ ]0; n]. We note that � depends on the position of ai

in the interval ]xj−n; xj], like  in the numerical solution.
Comparing the numerical solution un

j and the exact solution u(xj; tn), we conclude that if xj−n ¡
ai6xj, the argument of gi presents a delay of O(k) in the numerical solution. However, it is obvious
that un

j converges to a weak solution of (4).

3.2. A convergence result

We now return to the nonhomogeneous scalar conservation law (1), with the initial data

u(x; 0) = u0(x) for x ∈ R; (14)

where weak solution, u(x; t); satis�es the integral form
∫ xj+1=2

xj−1=2

u(x; tn+1) dx=
∫ xj+1=2

xj−1=2

u(x; tn) dx −
{[∫ tn+1

tn
f(u(xj+1=2; t)) dt −

∫ tn+1

tn
f(u(xj−1=2; t)) dt

]

−
[ ∫ tn+1

tn
q(xj+1=2; t) dt −

∫ tn+1

tn
q(xj−1=2; t) dt

]}
: (15)

Let us consider conservative numerical methods in the general form

un+1
j = un

j −
k
h
{[F(un

j−p; : : : ; u
n
j+l)− F(un

j−p−1; : : : ; u
n
j+l−1)]

− [S(qn
j−p; : : : ; q

n
j+l)− S(qn

j−p−1; : : : ; q
n
j+l−1)]}; (16)

where qn
j+b=q((j+b)h; nk); b=−(p+1); : : : ; 0; : : : ; l. In particular we assume, for the moment and

for simplicity, that p= 0 and l= 1, obtaining

un+1
j = un

j −
k
h
[(Fn

j+1=2 − Fn
j−1=2)− (Sn

j+1=2 − Sn
j−1=2)]; (17)

where we have used the notation: Fn
j+1=2 := F(un

j ; u
n
j+1); S

n
j+1=2 := S(qn

j ; q
n
j+1).

It is interesting to compare (17) and (15). We can see that

un
j ≈

1
h

∫ xj+1=2

xj−1=2

u(x; tn) dx; Fn
j+1=2 ≈

1
k

∫ tn+1

tn
f(u(xj+1=2; t)) dt; Sn

j+1=2 ≈
1
k

∫ tn+1

tn
q(xj+1=2; t) dt:

This means that un
j can be considered as an approximation to a cell average of u(x; tn); that the

numerical homogeneous ux function Fn
j+1=2 plays the usual role of an average homogeneous ux

through xj+1=2 over the time interval [tn; tn+1] and also that Sn
j+1=2 represents the numerical source ux

function playing the role of an average source ux through xj+1=2 over the time interval [tn; tn+1].
F + S can be considered as an extended numerical ux function.
Method (16) is consistent with the nonhomogeneous conservation law (1), if the numerical ho-

mogeneous ux function reduces to the true homogeneous ux for the case of constant ow and the
numerical source ux satis�es S(q; : : : ; q) = q, ∀q ∈ R.
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In order to extend the grid function un
j , we de�ne for n¿0 a piecewise constant function for all

x and t,

um(x; t) := un
j for

{
nkm6t ¡ (n+ 1)km;

(j − 1
2 )hm ¡x6(j + 1

2)hm;
(18)

where (km=hm) = � for a �xed �.
For homogeneous conservation laws a convergence result is provided by Lax–Wendro� theorem

[6]. The particular convergence results analysed in Section 3.1, using a conservative method, lead
us to an extended version of this last theorem. We shall show that a convergent sequence that
is uniformly bounded and that is de�ned by a conservative numerical method, will converge to a
solution of (1), (14) in the distributional sense.

Theorem 3.1. Consider a sequence of grids indexed by m=1; 2; : : : ; with mesh parameters hm; km →
0 as m → ∞.
Let (um)m be a sequence of numerical solutions as de�ned in (16) and (18) with respect to

hm; km and the initial values u0j .
Assume that
(i) the method is consistent with the nonhomogeneous conservation law (1);
(ii) the numerical homogeneous ux function F and the numerical source ux function S are
Lipschitz continuous functions;
(iii) there exists a constant K such that

sup
m

sup
R×[0;∞[

|um(x; t)|6K:

Suppose that um converges to a function u a.e. in R× [0;∞[; for m → ∞. Then; u is a solution
of (1); (14) in the distributional sense.

Proof. We show that the limit function u(x; t) satis�es the weak form of the conservation law with
source term (1), i.e., ∀� ∈ C∞

0 (R× [0;∞[)∫ ∞

0

∫ ∞

−∞
[�tu+ �x(f(u)− q(x; t))] dx dt =−

∫ ∞

−∞
�(x; 0)u(x; 0) dx: (19)

Let �(x; t) ∈ C∞
0 (R× [0;∞[) and de�ne �n

j

�n
j =

1
hm

∫ xj+1=2

xj−1=2

�(x; tn) dx: (20)

We multiply Eq. (17) by �n
j , sum for all j and n¿0 and apply “summation by parts” to shift the

di�erences to the test function �. We obtain

−hm

∞∑
n=1

∞∑
j=−∞

(�n
j − �n−1

j )un
j − hm

∞∑
j=−∞

�0j u
0
j

= km
∞∑
n=0

∞∑
j=−∞

(�n
j+1 − �n

j )F
n
j+1=2 − km

∞∑
n=0

∞∑
j=−∞

(�n
j+1 − �n

j )S
n
j+1=2: (21)

The proof for homogeneous conservation laws is well known, see for example [4]. We will only
analyse the second term in the right-hand side of (21).
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We have

− km
∞∑
n=0

∞∑
j=−∞

(�n
j+1 − �n

j )S
n
j+1=2 →

km;hm→0
−

∫ ∞

0

∫ ∞

−∞
Sm(x; t)�x(x; t) dx dt; (22)

where, Sm(x; t) := Sn
j+1=2 if xj6x¡xj+1 and tn6t ¡ tn+1 for m¿0.

Let us consider an auxiliary function,

qm(x; t) := qn
j for

{
nkm6t ¡ (n+ 1)km;

(j − 1
2 )hm ¡x6(j + 1

2)hm:
(23)

We have qm(x; t) →
m→∞ q(x; t). From (23),

Sm(x; t) := Sn
j+1=2 = S(qn

j ; q
n
j+1) = S(qm(x − hm=2; t); qm(x + hm=2; t)): (24)

To show

Sm(x; t) →
hm→0

S(q(x; t); q(x; t)); (25)

we proceed as before. In fact, since S is a Lipschitz continuous function, we have that

|S(qm(x − hm=2; t); qm(x + hm=2; t))− S(q(x; t); q(x; t))|
6k1|qm(x − hm=2; t)− q(x; t)|+ k2|qm(x + hm=2; t)− q(x; t)|

and then we can easily establish (25).

Remark 3.2. The numerical source ux function S(qn
j−p; : : : ; q

n
j+l) is a function of (p+l+1) variables

and is constructed satisfying the condition that S is a Lipschitz continuous function of each variable,
even in the case that q(x; t) is not a Lipschitz continuous function.

3.3. Nonlinear stability

For linear problems the Lax Equivalence theorem guarantees convergence. When nonlinear prob-
lems are considered we cannot use the same approach. We need some form of nonlinear stability
that allows us to prove convergence results.
We will say that a numerical method is total variation stable [7], or simply TV-stable, if the

approximations um for m¡m0 lies in some �xed set of the form

K = {u ∈ L1; T : TVT (u)6R and Supp(u(: ; t))⊂ [−M;M ] ∀t ∈ [0; T ]};
where TVT (u) represents the total variation of u over [0; T ]. In this de�nition R and M may depend
on the initial data u0, the ux function f(u) and the source term qx; but not on m. We observe that
the space L1; T consists of all functions of x and t for which the norm

||u||1; T =
∫ T

0

∫ ∞

−∞
|u(x; t)| dx dt

is �nite. Following the ideas in [7], we can easily prove the following theorems:
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Theorem 3.3. Consider a conservative numerical method in the general form (16); where the nu-
merical homogeneous ux function F and the numerical source ux function S are Lipschitz
continuous functions. Suppose that for each initial data u0 and source qx with compact support;
there exists some k0; R1; R2¿ 0 such that

TV(un)6R1 and TV(qn)6R2 ∀n; k with k ¡k0; nk ¡T:

Then the method is TV-stable.

Remark 3.4. In the discrete case we de�ne for a sequence vn = (vnj )j∈Z of discrete values vnj ,
TV(vn) :=

∑∞
j=−∞ |vnj+1 − vnj |.

Theorem 3.5. Suppose um is generated by a numerical method in conservation form; with Lipschitz
continuous numerical homogeneous ux function and numerical source ux function; consistent with
the scalar nonhomogeneous conservation law (1). If the method is TV-stable then the method is
convergent.

Remark 3.6. Like LeVeque in [7], we assume here that we have convergence of um to u in the
following sense:

1. Over every bounded set 
 = [a; b]× [0; T ] in x − t space,

||um − u||1; 
 → 0 as m → ∞ (26)

2. For each T there is an R¿ 0 such that

TV(um(: ; t))6R for all 06t6T; m= 1; 2; : : : : (27)

For Theorem 3.1 we assumed a di�erent form of convergence, namely that um converges to u
almost everywhere in a uniformly bounded manner. However, using the fact that each um is a
piecewise constant function, it can be shown [7] that this requirement is essentially equivalent to
(26) and (27).

3.4. An entropy condition

In some cases the weak solution is not unique. An additional condition (entropy condition) is
then needed to select the physically relevant solution — entropy solution.
Let �;  ∈ C2(R) be such that

 ′(u) = �′(u)f′(u) + �′′(u)q; (28)

where � is strictly convex. The pair (�;  ) is called a pair of entropy functions for Eq. (1).

Theorem 3.7 (Entropy condition). The function u(x; t) is the entropy solution of (1) if; for all
strictly convex functions �(u) ∈ C2(R) and corresponding entropy uxes  (u) satisfying (28); the
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entropy inequality

@
@t

�(u(x; t)) +
@
@x

 (u(x; t))6
@
@x
(�′(u(x; t))q(x; t)); (29)

is satis�ed in the distributional sense.

Proof. The function �(u) is conserved for smooth ows. For discontinuous solutions we are partic-
ularly interested in how the entropy behaves for the vanishing viscosity weak solution. In this sense
we look at the related viscous problem and will then let the viscosity tend to zero.
Let us assume that (�;  ) is a pair of entropy functions and let u� ∈ C2(R× R+) be the solution

of

(u�)t + fx(u�) = �(u�)xx + qx in R× R+:
Then

�t(u�) +  x(u�)− ��xx(u�)− (�′(u�)q)x =−��′′(u�)(u�)2x60;

since � is convex. That is

�t(u�) +  x(u�)− ��xx(u�)− (�′(u�)q)x60:

For all test functions � ∈ C∞
0 (R× R+) and �(x; t)¿0 we get∫

R+

∫
R
{�(u�)�t + [ (u�)− �′(u�)q]�x + ��(u�)�xx} dx dt¿0: (30)

As it can be proved that (see [5])

u� → u
�(u�)→ �(u)
 (u�)→  (u)
�′(u�)→ �′(u)


 in L1

|�(u�)|6const as � → 0;

taking limits in (30), when � → 0; we obtain the weak form of the entropy inequality,∫
R+

∫
R
{�(u)�t + [ (u)− �′(u)q]�x} dx dt¿0:

We �nally conclude that the limit u has to satisfy the entropy inequality

�t(u) +  x(u)6(�′(u)q)x;

in the distributional sense.

When we develop numerical algorithms for the nonhomogeneous conservation law (1) it is im-
portant to guarantee that the corresponding scheme will select the entropy solution.

De�nition 3.8 (Discrete entropy condition). Assume that u is the entropy solution of (1). Let (�;  )
be a pair of entropy functions and 	; S;� be Lipschitz continuous functions of each variable, such
that 	(u; : : : ; u)= (u); �(u; : : : ; u)=�′(u) ∀u ∈ R and S(q; : : : ; q)=q ∀q ∈ R. Let (un

j ) be a solution
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generated by a numerical method in conservation form. Then, we shall say that (un
j ) satis�es a

discrete entropy condition if

�(un+1
j )6 �(un

j )−
k
h
{[	(un

j−p; : : : ; u
n
j+l)−	(un

j−p−1; : : : ; u
n
j+l−1)]

− [�(un
j−p; : : : ; u

n
j+l)S(q

n
j−p; : : : ; q

n
j+l)−�(un

j−p−1; : : : ; u
n
j+l−1)S(q

n
j−p−1; : : : ; q

n
j+l−1)]}:

(31)

Furthermore, if this inequality holds uniformly for k; h → 0 for any �;	;� and S; we say that the
numerical scheme is consistent with the entropy condition.

Theorem 3.9 (Convergence to the entropy solution). Let us assume that the conditions of
Theorem 3:1 are satis�ed and that the corresponding numerical scheme is consistent with the
entropy condition. Then the numerical solution will converge to a weak solution of (1); (14) that
satis�es the entropy condition (29).

Proof. In Theorem 3.1 we have already proved that the limit function u is a solution of (1), (14)
in the distributional sense. In an analogous way we can show that with the conditions of the present
theorem, u satis�es the entropy inequality (29), or, more precisely, the weak form of the entropy
inequality, i.e., ∀�∈C∞

0 (R× R+) and �(x; t)¿0∫
R+

∫
R
{�(u)�t + [ (u)− �′(u)q]�x} dx dt¿0:

4. Numerical examples

In Section 4 we present two problems solved with di�erent conservative numerical methods. The
�rst problem is a linear one and convergence is obtained from Lax Equivalence theorem. The second
problem is nonlinear. From a theoretical point of view, we can prove that the numerical scheme used
to solve it, is TV-stable and, consequently, using Theorem 3:8, convergent. Unfortunately, we have
not succeeded in proving that the numerical methods used satisfy the entropy condition. However,
we observe that the numerical solutions obtained are, in fact, the entropy solutions.

Problem 1. We consider the initial boundary value problem

ut + ux = sin(�t)�(x − 0:1); x ∈ (0; 1); t ¿ 0;

u(x; 0) = 0; x ∈ (0; 1);
u(0; t) = 0; t¿0:

The exact solution can be obtained from (5) with � = 1; g(t) = sin(�t) and ai = 0:1. We solve
this problem using a generalization of Lax–Friedrichs method. This method can be written in the
conservation form (17) by taking Fn

j+1=2 =
1
2(u

n
j + un

j+1) + (h=2k)(u
n
j − un

j+1) and Sn
j+1=2 =

1
2(q

n
j + qn

j+1),



J. Santos, P. de Oliveira / Journal of Computational and Applied Mathematics 111 (1999) 239–251 249

Fig. 1. Numerical solutions at t = 0:25; 0:5 and 1 for k = h= 1
20 (in the left side) and for k = h= 1

40 (in the right side).

where qn
j=sin(�tn)H (xj−0:1). Assuming k=h (we are integrating along the characteristic lines), two

situations are analysed, h= 1
20 and

1
40 , in three moments: t =0:25; 0:5; 1:0 (Fig. 1). The numerical

solution is represented with a dashed line and the exact solution is represented with a continuous
line.

Problem 2. We consider the inviscid Burger’s equation with a point source,

ut + (u2=2)x = �(x − 0:2); x ∈ (0; 1); t ¿ 0;
u(x; 0) = 0; x ∈ (0; 1);
u(0; t) = 0; t¿0:

We solve this problem using the conservation form (16) with p= l= 1; by taking

F(un
j−1; u

n
j ; u

n
j+1) =

(un
j )
2

2
and S(qn

j−1; q
n
j ; q

n
j+1) =−�

3
qn
j−1 +

3 + 4�
6

qn
j +

3− 2�
6

qn
j+1;

where � is a parameter and qn
j = H (xj − 0:2). In Fig. 2 we present numerical solutions obtained at

three distinct moments, t = 0:2; 0:4; 0:8; with two di�erent couple of values of k; h (h = 1
20 ; k =

0:04 and h = 1
40 ; k = 0:02) and � = 0:1: We can prove that the scheme used is TV-stable in the

sense of Theorem 3.3. As the method is consistent with the scalar nonhomogeneous conservation
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Fig. 2. Numerical solutions at t = 0:2; 0:4 and 0:8 for h= 1
20 ; k = 0:04 (in the left side) and for h= 1

40 ; k = 0:02 (in the
right side).

law, it converges. In this problem the “exact” solution has been obtained with a �ne �xed mesh and
it is represented with a continuous line. The numerical solution is represented with a dashed line.

5. Conclusions

In advection–reaction models the reaction term is often represented by time-dependent sti� sources.
In this case, locally re�ned methods can be successfully used. If the advection–reaction equation
models pollutant transport the reaction term is, in many cases, represented by time-dependent point
sources. Nevertheless, in this case, locally re�ned methods lead to nonconvergent solutions as referred
in Section 3. In order to approach this problem we construct a class of convergent methods by
discretizing the problem in its integral form. As what concerns the point source this corresponds to
considering a Dirac delta function as the derivative of a Heaviside function. By using Theorems 3:1
and 3:6, we can prove that the class of methods presented produces solutions that converge to a
weak solution of (1).
As far as entropy is concerned, we have not succeeded in proving that the used numerical methods

are consistent with the entropy condition. This fact is however in accordance with the results of
several numerical tests performed. Further work must therefore be directed towards the building of
a formal proof that the numerical methods considered satisfy the entropy condition.



J. Santos, P. de Oliveira / Journal of Computational and Applied Mathematics 111 (1999) 239–251 251

References

[1] A. Chalaby, On convergence of numerical schemes for hyperbolic conservation laws with sti� source terms, Math.
Comput. 66 (218) (1997) 527–545.

[2] J.M. Greenberg, A.Y. Leroux, R. Baraille, A. Noussair, Analysis and approximation of conservative laws with source
terms, SIAM J. Numer. Anal. 34 (5) (1997) 1980–2007.

[3] B. Koren, A robust upwind discretization method for advection, di�usion and source terms, Notes on Numerical Fluid
Mechanics, Vol. 45, Vieweg, Braunschweig, 1993, pp. 117–138.

[4] D. Kroner, Numerical Schemes for Conservation Laws, Wiley, New York, 1997.
[5] S.N. Kruzkov, First-order quasilinear equations in several independent variables, Mat. Sbornik 123 (1970) 228–255

[English translation] Math. USSR Sbornik 10 (1970) 217–243.
[6] P. Lax, B. Wendro�, Systems of Conservation Laws, Commun. Pure Appl. Math. 13 (1960) 217–237.
[7] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser, Berlin, 1992.
[8] R.J. LeVeque, H.C. Yee, A study of numerical methods for hyperbolic conservation laws with sti� source terms, J.

Comput. Phys. 86 (1990) 187–210.
[9] H.J. Schroll, R. Winther, Finite-di�erence schemes for scalar conservation laws with source terms, IMA J. Numer.

Anal. 16 (1996) 201–215.


