NH,
r LINEAR ALGEBRA

%@ AND ITS

ﬂb APPLICATIONS

ELSEVIER Linear Algebra and its Applications 305 (2000) 1-14
www.elsevier.com/locate/laa

Ranks of submatrices and the off-diagonal
indices of a square matrix

E. Marques de S&*1, Yu-Lin Zhang 2

8Departamento de Matematica, Universidade de Coimbra, 3000 Coimbra, Portugal
bDepartamento de Matematica, Universidade de Minho, 4710 Braga, Portugal

Received 23 January 1998; accepted 8 July 1999
Submitted by G. de Oliveira

Abstract

In the first part of the paper we determine bounds for the ranks of certain submatrices of
square matrices taken from a prescribed similarity class. Then we discuss the cormfépt of
diagonal indicegdefined in Section 1) which, very roughly speaking, measure, for each given
integers, how far we have to go off the main diagonal of a square matrix, to find -an
nonzero minor. Some open problems are stated. © 2000 Published by Elsevier Science Inc.
All rights reserved.
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1. Introduction

This paper is about matrices over an arbitrary fleld he script letters7 and#%
represent: x n similarity classes oveF. So, for anyM € </, M is ann-square
matrix overF, and .o/ is the set of all matrices ovdf similar to M. The sim-
ilarity invariant polynomials eigenvaluesrank, etc, of the classe are defined
as the corresponding concepts referred to any .«7. It is well-known that there
exists a matrix ineZ of the formA; @ N, whereA; is nonsingular and\ is nilpo-
tent; moreover, the similarity classes 4f andN are well-defined and called the
nonsingularandnilpotent partsof .«7. The rank of</ is denoted by, or rank..
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A subseti c {1, ..., n} will be called anindexing sebf order|i|, where|i| de-
notes the cardinality of. We denote byi® the complementary indexing set
{1,...,n}\i. Given two indexing setq, andj, the symbolA[i|j] represents the
submatrix ofA consisting ofA’s entriesa,,,,, with v € i andw € j. Denote by (i, j),
or justd;;, the cardinality of \ j. Clearly j\i = i€\ ¢ and, ifi andj have the same
order,i\ j andj\i have the same cardinality. Therefore, in ci$e- | j|

dij = dj,' = d,'c]-c.
In the sequel we study in some detail the following concepts:

Definition 1.1. For any nonnegative integsr andn-square matrid, the sth off-
diagonal index ofA is

d(A,s) :=inf{d;;: |i| =|j| = s, detA[i]j] +# O}.

Thesth off-diagonal index of a similarity clas¢ is defined by

d(</,s) = sup d(A, s). 1)
A€o

We adopt the usual set-theoretical conventions according to which thé 0
(empty) matrix has determinant 1, andfs +oc. These conventionsimpli( A, 0)
=0, aswellasd(A, s) = +oo iff s > rankA.

Roughly speakingi(A, s) measures how far we have to go off the main diagonal
of Ato find ans x s nonzero minor. For instancé(A, 1) > 0 iff all diagonal ele-
ments ofA are zero¢ (A, n) = O iff Ais nonsingular. According to [2] (see also [3])
for any nonscalar clas¢/, the only constraint on the diagonal elementg\of .7 is
the trace condition; s@(.<Z, 1) > 0 iff the trace of</ is zero.

The off-diagonal indices occur in problems connected with the pantcit- B,
wherex is a variable, and\ andB are supposed to run over two given similarity
classes# and4, respectively. For example, we may ask for the possible degrees of
the polynomial dgtv A + B), or the possible number of positive Kronecker indices
of xA 4+ B. These problems will be considered in forthcoming work.

In Section 4 we study the off-diagonal indices for their own sake, and, as we shall
see, this will lead us to interesting properties and open problems.

Notation for similarity invariant polynomial$n the sequet/ denotes a similarity
class oveF, of ordem, with similarity invariant polynomialay, .. ., «,. Thea's are
monic polynomials, taken from the polynomial rikx], ordered so thais| - - - |-
Wherever needed, we use the conventiogs= 1 forv < 1, anda, = 0 forv > n.
The coefficients of the characteristic polynomial«f that we represent by.,, will
be denoted by, (.«/), so that

X (¥) = x" + 01(A)x" T - 4 0 ().
The degree of a polynomitls denoted def
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2. ‘Minimal’ off-diagonal indices

In our definition (1) we considered the ‘sup’ over the clagssWe may now ask
how interesting is the sequence of integers

S(ef.s) = inf d(A.s),

that we may call theninimal off-diagonal indices of the class.

These numbers are not so interesting as those of Definition 1.1. In fact, the min-
imal off-diagonal indices have an extremely simple characterization, that is given,
without proof, as a consequence of the following lemma.

Lemma 2.1. There exista € o7 with all s x s leading principal minors nonsin-
gular, for1l < s <rank.«/.

Proof. We shall use the so-calladterlacing theorenfor the similarity invariant
polynomials of principal submatrices [4,7]. The rankfis the number of similarity
invariant polynomials ofeZ, «1]-- - |a,, that are not multiple ok. For an arbitrary
but fixeds < r., let ¢; be any monic polynomial of degree- degug - - - &), not
multiple ofx. Then the polynomialgi | - - - |ys, given byy; = «;, fori < s, andy, =
as@s, are the invariant polynomials of a nonsingutax s matrix, sayA;. They’s
ando’s interlace, in the sense that|y;|«; 12,2, for all i. By the referred interlacing
theorem, there exist$ € .o/ havingA; as leading principal submatrix.

The lemma follows by an easy induction using suitably the procedure just de-
scribed. The details are left to the readef]

Theorem 2.2. §(.«7,s) = 0fors < rank.Z, ands(.<Z, s) = +oo fors > rank.«Z.
There exists a matri™ € .o/ such thatd(M, s) = §(.<Z, s) for all s.

3. Ranks of submatrices

Recall thate# denotes a similarity class over of ordern, with similarity invari-
ant polynomialsq| - - - |a,.

Theorem 3.1. We are given two indexing setsand j, with the same cardinality .
The following conditions are equivalent

(a) ranksZ > r anday = 1, where d denotes the cardinality ©fj.

(b) There existsA € .« such thatA[i|j] is nonsingular.

(c) There existA € .« such thatA[i|j] and A[i\ j|j\i] are nonsingular.

Proof. Forour purpose we may assuine {1,...,r}andj ={d+1,...,d +r}.
This means we are partitioning our matrices .«Z in the form
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)

S

Il
* % ¥ %
*oX X
* % <=
* % % %

whereD andP are square blocks of ordedsand p := r — d, respectively. We are
looking for conditions oneZ, equivalent to the existence af € .« such thatA[i| ;]
— i.e., the corresponding{PDY’ block — is nonsingular (and, in item (c), wifb
nonsingular as well). Note th&is a principal submatrix of.

(b) = (@). Letyr4 (x) be the determinant of

. X D
(A—xDlilj]= [P T Y}
(b) means that/4 (0) is nonzero. Moreover degj4 < p. This implies ded, < p,
wheres, is therth determinantal divisor ol — x 1. Recalls, = a1a2 - - - «,. Clearly
ag #+ 1 implies de@ey - - - @) > r —d = p. So we must have,; = 1. The condi-
tion rank.eZ > r is obvious.

(& = (¢). By (a), and by the interlacing inequalities theorem [4,7], used as in
the proof of Lemma 2.1, there existise ./ having a leading principal submatrix
A*, of orderd + r, satisfying rankA* > r anda; = 1. Clearly, if we prove (c) for
the similarity class ofA*, then (c) will follow in general. This is the same thing as
assuming, without loss of generality, tha&= d + r. Thus, we shall assume that the
last row and the last column of blocks in (2) are empty, that is

* X D
A=|*x P Y
* %k

As oy = 1, the main results of [6,8] (see also, [5, Theorem 5.2]) imply the existence
of A € .o/ whose bloc{X D] has rankd (using the notation of6, p. 104], we are
applying Theorems 1 and 2 to the case- r; thus (I) and (II) of [6] do not hold).

We may further assume thBtis nonsingular. So we may zero out all blocks under
D by means of similarity transformations, and get

EE D
u prp 0|. 3)
vV w 0
For anyd x p matrixZ, Ais also similar to a matrix like
[ * D

U P+UZ 0
V. W+VZ 0

On the other hand, as

U P
v ow




E.M. de & Y.-L. Zhang / Linear Algebra and its Applications 305 (2000) 1-14 5

has rank> p, there existZ such that

So, to simplify notations, we may assume that

[P
R4
already has rang. In (3),D may be used to zero out the (1, 2) block without changing
the rank of thePW block. SoA s similar to a matrix like

* 0 D
* P 0],
(+ W 0

with the PW block of rankp. There exists @ x d matrix M such thatQ := P +
MW is nonsingular. With one more block similarity we transform the last matrix
into one of the following type

* 0 D
* 0 x|,
x* W ox

with Q andD nonsingular. This proves (c). [

Theorem 3.2. We are given two indexing seisand j, and a nonnegative integer
r < minf|i|, |j|}. Defined := r — |i N j|. The following conditions are equivalent
(¢) rank.e > r andey = 1.
(B) There existsA € .7 such thatank A[i|j] > r.

Proof. First we consider the casé < 0. Then §) reduces to rank« > r; by
Lemma 2.1 there existd € .7 having a nonsingular principal submatrix of order
r. So ) implies (8). The converse is obvious.

Now we prove the theorem whetis positive.

Assume §) holds, and choose indexing subsétsg i andj* C j, both of order
r,suchthai* N j* =i N j. By Theorem 3.1 there exists € .« such thatA[i*|j*]
is nonsingular. Then&) holds.

Conversely, 8) implies the existence of indexing subséts: i and;’ C j, both
of orderr, such thatA[i’| /'] is nonsingular. Obviously

N1 =1\ N ) =r—=linjl=d.
Thus ) follows easily from Theorem 3.1. [J

At this stage it is only natural to consider the following problem.

Problem 1. Given indexing sets,andj, of any orders, and an integercharacterize
the similarity classes/ such that there exist$ € .7 satisfying rankA[i|j] = r.
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A different problem, seemingly less difficult to handle, is obtained replacing “rank
Ali|j] =r"by“rank A[i|j] < r". We could not solve these problems in the general
case. One of the difficulties has to do with the peculiarities of the field. For example,
with the help of [1, Theorem 2], we may obtain a very involved solution, only valid
for infinite fields. The solution for the case whelandj are disjoint and U j =
{1,...,n}, givenin [6, Theorem 2], also shows how hard it can be. We give three
results solving Problem 1 for special kinds of indexing sets.

Theorem 3.3. We are given two disjoint indexing sgtsand j, and a nonnegative
integerr, satisfyingli| + |j| < n andr < min{|i|, |j|}. There existgl € .o such that
rankAli|j] = r, if and only ife, = 1.

Proof. Theonly if partis obvious, becausd — A has a nonzero, constanminor,
and sorth determinantal divisor of I — A is 1.

We now prove théf part. Note that® > j. By [6, Theorem 2], there exists € .o/
such that ranki[i|i€] = r, except in either one of two cases. Of those cases we only
need to know the following: in the first ong@) is odd; in the second exceptional
case)i| is multiple of the degree of the minimal polynomial.ef, and that degree is
> 3. If none of those exceptional cases occurs; the existing matriay be chosen
in such a way that ranK[i|j] = r, becausei[i|j] is a submatrix ofA[i|i®]. Now
assume that one of those exceptional cases occurs; then we apply [6, Theorem 2]
to submatrices in a slightly different position; namely, we choose an indexing set
such that

kDi, «k°2j, and |k|=]i|+1

By [6, Theorem 2], there exist$ < .«# such that rankd[« |«€] = r (note that no
exception occurs here). A$[i | j] is a submatrix ofA[« |« ©], A may be appropriately
chosen so that rank[i|j]=r. O

It is easy to see that i is ann x m matrix overF, andr is the rank of gp x ¢
submatrix, then

ra—(@m—p)—(m-—1t) <r<min{ra, p,t}. 4)

This is a best possible result, in the sense that, if these inequalities hold (for
nonnegative integers, such thak n, t < m, r., < min{n, m}), then we may find
a pair matrix—submatrix with the required sizes and ranks.

The proof of the next result is left to the reader.

Theorem 3.4. Leti be an indexing set with p elemerdad r a nonnegative integer.
There existsA € .7 such thatA[i|{1, 2, ..., n}] hasrankr, iff

ry —(m—p) <r <minfry, p}. 5)



E.M. de & Y.-L. Zhang / Linear Algebra and its Applications 305 (2000) 1-14 7

Theorem 3.5. Let r and p be nonnegative integers < n. There existA € ./
having a principalp x p submatrix ofankr, if and only if the following inequalities
hold:

V&Q/—Z(l’l—p) <V < min{r&/s p}v (6)

min{r.,, p} — p +degar---ap) <7 @)

Proof. Let M be a principalp x p submatrix of a matrixA € .«Z, of rankr, and
let 1| - - - | p be the invariant factors d¥l. The inequalities (6) were already con-
sidered. By [4,7] we have;|u;, fori =1,..., p. Let ag [mg] be the number of
polynomials amonga, ..., ap [u1, ..., 1p] that are multiple ok. Note thatag =

p —min{r., p} andmgo = p — r. Clearlyag < mg and there are at leasty — ag
indicess (s < p) such thaty; strictly dividesu,; therefore

mo —ap < deguy---up) —degay---ap).

This is equivalent to the inequality (7).
Conversely, assume (6)—(7) hold. Define the polynomials . ., i, by

_fxa;  ifr <i <minfry, p},
R 7 otherwise

Note thatw; is multiple [not multiple] ofx for i > min{r.,, p} [i < min{r., p}l;
thereforewy| - - - | p. Trivially o;|u;, for alli, and the relationg; |« 12,—2, follow
easily from the definition of tha's and the left inequality in (6).

Now redefinew,, multiplying it by any monic polynomial of degree

p+r—minfry, p} —dedo1---ap), (8)
not multiple ofx. Note that (8) is nonnegative, because of (7). The new valuyg,of
yeilds degu1 - - - 1) = p, and thesg’s obviously satisfy; | |c;+2,—2, for all i.
Let M be anyp x p matrix with invariant factorg.;). ThenM has rankr, and, by
[4,7], there existA € .7 havingM as a principal submatrix. O

If i andj are arbitrary indexing sets, ardi|j] has rank, thenA[i N j|i N j]is
a principal submatrix oA of rank < r. We therefore have the following immediate
consequence of (4) and the previous theorem.

Corollary 3.6. If A € .« and A[i|j] hasrankr we have

rog —(m—i}) = (@ —1j) <r <minfry, i, |jl},
min{r./, p} — p +deday---ay) <,

where p denoteg N j|.
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4. The off-diagonal indices

We now consider a second similarity clagswith similarity invariant polynomi-
als 1] - - - |Bn, and the pencils of the form

XA+ B,

where A € o/ and B € 4. Define A(x) := det(xA + B). Let us expandd(x) in
powers ofx, say4(x) = C,x" + - - - + Co. Clearly, the coefficient€ are given by

Cs = Z evwdet(Alvw])det B[v°|w®]), )
lv|=|w|=s
wherev andw run over the set of indexing sets of ordeainde,,, is the sign of the

[v]w]-minor.

Theorem 4.1. If .o/ and % are nilpotent classes and, + r» > n, then there exist
A € o/ and B € % such thatt A + B is nonsingular.

Proof. We letA be a Jordan normal form of. Leti [j] be the set of indices of the
zero rows [resp. columns] &. Clearlyn — r., is the cardinality of, that we denote

byr.
We apply Theorem 3.1 to the clags Our assumption., +r4 > nreadsy > r.
As 4 is nilpotent,ry is the number oy, ..., B, equal to 1; thereforg; = 1. So

there existsB € 4 such thatB[i| ] is nonsingular.

Now observe thati[i¢|j€] is an identity matrix, and it is the only nonsingular
submatrix ofA of orderr.,. Therefore, the coefficier, ., equals;; detB[i|j], and
SoxA + Bis nonsingular. O

Theorem 4.2. If the coefficienC; in (9) is nonzergthen
n—ry<s<ry, (10)

ﬁd(,n/,s) = Ud(B,n—s) = 1 (11)

Proof. Without loss of generality we may assurAesatisfiesd (A, s) = d (<, s).
There exist andj such thati| = |j| = s, andA[i|j] and B[i€| j¢] are nonsingular.
We have

dij =djcje = d(</,s).

Theorem 3.1 applied tB and to its[i¢| j°]-minor givesB,(.,.s) = 1. The other
identity in (11) is obtained by exchanging the roleAcdndB. The rank conditions
(10) are obvious. [
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Next we prove some basic properties of the off-diagonal indices. Recall that
os (/) denotes theath coefficient of the characteristic polynomial.&f.

Theorem 4.3. Let A denote amm x n matrix or similarity class. For all relevant
values of s

(@) Ifd(A,s) > d(A, s + 1), thend (A, 5) = 1.

(b) Let K be a positive integer. (A, s) < K, thend(A,t) < K forall r <.
(c)d(A,s +1) <d(A,s)+ 1, wheneves < rankA.

(d) os(A) #0 = d(A,s) =0.

(e) For two square matrices V and:W

dVe®W,s) = mi
0<k

<

N (d(V.k) +d(W.s —k)).

<

Proof. (a) LetA be ann x n matrix, and leti andj be distinct indexing sets of
orders + 1, such that[i| j] is nonsingular. Let’ be any subset daf of cardinality
s, containingi N j. There existsj’ C j such thatA[i’|j’] is square nonsingular;
asd j < d;j, we haved(A, s) < d;;. This argument shows thaf(A,s +1) > 0
impliesd(A,s) <d(A,s + 1).

Now assumei(A, s) > d(A,s + 1). Thend(A, S + 1) = 0. This means thah
has a nonsingular principal submatrix of ordef 1; this principal submatrix has
a nonsingular submatrix, say[u|v], of orders. Clearly d,, < 1 and, therefore,
d(A,s) < 1. This forcesi(A, s) = 1.

We use this to prove (a) for a similarity class. Assumed(.<Z, s) > d(.</, s +
1). There existsM € .o satisfyingd(M, s) = d(.</, s); we haved(M, s) > d(</,
s+ 1>dM,s+1); using (a) for individual matrices, we gétM, s) = 1, etc.

(b) We get a contradiction from the assumptidifd, s) < K andd(A, 1) > K,
for somer < s. As a matter of fact, iff denotes the largest such that <1 <
andd(A, 1) < d(A,t),thenwe have (A, t) > d(A, T + 1) andd(A, ) > K; this
contradicts (a). So (b) holds.

(c) The assumption < rank A implies that any nonsingular submatei | j] of
ordersis contained in a nonsingular submatrixAfof orders 4+ 1. That is, there
exist indexing sets of order+ 1, i* and j*, such that* 2 i, j* 2 j andA[i*|j*]
is nonsingular. The property follows froths j« < d;; + 1.

The extension to a similarity clasg is straightforward.

(d) is obvious, because, for a square mattio;(A) is (up to the sign) the sum
of all principal minors of ordes of A.

(e) Thenonzeraminors ofA = V @ W are precisely the products

det(Aliv|jv]) det(Aliw|jw]),
with A[iy|jy]a nonsingular submatrix &f, andA[iw|jw] a nonsingular submatrix
of W. The property is an easy consequence @, Uiy, jyv U jw) = d(iv, jv) +
d(iw, jw). U
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Theorem 4.4, Assumes/ has nonsingular and nilpotent paritg’s and ./", of di-
mensions:; and ng, respectivelyand letky > --- > k, > 0 be the orders of the
nilpotent Jordan blocks af/. Then

d(</,s) <d(1,s) ifs <ni, (12)

d(of,s)=d(N,s —n1) ifs >ny. (13)

d(</,1),d(,2),...,d(</,ny) is a sequence of zeroes and onesding up with
0. Moreoverif N := Jy, & --- @ Ji, (J; is a Jordan block of ordentis the Jordan
normal form of/",

d(N,t)=d(N, 1) (14)
=minfw:r <kyi+--+ky— w}. (15)

Proof. It is not difficult to prove, by simple calculation, thad{N, ¢) is given by
formula (15). We omit the detalils.

Clearly,0,, (<) is (up to the sign) the determinant ef; which is nonzero. So
d(</,n1) = d(</1,n1) = 0 and, therefore, the identity (13) holds fo& nj.

By Theorem 4.3(b) (applied tothe case=n1, K :=1),d(<#, 1), ...,d(</, n1)
andd(</1, 1), ...,d(</1,n1), are sequences of zeroes and ones.

Fors < n1, let M € o/ satisfyd(My, s) = d(</1, s). Asd (M, s) € {0, 1} and
d(N, ) is positive except for = 0, Theorem 4.3(e) yield&(M; & N, s) = d(Ms, s).
So (12) holds.

Now we prove that

d(A,s) <d(N,s —n1), (16)

holds, for anyA € .«Z, and anys > n1. Letw € {0, ..., u}, and defineK := k1 +
-+ +ky (K :=0if w = 0). Denote by, («7) theqth determinantal divisor of/ —
A. The polynomials:“1, . .., x*« are thex-powered elementary divisors of — A.
As 8,y (/) is the productys - - - oy, We have

Sn—w () = Yry (x)x"0 K

whereyr, (x) is not a multiple of. Therefore, there exists &na — w)-minor ofx1 —
A with a nonzero coefficient for the term of degieg— K ; assume it is the minor
corresponding to the row sgtand column seb, || = |[v| = n — w. This implies
the existence of a subsetof 1 N v, with ng — K elements, such that[u\o|v\o]
is nonsingular; this matrix is of order — w —ng+ K =n1+ K — w. As |u| =
[v| = n — w, we haved (i, v) < w. On the other hand(u, v) = d(u\o, v\o), and
thusd(u\o, v\o) < w. This proves the formula

d(A,n1+k1+--+ky—w) <w, foranyw e {0,...,u}. a7

Next we take angsuch thaiz; < s < rank.eZ, and use inequality (17) witly :=
d(N,s —n1). Asd(N, 1) is given by (15), we have < n1 + k1 + -+ + ky — w. If
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d(A,s) >d(A,n1+k1+ -+ ky — w), then Theorem 4.3 implied(A, s) < 1 <
w; otherwise, (17) implied (A, s) < w. So (16) holds.

The inequality (16) applied to the nilpotent casg = ./"andn1 = 0) gives the
identity (14).

As (16) holds for anyA € o7, we haved (<7, s) < d(A", s —n1). Finally, let us
chooseA; € <71, ands > n1; taking into account Theorem 4.3(e) and the fact that
d(N, k)is nondecreasing witk, we get

d(A1® N,s) > kmin d(N,k) =d(N,s —n1) =d(N", s — n1).

=>s—n1

Therefored (<#, s) > d(N", s —n1), and (13) holds. [
Theorem 4.5. Let.oZ be a nonderogatory class. Then

0 if s <ranks/ and o,(«) +#0,
d(of,s) =11 if s <ranke/ and oy(«/) =0,
+oo if s > rank.eZ,

andd(C,s) = d(</,s), for all s, where C denotes a companion matrix«f

Proof. Itis easy to check that has off-diagonal indices as displayed in the state-
ment. The rest is a simple matter, based on Theorems 4.4 and 4.3(d) and the fact that
.o/ has at most one nilpotent Jordan block]

Combining the two previous theorems, we obtain the following characterization
of all possible sequences of off-diagonal indices of individual matrices and similarity
classes. The straightforward proof is left to the reader.

Theorem 4.6. For anyn x n matrix A d(A, 1), ...,d(A, n) may be splitinto three
consecutive sectionthe first one is &1 sequence ending with the second section
(that may be emp}yis a nondecreasing sequence of positive integetsch starts

with 1 and has jumps not greater thdn the third sectionthat may be empjyis a

tail of +00’s. Any sequence of this kind is the sequence of off-diagonal indices of
ann x n matrix. The result also holds when we replace the individual matrix by a
similarity class.

5. Examples and further results

The aim of this section is to show that the converse to property (d) of Theorem
4.3 is not true in general and that we may have strict inequality in (12).

In the next theorem we single out the following
Exceptional case .« isa n x n scalar, nonzero class, and is multiple of the
characteristic oF.
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Clearly, in this case, the converse to Theorem 4.3(d) is not truedofl, n — 1}.
Theorem 5.1. Suppose«/ is not in the above exceptional case.df(.«7) =0
[on—1(<Z) = (O], there existsA € .7 with all diagonal elementfesp, all principal
minors of ordem — 1] equal to zero.

Proof. For a scalar/ the theorem is obvious. So assun#eis not scalar.

According to [2,3], if.<7 has zero trace, andl, . . ., d, are any elements &f with
sum 0, there existd € .o/ with diagonal elementsd, ..., d,. This settles the case
o1(e/) = 0.

Now assumer,_1(.7) = 0. If .« is nonsingular, then7 1 has zero trace, and
therefore there exist# e .o/~ with zero diagonal; thess ! lies in .« and has all
principal minors of ordern — 1 equal to zero. Ife/ is singular, leteZ be any matrix
in o/ of the formA = A1 & N, with A; nonsingular andN a direct sum of nilpotent
Jordan blocks. All principal minors df are zero. Therefore,,_1(.«7) = 0 implies
N has ordee> 2; so all principal minors oA of ordern — 1 are zero. [

For elementsy and 8 of F, we let.«Z,g be then x n similarity class with in-
variant polynomials Ix — o, ..., x —a, (x — a)(x — 8). We shall determine the
off-diagonal indices of/.g. As this is a simple task in case= 0, we shall hence-
forth assume that is nonzero. We denote hyythe characteristic of the field. An
integermis said to benonzerg(or invertible) in F if it is not multiple of p.

Theorem 5.2. Let s be an integer such that< s < n.
(i) There existss € .« with all s-by-s principal minors equal to zero iff

s is nonzero irF, andna = s(a — B). (18)

(i) Assumg18) holds. Ann x n matrix G satisfies the previous conditions iff G is
diagonally similar toal — («/s)Q,, whereQ, denotes the: x n matrix with
all entries equal tdl.

Proof. First we prove the ‘only if’ claims of (i) and (ii). AsSsumé e .« has all
s-by-s principal minors equal to zero. L& be anys x s principal submatrix ofG.
By the interlacing theorem [4,7] thesimilarity invariant polynomials o1 are

Lx—a....,x0—a, (x—a)(x —pn

fors > 1, or justx — u in cases = 1, whereu is an element oF. As M is singular,
u = 0 and, therefore, the trace bf is (s — 1)a. So the diagonal entries @& are
pairwise equal; let be the common value of these entries. We have

sd4 = (s — Do,
nd=mn-la+ B.

As «a # 0, these equations imply (18). The similarity invariant polynomials of
al —G are 1x,...,x,x(x —a+ B). Therefore,al — G is a rank-one matrix
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which, as we have just seen, has all its diagonal entries equglstoThis means
thatal — G is diagonally similar ta«/s)Q,. This proves tha6 satisfies the ‘only
if’ condition of (ii).

We now prove the ‘if’ claims. Assume (18) holds. Ag/s)Q2, has rank 1 and
tracena/s, its similarity invariant polynomialsare %, . . ., x, x(x — na/s). There-
fore, Go := al — (a/s)Q, lies in .«Z,5. On the other hand, anyx s submatrix of
(a/5)Q, has rank 1 and trace; therefore, such a submatrix hass an eigenvalue.
So anys x s principal submatrix oiGg is singular. This completes the proof of (i).
Now (ii) follows in a simple way. [

The first part of this theorem obviously determines the off-diagonal indices of
o/ op: We have, for 1< s < n,

|1 if(s),
d(%aﬁys)—{o, otherwise

It is easily to compute the coefficients of the characteristic polynomia¥ g
and check the following

as(&faﬂ)=0<:>(n;]')a—l-(;l:]]:)ﬂzo. (20)

Comparing (19) with (20), the reader may find classes of examples where the
converse to Theorem 4.3(d) fails. An interesting case occurs Wherd and n is
not a multiple of pWe then have, fork s < n

d(/ 40, 5) =1 <= p dividesn — s, (21)

(19)

05 (A q0) = 0= p divides(” N 1) . (22)

The examples we are looking for are based on the fact that the right-hand sides
of (21) and (22) are not equivalent; this is the case when5,n = 7 ands = 4; so
the converse to Theorem 4.3(d) is not true in general.

Note that, ifnis invertible inF we have

05(Aop) = 0= (?) [na —s(a — )] =0. (23)

So, if F has zero characteristio, (.«7og) = 0 is equivalent tad (g, s) = 1.
Therefore, the counterexamples we have to the converse of Theorem 4.3(d) all live
in nonzero characteristic. So we ask:

Problem 2. For fields of characteristic zero, if thath coefficient of the character-
istic polynomial of.«Z is zero, may we always find a matrik € .« with all s x s
principal minors zero?

Our examples also show that we may have strict inequality in (12). Consider
again the case whef = 0 andn is not a multiple ofp. Then.Z1, the nonsingu-
lar part of <70, is the Singleton class of the scalar mati%,_1, and so we have
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d(</1,s) =0 fors < n — 1. However, according to (21), we hadé</,o,s) = 1
for all s congruent witm modulop.

Again, all counterexamples we found live in fields of nonzero characteristic. We
then ask:

Problem 3. Isittrued(<Z, s) = d(</1, s), for fields of zero characteristic?

An interesting fact occurs with our examples,s. Whenn is invertible inF, the
matrix Go := ol — ((a« — B)/n) - Q, satisfies

d(Go, s) = d(Aag,s) foralls > 1.
This suggests:

Problem 4. Which similarity classes satisfy the propertiyere existsA € .«7 such
thatd(A, s) = d (o, s) for all s?

Nilpotent and nonderogatory matrices also satisfy this property. Howeveis if
multiple of p, « = B andp > 2, no matrixA € .«7,, satisfiesd(A, s) = d(ALyqy, 5)
for all s. We still have no clue for a general answer.
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