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The entanglement extended Polyakov–Nambu–Jona-Lasinio model at zero chemical potential in the
presence of an external magnetic field is studied. The effect of the entanglement parametrization is
analyzed, in particular, on the pseudocritical transition temperatures and on the thermodynamical properties
of the model. The model predicts that the coincidence or not of both chiral and deconfinement transition
temperatures, in the presence of an external magnetic field, depends on the entanglement parametrization
chosen.
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I. INTRODUCTION

Understanding matter under extremely intense magnetic
fields is one of the most interesting topics in modern
physics due to its relevance for studies involving compact
objects like magnetars [1], measurements in heavy ion
collisions at very high energies [2,3] or the first phases of
the universe [4]. The properties of the quark-gluon plasma
(QGP) is a long-standing theoretical issue since the dis-
covery of the asymptotic freedom of QCD. The structure of
the QCD phase diagram in the presence of an external
magnetic field has been the subject of several studies
[5–10], in particular, at zero chemical potential μ ¼ 0
(the T − eB plane) (see [11–14] for a review).
At zero chemical potential, almost all low-energy effec-

tive models, including the NJL-type models, as well as
some lattice QCD (LQCD) calculations [15–19], found an
enhancement of the condensate due to the magnetic field
(magnetic catalysis) independently of the temperature.
However, a recent LQCD study [14,20], for Nf ¼ 2þ 1
flavors with physical quarks and pion masses, shows a
different behavior in the transition temperature region, in
particular, the suppression of the light condensates by the
magnetic field, an effect known as inverse magnetic
catalysis [21–23]. The reaction of the gluon sector to the
presence of an external magnetic field should be incorpo-
rated into effective models in order to describe the inverse
magnetic catalysis [24]. One way to take it into account is
to choose a magnetic field dependent T0ðeBÞ of the
Polyakov potential [25].
The Polyakov-loop extended Nambu–Jona-Lasinio

model (PNJL) [26] has been generalized to include an
effective four-quark vertex interaction depending on the

Polyakov loop, the entanglement interaction [27]. This
extension is known as the entanglement-extended PNJL
model (EPNJL). The entanglement interaction generates
the correlation between the chiral restoration and decon-
finement transition needed to be consistent with LQCD
results at imaginary quark-number chemical potential and
real and imaginary isospin chemical potentials. An equa-
tion of state was constructed and the phase diagram in SU
(2) was studied in [28] using the EPNJL model. The theta-
vacuum effects on the QCD phase diagram were studied in
[29] using the SU(3) EPNJL model. The three-flavor phase
diagram for zero and imaginary quark-number chemical
potential using EPNJL was performed in [30] with the
entanglement interaction being parametrized in order to
reproduce qualitatively the SU(3) LQCD results at zero and
imaginary chemical potentials [31,32]. In [33], the phase
diagram of QCD in an external magnetic field was studied
using the SU(2) EPNJL model with and without 8-quark
interaction [34]. Our aim is to extend the study of the
T − eB plane using the (2þ 1)-flavor (E)PNJL models
including the ’t Hooft determinant that reproduces UAð1Þ
anomaly, responsible for the mechanism of flavor mixing.
In particular, we want to determine how the entanglement
interaction is affected by the magnetic field and its
consequences in the model predictions.
The effect of external magnetic fields on deconfinement

and chiral pseudocritical temperatures has been discussed
in [11,35,36] using both the SU(2) PNJL and EPNJL
models. As in almost all other low-energy QCD models,
these two models predict that the critical temperature for
chiral symmetry restoration increases with the increase of
an external magnetic field strength. It was also shown that
within the EPNJL the splitting between the chiral and
deconfinement transition temperatures is smaller than the
splitting predicted by the PNJL model [33], and at eB ¼
19m2

π it is not larger than 2%. The phase diagram of 2þ 1
flavor PNJL model with charge asymmetry under an
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external magnetic field was also investigated in [37], while
the effects of an external magnetic field on the fluctuations
of quark number and the fluctuations and correlations of
conserved charges was studied in [38].
This paper is organized as follows: in Sec. II we present

the model and the formalism starting with the deduction of
the self-consistent equations. We also extract the equations
of state and the thermodynamical quantities that will be
studied. In Sec. III the effect of different parametrizations
of the entanglement interaction on the transition temper-
atures is studied. The effect of the parametrization of the
entanglement interaction at zero chemical potential on the
thermodynamical quantities is carried out in Sec. IV, and
some conclusions are drawn in the last section.

II. MODEL AND FORMALISM

A. Model Lagrangian and gap equations

We describe three flavor (Nc ¼ 3) quark matter subject
to strong magnetic fields within the 2þ 1 EPNJL model.
The PNJL Lagrangian with explicit chiral symmetry break-
ing, where the quarks couple to a (spatially constant)
temporal background gauge field, represented in terms
of the Polyakov loop, and in the presence of an external
magnetic field is given by [26]:

L ¼ q̄½iγμDμ − m̂c�qþ Lsym þ Ldet

þ UðΦ; Φ̄;TÞ − 1

4
FμνFμν; (1)

where the quark sector is described by the SU(3) version of
the Nambu–Jona-Lasinio model which includes scalar-
pseudoscalar and the ’t Hooft six fermion interactions that
models the axial UAð1Þ symmetry breaking [39], with Lsym
and Ldet given by [40],

Lsym ¼ G
2

X8
a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2�; (2)

Ldet ¼ −Kfdet½q̄ð1þ γ5Þq� þ det½q̄ð1 − γ5Þq�g; (3)

where q ¼ ðu; d; sÞT represents a quark field with three
flavors, m̂c ¼ diagfðmu;md;msÞ is the corresponding (cur-
rent) mass matrix, λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I where I is the unit matrix in

the three flavor space, and 0 < λa ≤ 8 denote the
Gell-Mann matrices. The coupling between the (electro)
magnetic field B and quarks, and between the effective
gluon field and quarks is implemented via the covariant
derivative Dμ ¼ ∂μ − iqfA

μ
EM − iAμ where qf represents

the quark electric charge (qd ¼ qs ¼ −qu=2 ¼ −e=3), AEM
μ

and Fμν ¼ ∂μAEM
ν − ∂νAEM

μ are used to account for the

external magnetic field and AμðxÞ ¼ gstrongA
μ
aðxÞ λa2 where

Aμ
a is the SUcð3Þ gauge field. We consider a static and

constant magnetic field in the z direction, AEM
μ ¼ δμ2x1B.

In the Polyakov gauge and at finite temperature the spatial
components of the gluon field are neglected: Aμ ¼
δμ0A

0 ¼ −iδμ4A4. The trace of the Polyakov line defined
by Φ ¼ 1

Nc
hhP exp i

R β
0 dτA4ðx⃗; τÞiiβ is the Polyakov loop

which is the exact order parameter of the Z3 symmetric/
broken phase transition in pure gauge.
To describe the pure gauge sector an effective potential

UðΦ; Φ̄;TÞ is chosen in order to reproduce the results
obtained in lattice calculations [41],

UðΦ; Φ̄;TÞ
T4

¼ −aðTÞ
2

Φ̄Φ

þ bðTÞ ln ½1− 6Φ̄Φþ 4ðΦ̄3 þΦ3Þ− 3ðΦ̄ΦÞ2�;
(4)

where aðTÞ ¼ a0 þ a1ðT0

T Þ þ a2ðT0

T Þ2, bðTÞ ¼ b3ðT0

T Þ3. The
standard choice of the parameters for the effective potential
U is a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15:2, and b3 ¼ −1.75.
As is well known, the effective potential exhibits the

feature of a phase transition from color confinement
(T < T0, the minimum of the effective potential being at
Φ ¼ 0) to color deconfinement (T > T0, the minimum of
the effective potential occurring at Φ ≠ 0).
We know that the parameter T0 of the Polyakov potential

defines the onset of deconfinement and is normally fixed to
270 MeV according to the critical temperature for the
deconfinement in pure gauge lattice findings (in the
absence of dynamical fermions) [42]. When quarks are
added to the system, quark backreactions can be taken into
account, thus a decrease in T0 to 210 MeV is needed to
obtain the deconfinement pseudocritical temperature given
by LQCD, within the PNJL model. Therefore, the value of
T0 is fixed in order to reproduce LQCD results
(∼170MeV [43]).
The coupling constant G in Lsym denotes the scalar-type

four-quark interaction of the NJL sector. To obtain the
EPNJL model, we substitute G by GðΦ; Φ̄Þ, which depends
on the Polyakov loop. As already mentioned, this effective
vertex generates entanglement interactions between the
Polyakov loop and the chiral condensate [27]. The func-
tional form of GðΦ; Φ̄Þ was introduced in [27] and reads

GðΦ; Φ̄Þ ¼ G½1 − α1ΦΦ̄ − α2ðΦ3 þ Φ̄3Þ�: (5)

Also, for the EPNJL model we use T0 ¼ 210 MeV.
Once the model is not renormalizable, we use as a

regularization scheme, a sharp cutoff, Λ, in three-momen-
tum space, only for the divergent ultraviolet integrals. The
parameters of the model, Λ, the coupling constants G and
K, and the current quark masses m0

u and m0
s are determined

by fitting fπ ,mπ ,mK , andmη0 to their empirical values. We
consider Λ ¼ 602:3, mu ¼ md ¼ 5.5, ms ¼ 140:7 MeV,
GΛ2 ¼ 3.67, and KΛ5 ¼ 12:36 as in [44]. The
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thermodynamical potential for the three-flavor quark sector
Ω is written as

ΩðT;μÞ¼GðΦ;Φ̄Þ
X

i¼u;d;s

hq̄iqii2þ4Khq̄uquihq̄dqdihq̄sqsi

þUðΦ;Φ̄;TÞþ
X

i¼u;d;s

ðΩi
vacþΩi

medþΩi
magÞ; (6)

where the flavor contributions from vacuum Ωvac
i , medium

Ωmed
i , and magnetic field Ωmag

i [45] are given by

Ωi
vac ¼ −6

Z
Λ

d3pi

ð2πÞ3 Ei (7)

Ωi
med ¼ −T jqiBj

2π

X
n¼0

αn

Z þ∞

−∞
dpi

z

2π
ðZþ

ΦðEiÞ þ Z−
ΦðEiÞÞ

(8)

Ωmag ¼ − 3ðjqijBÞ2
2π2

�
ζ0ð−1; xfÞ − 1

2
ðx2f − xfÞ ln xf þ

x2f
4

�
;

(9)

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi

zÞ2þM2
i þ 2jqijBk

p
, α0 ¼ 1 and αk>0 ¼ 2,

xf ¼ M2
f=ð2jqijBÞ, and ζ0ð−1; xfÞ ¼ dζðz; xfÞ=dzjz¼−1,

where ζðz; xfÞ is the Riemann-Hurwitz zeta function.
The distribution functions Zþ

Φ and Z−
Φ read

Zþ
Φ ¼ lnf1þ3Φ̄e−βðEi−μÞ þ3Φe−2βðEi−μÞ þe−3βðEi−μÞg (10)

Z−
Φ ¼ lnf1þ 3Φe−βðEiþμÞ þ 3Φ̄e−2βðEiþμÞ þ e−3βðEiþμÞg:

(11)

The quark condensates hq̄iqii are given by

hq̄iqii ¼ hq̄iqiivac þ hq̄iqiimag þ hq̄iqiimed;

where

hq̄iqiivac ¼ −6
Z
Λ

d3p
ð2πÞ3

Mi

Ei
(12)

hq̄iqiimag ¼ − 3mijqijB
2π2

�
lnΓðxiÞ − 1

2
lnð2πÞ þ xi

−
1

2
ð2xf − 1Þ lnðxfÞ

�
(13)

hq̄iqiimed ¼
3ðjqijBÞ2

2π

X
n

αn

Z þ∞

−∞
dpi

z

2π
ðfþΦðEiÞ þ f−ΦðEiÞÞ:

(14)

The distribution functions fþΦ and f−Φ are

fþΦðEiÞ ¼
Φe−βðEi−μÞ þ 2Φ̄e−2βðEi−μÞ þ e−3βðEi−μÞ

1þ 3Φe−βðEi−μÞ þ 2Φ̄e−2βðEi−μÞ þ e−3βðEi−μÞ(15)

f−ΦðEiÞ ¼
Φ̄e−βðEiþμÞ þ 2Φe−2βðEiþμÞ þ e−3βðEiþμÞ

1þ 3Φ̄e−βðEiþμÞ þ 3Φe−2βðEiþμÞ þ e−3βðEiþμÞ :

(16)

Calculating ∂Ω
∂ϕi

¼ 0, with ϕi ¼ hq̄uqui, hq̄dqdi, hq̄sqsi, Φ
and Φ̄, we obtain the gap equations,

8>><
>>:

Mu ¼ mu − 2GðΦ; Φ̄Þhq̄uqui − 2Khq̄dqdihq̄sqsi
Md ¼ md − 2GðΦ; Φ̄Þhq̄dqdi − 2Khq̄sqsihq̄uqui
Ms ¼ ms − 2GðΦ; Φ̄Þhq̄sqsi − 2Khq̄uquihq̄dqdi

(17)

∂U
∂Φ ¼ ∂U

∂Φ̄ ¼ 0: (18)

This set of coupled equations must be solved self con-
sistently. At μ ¼ 0,Φ ¼ Φ̄, and we are left with a set of four
coupled equations to solve.

B. Thermodynamic quantities

From the thermodynamic potential density ΩðT; μÞ one
can derive the equations of state which allow us to study
some observables that are accessible in lattice QCD at zero
chemical potential. The pressure PðT; μÞ is defined such
that its value is zero in the vacuum

PðT; μÞ ¼ −½ΩðT; μÞ −Ωð0; 0Þ�; (19)

where V is the volume of the system.
The equation of state for the entropy density S is

given by

S ¼
�∂P
∂T

�
μ

; (20)

and the energy density E comes from the following
fundamental relation of thermodynamics,

E ¼ TSþ μρB − P; (21)

where the baryonic density ρB is given by

ρB ¼ −
�∂Ω
∂μ

�
T
: (22)

The interaction measure

Δ ¼ E − 3P
T4

(23)
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is another important quantity once it quantifies the
deviation from the equation of state of an ideal gas of
massless constituents. Lattice studies show that the inter-
action measure remains large even at very high temper-
atures, where the Stefan-Boltzmann (SB) limit is not yet
reached, and thus some interactions must still be present.
The speed of sound squared,

v2s ¼
�∂P
∂E

�
V
; (24)

and the specific heat,

CV ¼
�∂E
∂T

�
V
; (25)

are important quantities that can also be calculated in lattice
QCD. In the present study, the thermodynamic quantities
are calculated at zero chemical potential μ ¼ 0.

III. ENTANGLEMENT INTERACTION
PARAMETRIZATION

The parametrization ðα1; α2Þ of the entanglement inter-
action [Eq. (5)] was fitted in [30] with T0 ¼ 150 MeV, to
reproduce the result of 2þ 1 flavor LQCD at μ ¼ 0 [31]
and the results of the degenerate three-flavor LQCD at
θ ¼ π [32]. In the present work, we want to compare the
EPNJL and PNJL models; therefore, we set T0¼210MeV
in both models. The only constraint we impose on the
entanglement parametrization ðα1; α2Þ is that both the chiral
and deconfinement transitions are crossovers. To study
the dependence of the order parameters hq̄iqii and Φ on the
entanglement interaction parametrization ðα1; α2Þ, we
define several sets, listed in Table I, that we will explore
in this work. These sets cover all the crossover region of the
entanglement parametrization.

A. Zero magnetic field

The results for zero magnetic field eB ¼ 0 and zero
baryonic chemical potential μB ¼ 0 are shown in Fig. 1,
where the vacuum normalized condensates σi ≡
hq̄iqiiðTÞ=hq̄iqiið0Þ (for eB ¼ 0, there is an exact SUð2Þ

isospin symmetry and hq̄uqui ¼ hq̄dqdi), the Polyakov
loop ΦðTÞ and its susceptibilities, Ci ¼ −mπ∂σi=∂T and
CΦ ¼ mπ∂Φ=∂T, are represented. The multiplication by
mπ is done only to ensure that the susceptibilities are
dimensionless.
We have calculated the chiral and deconfinement pseu-

docritical transition temperatures, defined as the location of
the peaks in σi andΦ susceptibilities, at zero magnetic field.
This way, the pseudocritical temperatures in the PNJL are
Tχ
c ¼ 200 and TΦ

c ¼ 171 MeV, while the results for some
parametrization sets, which cover all the crossover region,
are listed in Table I. A first conclusion from Table I is that
the restoration of chiral symmetry in the EPNJL model is
influenced by the gauge fields mimicked by the Polyakov
loop: the deconfinement transition affects the chiral tran-
sition, decreasing the interaction responsible for the chiral
symmetry breaking and shifting the chiral symmetry
restoration to smaller temperatures, thus, bringing both
transition temperatures closer. On the other hand, the (0.45,
0.00) and (0.00, 0.50) sets are in the limit of turning the
crossover transitions into a first order phase transition. This
is reflected in the susceptibilities values at the pseudocrit-
ical temperatures, being more pronounced than for the
(0.20, 0.20) set. We also notice that, even at zero magnetic
field, the pseudocritical transition temperatures are quite
sensitive to the parametrization ðα1; α2Þ. For (0.45, 0.00)
and (0.00, 0.50), they almost coincide, but for (0.10, 0.20)
and (0.20, 0.10) we obtain ΔTc ¼ Tχ

c − TΦ
c ¼ 3.8 MeV

and ΔTc ¼ 5.2 MeV, respectively. Therefore, the coinci-
dence of the transition temperatures, the main feature of the
entanglement interaction, depends on its parametrization.

TABLE I. Pseudocritical temperatures for the chiral transition
ðTχ

c ¼ ðTu
c þ Td

cÞ=2Þ and the deconfinement (TΦ
c ) for several

parametrization sets ðα1; α2Þ with T0 ¼ 210 MeV.

ðα1; α2Þ Tχ
c [MeV] TΦ

c [MeV]

(0.45, 0.00) 184.6 184.5
(0.25, 0.10) 186.4 183.6
(0.20, 0.10) 187.3 182.1
(0.20, 0.20) 187.0 186.2
(0.10, 0.20) 188.4 184.6
(0.00, 0.50) 188.7 188.7

FIG. 1 (color online). The vacuum normalized u quark con-
densates σu (at eB ¼ 0 we have σu ¼ σd) and the Polyakov loop
Φ (top panel), and the respective susceptibilities (bottom panel)
for three parametrization sets ðα1; α2Þ.
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We show in Fig. 1, for three sets of Table I, the order
parameters and their susceptibilities.
In the following, the effect of the T0 value on the EPNJL

model is analyzed, in particular, on the transition temper-
atures. For that, we have calculated the pseudocritical
temperatures of the chiral Tχ

c and the deconfinement TΦ
c

transitions as a function of T0 for three sets of Table I. The
results are shown in Fig. 2. For each set ðα1;α2Þ, there is a
lower value of T0 (T1st

0 ) that still gives a crossover transition
for both phases. A first-order phase transition occurs if
T0 < T1st

0 are used. The T1st
0 values obtained are

T1st
0 ¼ 186, 125, and 176 MeV for (0.45, 0.00), (0.20,

0.10) and (0.00, 0.40), respectively. We see in Fig. 2 that for
values of T0 close to T1st

0 both chiral and deconfinement
transitions coincide for all sets. For higher values of T0, the
coincidence of the pseudocritical temperatures depends on
the parametrization set. For (0.45, 0.00), a good coinci-
dence is obtained for all range of T0 but for (0.20, 0.10) a
difference as large as ΔTc ≈ 8 MeV is obtained. In Fig. 2
the result for the PNJL model is also plotted, showing a
much larger gap in ΔTc, which grows as T0 decreases.

B. Finite magnetic field

Due to the different charges of the u and d quarks, the
isospin symmetry is lost when an external magnetic field is
applied to the system. Thus, when eB ≠ 0 we get
hq̄uquiðB; TÞ ≠ hq̄dqdiðB; TÞ and the chiral transition for
u and d quarks do not coincide anymore. We are going to
study how the magnetic field affects the transition temper-
atures and how it depends on the entanglement interaction
parametrization.
The transition temperatures as a function of the magnetic

field eB, for T0 ¼ 210 MeV (hereafter we use T0 ¼
210 MeV in both models), are shown in Fig. 3 for three
sets: (0.45, 0.00), (0.20, 0.20) and (0.00, 0.35). The

transition temperatures coincide for (0.20, 0.20) and
(0.00, 0.35), even with a finite magnetic field. In the last
set, for eB > 0.91 GeV2, we obtain a first-order phase
transition, and for lower values the coincidence in the
transition temperatures is perfect. For (0.45, 0.00), unlike
the other sets, the magnetic field, at eB ≈ 0.3 GeV2, breaks
the coincidence of the chiral and deconfinement transitions,
and the deconfinement temperature is less affected than the
chiral transition temperature, even though the magnetic
field enhances both the condensates and Polyakov loop.
The region between the chiral and deconfinement

transitions can be called the constituent quark phase
(CQP) [46,47], where the deconfinement already occurred
but the chiral symmetry remains broken.
As a result of the charge difference between u and d

quarks, we obtain a higher transition temperature for the u
than the d quark, and this difference grows as the magnetic
field increases. This pattern was also found in the context of
the instanton-liquid model, modified by the Harrington-
Shepard caloron solution at finite T in the chiral limit [48],
or in the Sakai-Sugimoto model [49].
In the present model, the chiral transition temperature

increases with the magnetic field just as in several effective
models [8,50–52], and some LQCD studies [19]. This
behavior is due to magnetic catalysis, that is, the magnetic
field enhances the condensate and this effect explains the
increase of the transition temperature with the magnetic

FIG. 2 (color online). Pseudocritical temperatures for the chiral
(Tχ

c ¼ ðTu
c þ Td

cÞ=2) and deconfinement (TΦ
c ) transitions as a

function of T0, for several sets ðα1; α2Þ.

FIG. 3 (color online). Transition temperatures as a function of
the magnetic field for three sets: (0.00, 0.35) (bottom panel),
(0.20, 0.20) (middle panel), and (0.45, 0.00) (top panel).
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field. The strength of the magnetic catalysis depends on the
flavor due to the charge difference.
Recent LQCD results show the inverse mechanism

(inverse magnetic catalysis) near the transition temper-
atures, that is, the condensate shows a nonmonotonic
behavior near the transition temperatures, decreasing with
eB near the transition temperature. Thus, a decreasing
dependence of the chiral transition temperature on mag-
netic field was obtained in LQCD [14]. In [18] new lattice
QCD calculations report a rise of the Polyakov loop with
eB at the pseudocritical temperature and eB≲ 0.8 GeV2

indicating an inverse magnetic catalysis. However, at
sufficiently strong magnetic field strength the magnetic
catalysis is seen in agreement with almost all effective
models that predict magnetic catalysis at any temperature
and magnetic field strength.
In the following, the dependence of the pseudocritical

temperatures on the entanglement parametrization ðα1;α2Þ
is calculated. First, we set α1 ¼ α2 ¼ α, and calculate the
transition temperatures as a function of α for three magnetic
field intensities: eB ¼ 0, 0.4 and 0.6 GeV2. The results are
shown in Fig. 4. As α increases, the deconfinement
temperature increases and the chiral transition decreases.
At some critical value of α, for eB ¼ 0.4 and 0.6 GeV2, the
gap between both critical temperatures decreases abruptly
before the first-order phase transition sets in. The gray line
of Fig. 4 is the region plotted in the middle panel of
the Fig. 3.
In [33], the effect of varying the entanglement para-

metrization was already studied by using the SU(2) PNJL
model with and without the eight-quark interaction term.
As in the present work, the existence of a value of α was

found, where the crossover is replaced by a first-order
phase transition, which depends on the magnetic field
strength. Figure 4 also shows that this value of α (α1st)
depends on eB getting smaller with increasing eB. For
α ¼ 0 the EPNJL model reduces to the PNJL model,
because GðΦÞ reduces to G. We see that the EPNJL model
always gets a smaller gap inΔTc ¼ Tχ

c − TΦ
c than the PNJL

model, for any magnetic field strength. The ratio GðΦÞ=G
is always equal or smaller than one, which means that the
parameter responsible for the chiral symmetry breaking in
the (P)NJL model is always larger than the one in the
EPNJL model.
The coincidence or not of the phase transition temper-

atures depends on the parametrization chosen. Therefore,
the existence or not of the CQP phase depends on the
entanglement parametrization. With a particular choice of
ðα1;α2Þ, the CQP phase can be included or removed from
the phase diagram.
Now, we set α1 ¼ 0 or α2 ¼ 0, and calculate the

transition temperatures as a function of ð0; α2Þ and
ðα1; 0Þ, respectively. With α1 ¼ 0 or α2 ¼ 0, we are [by
Eq. (5)] choosing the functional form of the entanglement
interaction as GðΦÞ ∝ α2Φ3 or GðΦÞ ∝ α1Φ2, respectively.
The results are in Fig. 5 and show the following two main
differences: (a) for ðα1; 0Þ, (Fig. 5, left panel), the α1st1

increases with increasing eB, making it possible that for
weak magnetic fields the crossover transition turns into a
first-order phase transition. Nevertheless, if for eB ¼ 0 a
crossover is obtained, it will always remain a crossover even
when eB is increased. However, some parametrizations of
ðα1; 0Þ allow a first-order phase transition for low eB, while
a crossover is obtained for higher values of eB. For ð0;α2Þ
(right panel of Fig. 5), α1st2 has the opposite behavior so it is
possible to have a set of ð0; α2Þ values where for eB ¼ 0 a
crossover is obtained but a first-order phase transition exists
when eB increases. This behavior is qualitatively similar to
the one found for ðα; αÞ shown in Fig. 4. (b) for a fixed eB,
the gap ΔTc decreases as α1 or α2 increases, but for ðα1; 0Þ
(left panel of Fig. 5) the TΦ always increases without any
bump and for high values of α1, closer to the first-order
phase transition, it is the Tχ that follows the TΦ, contrarily to
what happens in the case ð0; α2Þ.
The gray lines in both panels of Fig. 5 are the para-

metrizations explored in Fig. 3. The behavior of (0.45,
0.00) and (0.00, 0.35) of Fig. 3 become now clear: for
(0.45, 0.00) (upper panel of Fig. 3), at low eB, we are close
to the first- order phase transition, with increasing eB, the
α1st increases and we are moving into the crossover region
where there is a ΔTc gap; for (0.00, 0.35), we are close to
α1st and there is no ΔTc gap, with increasing eB, the α1st
decreases, and for eB > 0.91 GeV2, when α1st < 0.35, we
get first-order phase transitions.
Finally a word on the pseudocritical temperature for

the chiral transition corresponding to the heavier s quark.
Due to the s quark larger mass, the s sector shows a

FIG. 4 (color online). Transition temperatures Ti
c (bottom

panel), Tχ
c and TΦ

c (top panel) as a function of ðα; αÞ for
eB ¼ 0, 0.4 and 0.6 GeV2. The grey line is the region plotted
in the middle panel of Fig. 3.
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much weaker transition than the u and d sectors
[CsðTÞ ≪ Cu;dðTÞ], being also the respective pseudocrit-
ical temperature Ts

c > Tu;d
c only slightly affected by the

increase of eB within the range considered in the
present work.

IV. THERMODYNAMICS

In the following, we are going to study the behavior of
several thermodynamical quantities in the presence of an
external magnetic field eB at zero chemical potential μ ¼ 0,

that is, in the T − eB plane. The dependence of these
properties on the parametrization of the entanglement
interaction will be also discussed.
In Fig. 6, we plot the scaled pressure P=T4, the scaled

energy density E=T4, and the interaction measured Δ
[Eq. (23)] as a function of temperature for eB ¼ 0, so
we can compare compare the EPNJL parametrizations
with the PNJL model [53], for eB ≈ 0.27 GeV2, being
this value an estimation of the maximal magnetic field
strength for the LHC [54] and 0.6 GeV2, an already high
magnetic field.

FIG. 5 (color online). Transition temperatures Tχ
c and TΦ

c (top panel) and Ti
c with i ¼ u, d, Φ (bottom panel) as a function of ð0; α2Þ

(right) and ðα1; 0Þ (left) for eB ¼ 0, 0.4 and 0.6 GeV2. The gray lines are the regions plotted in the top and bottom panels of the Fig. 3.

FIG. 6 (color online). The scaled energy density E=T4, the interaction measure ΔðTÞ ¼ ðE − 3PÞ=T4, and the scaled pressure P=T4 as
a function of temperature T, for eB ¼ 0, 0.27 and 0.6 GeV2 in (E)PNJL models.
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Since the transition to the high temperature phase is a
rapid crossover rather than a phase transition, the pressure,
the energy density and thus the interaction measure are
continuous functions of the temperature. We observe a
similar behavior in the three curves for the EPNJL model
for the different scenarios: a sharp increase in the vicinity of
the transition temperature and then a tendency to saturate at
the corresponding ideal gas limit. The sharp increase in the
PNJL model occurs at lower temperatures than the EPNJL
due to the difference in the deconfinement transition
temperature given by both models, TΦ

c ¼ 171 MeV in
the PNJL and TΦ

c ¼ 182–189 MeV in the EPNJL. The
energy density rises sharply above the transition temper-
ature in the EPNJL. At eB ¼ 0.6 GeV2, in the PNJL
model, the energy density shows two bumps, correspond-
ing to deconfinement and chiral transitions, that at eB ¼
0.6 GeV2 are TΦ

c ¼ 178 and Tχ
c ¼ 244 MeV, respectively.

Figure 7 shows the scaled specific heat CV=T3 and the
speed of sound squared v2s as a function of the temperature,
for eB ¼ 0, 0.27 and 0.6 GeV2. In both models, at high
temperatures, a common limit is obtained the two observ-
ables. This was expected due to the same number of
degrees of freedom in both models. The specific heat
increases strongly near the deconfinement temperature and,
at eB ¼ 0, it is much higher in the EPNJL model. However,
as the magnetic field increases, the CV in the PNJL model
increases to values near the ones in the EPNJL. Once more,
we see that the PNJL model shows two peaks in CV at any
eB, caused by the distinct chiral and deconfinement
transitions. The first peak is due to the deconfinement
and the second to the chiral transition. The speed of sound
squared v2s passes through a local minimum around the
deconfinement temperature and then reaches the limit of
1=3 (SB limit) at high temperature. This minimum signals a
fast change in the masses of quarks in both EPNJL and
PNJL models. The pattern of local minim, shown by v2s as a
function of the magnetic field, is related to the temperatures

at which both phase transitions occur, as in the case of the
peaks of CV=T3.
For the EPNJL, it is interesting to look at each para-

metrization. For (0.45, 0.00), we know from the top panel
of Fig. 3 that TΦ

c and Tχ
c coincide, at low eB and not at high

eB. This is also reflected in the quantities CV=T3 and v2s : at
eB ¼ 0, it has the maximum CV=T3 from all parametriza-
tions, but it decreases as we increase eB; at 0.6 GeV2, aside
from having the lowest value, it has the broadest peak,
signaling the the increasing ΔTc gap with eB. The (0.00,
0.35) parametrization has the lowest CV=T3 peak at
eB ¼ 0, but the highest at eB ¼ 0.6 GeV2, showing that
the parametrization keep the ΔTc gap close to zero at any
magnetic field strength (see middle panel of Fig. 3), and
with increasing eB the first-order phase transitions become
closer. At last, for the (0.20, 0.20) parametrization, the
maximum value of CV=T3 increases slightly with eB.
Looking at Fig. 4, we see that at eB ¼ 0.6 GeV2 we have
α1st > 0.20; that is, we are in the crossover region for
magnetic fields up to 0.6 GeV2.

V. CONCLUSIONS

In this work we have studied the three-flavor quark
matter under the influence of an external magnetic field
using the EPNJL model. The pseudocritical temperatures
have been calculated as a function of the magnetic field
strength and the range of possible parametrizations of the
entanglement interaction analyzed. The main result
obtained is the conclusion that the coincidence or not of
the deconfinement and chiral pseudocritical temperatures,
also including the effect of the magnetic field, depends on
the parametrization chosen. The PNJL model predicts
different critical temperatures for both phase transitions
and their difference increases as the magnetic field strength
grows. Within the PNJL model, the temperature of the
deconfinement transition is almost insensitive to the

FIG. 7 (color online). The scaled specific heat CV=T3, and speed of sound squared v2s as a function of temperature T, for eB ¼ 0, 0.27
and 0.6 GeV2 in (E)PNJL models.
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magnetic field when compared with the chiral transition
temperature.
In a LQCD study [19], it was found that the transition

temperature increases slightly with the magnetic field (this
study shows no inverse magnetic catalysis) and no evidence
for a disentanglement of both phase transitions was found,
at least for magnetic fields up to ∼0.36 GeV2. It was also
observed that the transition becomes a sharper crossover
and a first-order phase transition might appear. Therefore,
as pointed out in [33], the parametrization of the entangle-
ment interaction can be used to reproduce this behavior.
However, in order to reproduce the inverse magnetic
catalysis, as some recent LQCD results [14] show, the
model must be modified once the entanglement interactions
between the Polyakov loop and the chiral condensate are
not able to describe the inverse magnetic catalysis. Away to
modify the model was proposed in [25], where a magnetic-
field-dependent T0ðeBÞ allows us to mimic the reaction of
the gluon sector to the presence of an external magnetic
field in order to reproduce the correct behavior of transition

temperatures given by lattice QCD. Nevertheless, this same
mechanism also can give rise to a first-order phase
transition at quite low magnetic fields.
Finally, as expected, the entanglement interaction also

affects the thermodynamic properties. In particular, we
have shown that the dependence on temperature of the heat
capacity and sound velocity are sensitive to the entangle-
ment interaction. Both quantities reflect the smaller or
larger coincidence between chiral and deconfinement
transitions, and the proximity of a first-order phase
transitio.
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