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Abstract

In the first part of the paper we determine bounds for the ranks of certain submatrices of
square matrices taken from a prescribed similarity class. Then we discuss the concept ofoff-
diagonal indices(defined in Section 1) which, very roughly speaking, measure, for each given
integers, how far we have to go off the main diagonal of a square matrix, to find ans × s
nonzero minor. Some open problems are stated. © 2000 Published by Elsevier Science Inc.
All rights reserved.
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1. Introduction

This paper is about matrices over an arbitrary fieldF. The script lettersA andB
representn× n similarity classes overF. So, for anyM ∈A, M is an n-square
matrix overF, andA is the set of all matrices overF similar to M. The sim-
ilarity invariant polynomials, eigenvalues, rank, etc, of the classA are defined
as the corresponding concepts referred to anyA ∈A. It is well-known that there
exists a matrix inA of the formA1⊕N , whereA1 is nonsingular andN is nilpo-
tent; moreover, the similarity classes ofA1 andN are well-defined and called the
nonsingularandnilpotent partsof A. The rank ofA is denoted byrA or rankA.
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A subseti ⊂ {1, . . . , n} will be called anindexing setof order|i|, where|i| de-
notes the cardinality ofi. We denote byic the complementary indexing set
{1, . . . , n}\i. Given two indexing sets,i and j, the symbolA[i|j ] represents the
submatrix ofAconsisting ofA’s entriesavw, with v ∈ i andw ∈ j . Denote byd(i, j),
or justdij , the cardinality ofi\j . Clearlyj\i = ic\jc and, if i andj have the same
order,i\j andj\i have the same cardinality. Therefore, in case|i| = |j |

dij = dji = dicjc.

In the sequel we study in some detail the following concepts:

Definition 1.1. For any nonnegative integers, andn-square matrixA, thesth off-
diagonal index ofA is

d(A, s) := inf{dij : |i| = |j | = s, detA[i|j ] /= 0}.
Thesth off-diagonal index of a similarity classA is defined by

d(A, s) := sup
A∈A

d(A, s). (1)

We adopt the usual set-theoretical conventions according to which the 0× 0
(empty) matrix has determinant 1, and inf∅ is+∞. These conventions implyd(A,0)
= 0, as well as:d(A, s) = +∞ iff s > rankA.

Roughly speaking,d(A, s)measures how far we have to go off the main diagonal
of A to find ans × s nonzero minor. For instance,d(A,1) > 0 iff all diagonal ele-
ments ofA are zero;d(A, n) = 0 iff A is nonsingular. According to [2] (see also [3])
for any nonscalar classA, the only constraint on the diagonal elements ofA ∈A is
the trace condition; sod(A,1) > 0 iff the trace ofA is zero.

The off-diagonal indices occur in problems connected with the pencilxA+ B,
wherex is a variable, andA andB are supposed to run over two given similarity
classesA andB, respectively. For example, we may ask for the possible degrees of
the polynomial det(xA+ B), or the possible number of positive Kronecker indices
of xA+ B. These problems will be considered in forthcoming work.

In Section 4 we study the off-diagonal indices for their own sake, and, as we shall
see, this will lead us to interesting properties and open problems.

Notation for similarity invariant polynomials. In the sequelA denotes a similarity
class overF, of ordern, with similarity invariant polynomialsα1, . . . , αn. Theα’s are
monic polynomials, taken from the polynomial ringF[x], ordered so thatα1| · · · |αn.
Wherever needed, we use the conventions:αv = 1 for v < 1, andαv = 0 for v > n.
The coefficients of the characteristic polynomial ofA, that we represent byχA, will
be denoted byσs(A), so that

χA(x) = xn + σ1(A)x
n−1+ · · · + σn(A).

The degree of a polynomialf is denoted degf.
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2. ‘Minimal’ off-diagonal indices

In our definition (1) we considered the ‘sup’ over the classA. We may now ask
how interesting is the sequence of integers

δ(A, s) := inf
A∈A d(A, s),

that we may call theminimal off-diagonal indices of the classA.
These numbers are not so interesting as those of Definition 1.1. In fact, the min-

imal off-diagonal indices have an extremely simple characterization, that is given,
without proof, as a consequence of the following lemma.

Lemma 2.1. There existsM ∈A with all s × s leading principal minors nonsin-
gular, for 16 s 6 rankA.

Proof. We shall use the so-calledinterlacing theoremfor the similarity invariant
polynomials of principal submatrices [4,7]. The rank ofA is the number of similarity
invariant polynomials ofA, α1| · · · |αn, that are not multiple ofx. For an arbitrary
but fixeds 6 rA, let ϕs be any monic polynomial of degrees − deg(α1 · · ·αs), not
multiple ofx. Then the polynomialsγ1| · · · |γs , given byγi = αi , for i < s, andγs =
αsϕs , are the invariant polynomials of a nonsingulars × s matrix, sayAs . Theγ ’s
andα’s interlace, in the sense thatαi |γi|αi+2n−2s for all i. By the referred interlacing
theorem, there existsA ∈A havingAs as leading principal submatrix.

The lemma follows by an easy induction using suitably the procedure just de-
scribed. The details are left to the reader.�

Theorem 2.2. δ(A, s) = 0 for s 6 rankA, andδ(A, s) = +∞ for s > rankA.
There exists a matrixM ∈A such thatd(M, s) = δ(A, s) for all s.

3. Ranks of submatrices

Recall thatA denotes a similarity class overF, of ordern, with similarity invari-
ant polynomialsα1| · · · |αn.

Theorem 3.1. We are given two indexing sets, i and j, with the same cardinality r.
The following conditions are equivalent:
(a) rankA > r andαd = 1, where d denotes the cardinality ofi\j .
(b) There existsA ∈A such thatA[i|j ] is nonsingular.
(c) There existsA ∈A such thatA[i|j ] andA[i\j |j\i] are nonsingular.

Proof. For our purpose we may assumei = {1, . . . , r} andj = {d + 1, . . . , d + r}.
This means we are partitioning our matricesA ∈A in the form
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A =


∗ X D ∗
∗ P Y ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , (2)

whereD andP are square blocks of ordersd andp := r − d, respectively. We are
looking for conditions onA, equivalent to the existence ofA ∈A such thatA[i|j ]
– i.e., the corresponding‘XPDY’ block – is nonsingular (and, in item (c), withD
nonsingular as well). Note thatP is a principal submatrix ofA.
(b)⇒ (a). LetψA(x) be the determinant of

(A− xI)[i|j ] =
[

X D

P − xI Y

]
.

(b) means thatψA(0) is nonzero. Moreover degψA 6 p. This implies degδr 6 p,
whereδr is therth determinantal divisor ofA− xI . Recallδr = α1α2 · · ·αr . Clearly
αd /= 1 implies deg(αd · · ·αr) > r − d = p. So we must haveαd = 1. The condi-
tion rankA > r is obvious.
(a)⇒ (c). By (a), and by the interlacing inequalities theorem [4,7], used as in

the proof of Lemma 2.1, there existsA ∈A having a leading principal submatrix
A∗, of orderd + r, satisfying rankA∗ > r andα∗d = 1. Clearly, if we prove (c) for
the similarity class ofA∗, then (c) will follow in general. This is the same thing as
assuming, without loss of generality, thatn = d + r. Thus, we shall assume that the
last row and the last column of blocks in (2) are empty, that is

A =
∗ X D

∗ P Y

∗ ∗ ∗

 .
As αd = 1, the main results of [6,8] (see also, [5, Theorem 5.2]) imply the existence
of A ∈A whose block[X D] has rankd (using the notation of[6, p. 104], we are
applying Theorems 1 and 2 to the casep = r; thus (I) and (II) of [6] do not hold).
We may further assume thatD is nonsingular. So we may zero out all blocks under
D by means of similarity transformations, and get∗ ∗ D

U P 0
V W 0

 . (3)

For anyd × p matrixZ, A is also similar to a matrix like∗ ∗ D

U P + UZ 0
V W + VZ 0

 .
On the other hand, as[

U P

V W

]
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has rank> p, there existsZ such that

rank

[
P + UZ
W + VZ

]
= p.

So, to simplify notations, we may assume that[
P

W

]
already has rankp. In (3),D may be used to zero out the (1, 2) block without changing
the rank of the ‘PW’ block. SoA is similar to a matrix like∗ 0 D

∗ P 0
∗ W 0

 ,
with thePW block of rankp. There exists ap × d matrix M such thatQ := P +
MW is nonsingular. With one more block similarity we transform the last matrix
into one of the following type∗ 0 D

∗ Q ∗
∗ W ∗

 ,
with Q andD nonsingular. This proves (c). �

Theorem 3.2. We are given two indexing sets, i and j, and a nonnegative integer
r 6 min{|i|, |j |}. Defined := r − |i ∩ j |. The following conditions are equivalent:

(α) rankA > r andαd = 1.
(β) There existsA ∈A such thatrankA[i|j ] > r.

Proof. First we consider the cased 6 0. Then (α) reduces to rankA > r; by
Lemma 2.1 there existsA ∈A having a nonsingular principal submatrix of order
r. So (α) implies (β). The converse is obvious.

Now we prove the theorem whend is positive.
Assume (α) holds, and choose indexing subsets,i∗ ⊂ i andj∗ ⊂ j , both of order

r, such thati∗ ∩ j∗ = i ∩ j . By Theorem 3.1 there existsA ∈A such thatA[i∗|j∗]
is nonsingular. Then (β) holds.

Conversely, (β) implies the existence of indexing subsets,i ′ ⊂ i andj ′ ⊂ j , both
of orderr, such thatA[i ′|j ′] is nonsingular. Obviously

|i ′\j ′| = |i ′\(i ′ ∩ j ′)| > r − |i ∩ j | = d.
Thus (α) follows easily from Theorem 3.1. �

At this stage it is only natural to consider the following problem.

Problem 1. Given indexing sets,i andj, of any orders, and an integerr, characterize
the similarity classesA such that there existsA ∈A satisfying rankA[i|j ] = r.
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A different problem, seemingly less difficult to handle, is obtained replacing “rank
A[i|j ] = r” by “rankA[i|j ] 6 r”. We could not solve these problems in the general
case. One of the difficulties has to do with the peculiarities of the field. For example,
with the help of [1, Theorem 2], we may obtain a very involved solution, only valid
for infinite fields. The solution for the case wheni and j are disjoint andi ∪ j =
{1, . . . , n}, given in [6, Theorem 2], also shows how hard it can be. We give three
results solving Problem 1 for special kinds of indexing sets.

Theorem 3.3. We are given two disjoint indexing sets, i and j, and a nonnegative
integer r, satisfying|i| + |j | < n andr 6 min{|i|, |j |}. There existsA ∈A such that
rankA[i|j ] = r, if and only ifαr = 1.

Proof. Theonly if part is obvious, becausexI − A has a nonzero, constantr-minor,
and sorth determinantal divisor ofxI − A is 1.

We now prove theif part. Note thatic ⊃ j . By [6, Theorem 2], there existsA ∈A
such that rankA[i|ic] = r, except in either one of two cases. Of those cases we only
need to know the following: in the first one,|i| is odd; in the second exceptional
case,|i| is multiple of the degree of the minimal polynomial ofA, and that degree is
> 3. If none of those exceptional cases occurs; the existing matrixA may be chosen
in such a way that rankA[i|j ] = r, becauseA[i|j ] is a submatrix ofA[i|ic]. Now
assume that one of those exceptional cases occurs; then we apply [6, Theorem 2]
to submatrices in a slightly different position; namely, we choose an indexing setκ

such that

κ ⊃ i, κc ⊇ j, and |κ | = |i| + 1.

By [6, Theorem 2], there existsA ∈A such that rankA[κ |κc] = r (note that no
exception occurs here). AsA[i|j ] is a submatrix ofA[κ |κc], A may be appropriately
chosen so that rankA[i|j ] = r. �

It is easy to see that ifA is ann×m matrix overF, andr is the rank of ap × t
submatrix, then

rA − (n− p)− (m− t) 6 r 6 min{rA, p, t}. (4)

This is a best possible result, in the sense that, if these inequalities hold (for
nonnegative integers, such thatp 6 n, t 6 m, rA 6 min{n,m}), then we may find
a pair matrix–submatrix with the required sizes and ranks.

The proof of the next result is left to the reader.

Theorem 3.4. Let i be an indexing set with p elements, and r a nonnegative integer.
There existsA ∈A such thatA[i|{1,2, . . . , n}] hasrankr, iff

rA − (n− p) 6 r 6 min{rA, p}. (5)
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Theorem 3.5. Let r and p be nonnegative integers, p 6 n. There existsA ∈A
having a principalp × p submatrix ofrankr, if and only if the following inequalities
hold:

rA − 2(n− p) 6 r 6 min{rA, p}, (6)

min{rA, p} − p + deg(α1 · · ·αp) 6 r. (7)

Proof. Let M be a principalp × p submatrix of a matrixA ∈A, of rank r, and
let µ1| · · · |µp be the invariant factors ofM. The inequalities (6) were already con-
sidered. By [4,7] we haveαi |µi , for i = 1, . . . , p. Let a0 [m0] be the number of
polynomials amongα1, . . . , αp [µ1, . . . , µp] that are multiple ofx. Note thata0 =
p −min{rA, p} andm0 = p − r. Clearlya0 6 m0 and there are at leastm0− a0
indicess (s 6 p) such thatαs strictly dividesµs ; therefore

m0− a0 6 deg(µ1 · · ·µp)− deg(α1 · · ·αp).
This is equivalent to the inequality (7).

Conversely, assume (6)–(7) hold. Define the polynomialsµ1, . . . , µp by

µi =
{
xαi if r < i 6 min{rA, p},
αi otherwise.

Note thatαi is multiple [not multiple] ofx for i > min{rA, p} [i 6 min{rA, p}];
thereforeµ1| · · · |µp. Trivially αi |µi , for all i, and the relationsµi |αi+2n−2p follow
easily from the definition of theµ’s and the left inequality in (6).

Now redefineµp multiplying it by any monic polynomial of degree

p + r −min{rA, p} − deg(α1 · · ·αp), (8)

not multiple ofx. Note that (8) is nonnegative, because of (7). The new value ofµp
yeilds deg(µ1 · · ·µp) = p, and theseµ’s obviously satisfyαi |µi |αi+2n−2p for all i.
Let M be anyp × p matrix with invariant factors(µi). ThenM has rankr, and, by
[4,7], there existsA ∈A havingM as a principal submatrix. �

If i andj are arbitrary indexing sets, andA[i|j ] has rankr, thenA[i ∩ j |i ∩ j ] is
a principal submatrix ofA of rank6 r. We therefore have the following immediate
consequence of (4) and the previous theorem.

Corollary 3.6. If A ∈A andA[i|j ] hasrankr we have

rA − (n− |i|)− (n− |j |) 6 r 6 min{rA, |i|, |j |},
min{rA, p} − p + deg(α1 · · ·αp) 6 r,

where p denotes|i ∩ j |.
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4. The off-diagonal indices

We now consider a second similarity classB, with similarity invariant polynomi-
alsβ1| · · · |βn, and the pencils of the form

xA+ B,
whereA ∈A andB ∈ B. Define D(x) := det(xA+ B). Let us expandD(x) in
powers ofx, sayD(x) = Cnxn + · · · + C0. Clearly, the coefficientsCs are given by

Cs =
∑

|v|=|w|=s
εvwdet(A[v|w])det(B[vc|wc]), (9)

wherev andw run over the set of indexing sets of orders andεvw is the sign of the
[v|w]-minor.

Theorem 4.1. If A andB are nilpotent classes andrA + rB > n, then there exist
A ∈A andB ∈ B such thatxA+ B is nonsingular.

Proof. We letA be a Jordan normal form ofA. Let i [j ] be the set of indices of the
zero rows [resp. columns] ofA. Clearlyn− rA is the cardinality ofi, that we denote
by r.

We apply Theorem 3.1 to the classB. Our assumptionrA + rB > n readsrB > r.
As B is nilpotent,rB is the number ofβ1, . . . , βn equal to 1; thereforeβd = 1. So
there existsB ∈ B such thatB[i|j ] is nonsingular.

Now observe thatA[ic|jc] is an identity matrix, and it is the only nonsingular
submatrix ofA of orderrA. Therefore, the coefficientCrA equalsεij detB[i|j ], and
soxA+ B is nonsingular. �

Theorem 4.2. If the coefficientCs in (9) is nonzero, then

n− rB 6 s 6 rA, (10)

βd(A,s) = αd(B,n−s) = 1. (11)

Proof. Without loss of generality we may assumeA satisfiesd(A, s) = d(A, s).
There existi andj such that|i| = |j | = s, andA[i|j ] andB[ic|jc] are nonsingular.
We have

dij = dicjc > d(A, s).
Theorem 3.1 applied toB and to its[ic|jc]-minor givesβd(A,s) = 1. The other

identity in (11) is obtained by exchanging the roles ofA andB. The rank conditions
(10) are obvious. �
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Next we prove some basic properties of the off-diagonal indices. Recall that
σs(A) denotes thesth coefficient of the characteristic polynomial ofA.

Theorem 4.3. Let A denote ann× n matrix or similarity class. For all relevant
values of s:
(a) If d(A, s) > d(A, s + 1), thend(A, s) = 1.
(b) Let K be a positive integer. Ifd(A, s) 6 K, thend(A, t) 6 K for all t 6 s.
(c) d(A, s + 1) 6 d(A, s)+ 1, whenevers < rankA.
(d) σs(A) /= 0 ⇒ d(A, s) = 0.
(e) For two square matrices V and W:

d(V ⊕W, s) = min
06k6s
{d(V, k)+ d(W, s − k)}.

Proof. (a) Let A be ann× n matrix, and leti and j be distinct indexing sets of
orders + 1, such thatA[i|j ] is nonsingular. Leti ′ be any subset ofi, of cardinality
s, containingi ∩ j . There existsj ′ ⊂ j such thatA[i ′|j ′] is square nonsingular;
as di′j ′ 6 dij , we haved(A, s) 6 dij . This argument shows thatd(A, s + 1) > 0
impliesd(A, s) 6 d(A, s + 1).

Now assumed(A, s) > d(A, s + 1). Thend(A, S + 1) = 0. This means thatA
has a nonsingular principal submatrix of orders + 1; this principal submatrix has
a nonsingular submatrix, sayA[u|v], of order s. Clearly duv 6 1 and, therefore,
d(A, s) 6 1. This forcesd(A, s) = 1.

We use this to prove (a) for a similarity classA. Assumed(A, s) > d(A, s +
1). There existsM ∈A satisfyingd(M, s) = d(A, s); we haved(M, s) > d(A,
s + 1> d(M, s + 1); using (a) for individual matrices, we getd(M, s) = 1, etc.

(b) We get a contradiction from the assumption:d(A, s) 6 K andd(A, t) > K,
for somet 6 s. As a matter of fact, ifτ denotes the largestt ′ such thatt 6 t ′ 6 s
andd(A, t) 6 d(A, t ′), then we haved(A, τ ) > d(A, τ + 1) andd(A, τ ) > K; this
contradicts (a). So (b) holds.

(c) The assumptions < rankA implies that any nonsingular submatrixA[i|j ] of
orders is contained in a nonsingular submatrix ofA, of orders + 1. That is, there
exist indexing sets of orders + 1, i∗ andj∗, such thati∗ ⊇ i, j∗ ⊇ j andA[i∗|j∗]
is nonsingular. The property follows fromdi∗j∗ 6 dij + 1.

The extension to a similarity classA is straightforward.
(d) is obvious, because, for a square matrixA, σs(A) is (up to the sign) the sum

of all principal minors of orders of A.
(e) Thenonzerominors ofA = V ⊕W are precisely the products

det(A[iV |jV ]) det(A[iW |jW ]),
with A[iV |jV ] a nonsingular submatrix ofV, andA[iW |jW ] a nonsingular submatrix
of W. The property is an easy consequence ofd(iV ∪ iW , jV ∪ jW ) = d(iV , jV )+
d(iW , jW ). �
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Theorem 4.4. AssumeA has nonsingular and nilpotent partsA1 andN, of di-
mensionsn1 and n0, respectively, and letk1 > · · · > ku > 0 be the orders of the
nilpotent Jordan blocks ofA. Then

d(A, s) 6 d(A1, s) if s < n1, (12)

d(A, s) = d(N, s − n1) if s > n1. (13)

d(A,1), d(A,2), . . . , d(A, n1) is a sequence of zeroes and ones, ending up with
0. Moreover, if N := Jk1 ⊕ · · · ⊕ Jku (Jt is a Jordan block of order t) is the Jordan
normal form ofN,

d(N, t)=d(N, t) (14)

=min{w : t 6 k1+ · · · + kw − w}. (15)

Proof. It is not difficult to prove, by simple calculation, thatd(N, t) is given by
formula (15). We omit the details.

Clearly,σn1(A) is (up to the sign) the determinant ofA1 which is nonzero. So
d(A, n1) = d(A1, n1) = 0 and, therefore, the identity (13) holds fors = n1.

By Theorem 4.3(b) (applied to the cases := n1,K := 1), d(A,1), . . . , d(A, n1)

andd(A1,1), . . . , d(A1, n1), are sequences of zeroes and ones.
For s < n1, letMs ∈A1 satisfyd(Ms, s) = d(A1, s). As d(Ms, s) ∈ {0,1} and

d(N, t) is positive except fort = 0, Theorem 4.3(e) yieldsd(Ms ⊕N, s)= d(Ms, s).
So (12) holds.

Now we prove that

d(A, s) 6 d(N, s − n1), (16)

holds, for anyA ∈A, and anys > n1. Let w ∈ {0, . . . , u}, and defineK := k1+
· · · + kw (K := 0 if w = 0). Denote byδq(A) theqth determinantal divisor ofxI −
A. The polynomialsxk1, . . . , xku are thex-powered elementary divisors ofxI − A.
As δn−w(A) is the productα1 · · ·αn−w, we have

δn−w(A) = ψw(x)xn0−K,

whereψw(x) is not a multiple ofx. Therefore, there exists an(n−w)-minor ofxI −
A with a nonzero coefficient for the term of degreen0−K; assume it is the minor
corresponding to the row setµ and column setν, |µ| = |ν| = n−w. This implies
the existence of a subsetσ of µ ∩ ν, with n0 −K elements, such thatA[µ\σ |ν\σ ]
is nonsingular; this matrix is of ordern−w − n0+K = n1 +K −w. As |µ| =
|ν| = n−w, we haved(µ, ν) 6 w. On the other handd(µ, ν) = d(µ\σ, ν\σ), and
thusd(µ\σ, ν\σ) 6 w. This proves the formula

d(A, n1+ k1+ · · · + kw −w) 6 w, for anyw ∈ {0, . . . , u}. (17)

Next we take anyssuch thatn1 < s 6 rankA, and use inequality (17) withw :=
d(N, s − n1). As d(N, t) is given by (15), we haves 6 n1 + k1+ · · · + kw −w. If
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d(A, s) > d(A, n1+ k1+ · · · + kw −w), then Theorem 4.3 impliesd(A, s) 6 16
w; otherwise, (17) impliesd(A, s) 6 w. So (16) holds.

The inequality (16) applied to the nilpotent case(A =Nandn1 = 0) gives the
identity (14).

As (16) holds for anyA ∈A, we haved(A, s) 6 d(N, s − n1). Finally, let us
chooseA1 ∈A1, ands > n1; taking into account Theorem 4.3(e) and the fact that
d(N, k)is nondecreasing withk, we get

d(A1⊕N, s) > min
k>s−n1

d(N, k) = d(N, s − n1) = d(N, s − n1).

Therefored(A, s) > d(N, s − n1), and (13) holds. �

Theorem 4.5. LetA be a nonderogatory class. Then

d(A, s) =
0 if s 6 rankA and σs(A) /= 0,

1 if s 6 rankA and σs(A) = 0,
+∞ if s > rankA,

andd(C, s) = d(A, s), for all s, where C denotes a companion matrix ofA.

Proof. It is easy to check thatC has off-diagonal indices as displayed in the state-
ment. The rest is a simple matter, based on Theorems 4.4 and 4.3(d) and the fact that
A has at most one nilpotent Jordan block.�

Combining the two previous theorems, we obtain the following characterization
of all possible sequences of off-diagonal indices of individual matrices and similarity
classes. The straightforward proof is left to the reader.

Theorem 4.6. For anyn× nmatrix A, d(A,1), . . . , d(A, n)may be split into three
consecutive sections: the first one is a0–1sequence ending with0; the second section
(that may be empty) is a nondecreasing sequence of positive integers, which starts
with 1 and has jumps not greater than1; the third section(that may be empty) is a
tail of +∞’s. Any sequence of this kind is the sequence of off-diagonal indices of
an n× n matrix. The result also holds when we replace the individual matrix by a
similarity class.

5. Examples and further results

The aim of this section is to show that the converse to property (d) of Theorem
4.3 is not true in general and that we may have strict inequality in (12).

In the next theorem we single out the following
Exceptional case: A is a n× n scalar, nonzero class, andn is multiple of the
characteristic ofF.
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Clearly, in this case, the converse to Theorem 4.3(d) is not true fors ∈ {1, n− 1}.

Theorem 5.1. SupposeA is not in the above exceptional case. Ifσ1(A) = 0
[σn−1(A) = 0], there existsA ∈A with all diagonal elements[resp., all principal
minors of ordern− 1] equal to zero.

Proof. For a scalarA the theorem is obvious. So assumeA is not scalar.
According to [2,3], ifA has zero trace, andd1, . . . , dn are any elements ofF with

sum 0, there existsA ∈A with diagonal elementsd1, . . . , dn. This settles the case
σ1(A) = 0.

Now assumeσn−1(A) = 0. If A is nonsingular, thenA−1 has zero trace, and
therefore there existsM ∈A−1 with zero diagonal; thenM−1 lies inA and has all
principal minors of ordern− 1 equal to zero. IfA is singular, letA be any matrix
in A of the formA = A1⊕N , withA1 nonsingular andN a direct sum of nilpotent
Jordan blocks. All principal minors ofN are zero. Therefore,σn−1(A) = 0 implies
N has order> 2; so all principal minors ofA of ordern− 1 are zero. �

For elementsα andβ of F, we letAαβ be then× n similarity class with in-
variant polynomials 1, x − α, . . . , x − α, (x − α)(x − β). We shall determine the
off-diagonal indices ofAαβ . As this is a simple task in caseα = 0, we shall hence-
forth assume thatα is nonzero. We denote byp the characteristic of the fieldF. An
integerm is said to benonzero(or invertible) in F if it is not multiple ofp.

Theorem 5.2. Let s be an integer such that16 s < n.
(i) There existsG ∈Aαβ with all s-by-s principal minors equal to zero iff

s is nonzero inF,andnα = s(α − β). (18)

(ii) Assume(18) holds. Ann× n matrix G satisfies the previous conditions iff G is
diagonally similar toαI − (α/s)Xn, whereXn denotes then× n matrix with
all entries equal to1.

Proof. First we prove the ‘only if’ claims of (i) and (ii). AssumeG ∈Aαβ has all
s-by-sprincipal minors equal to zero. LetM be anys × s principal submatrix ofG.
By the interlacing theorem [4,7] thessimilarity invariant polynomials ofM are

1, x − α, . . . , x − α, (x − α)(x − µ)
for s > 1, or justx − µ in cases = 1, whereµ is an element ofF. As M is singular,
µ = 0 and, therefore, the trace ofM is (s − 1)α. So the diagonal entries ofG are
pairwise equal; letD be the common value of these entries. We have{

sD = (s − 1)α,
nD = (n− 1)α + β.

As α /= 0, these equations imply (18). The similarity invariant polynomials of
αI −G are 1, x, . . . , x, x(x − α + β). Therefore,αI −G is a rank-one matrix
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which, as we have just seen, has all its diagonal entries equal toα/s. This means
thatαI −G is diagonally similar to(α/s)Xn. This proves thatG satisfies the ‘only
if’ condition of (ii).

We now prove the ‘if’ claims. Assume (18) holds. As(α/s)Xn has rank 1 and
tracenα/s, its similarity invariant polynomials are 1, x, . . . , x, x(x − nα/s). There-
fore,G0 := αI − (α/s)Xn lies inAαβ . On the other hand, anys × s submatrix of
(α/s)Xn has rank 1 and traceα; therefore, such a submatrix hasα as an eigenvalue.
So anys × s principal submatrix ofG0 is singular. This completes the proof of (i).
Now (ii) follows in a simple way. �

The first part of this theorem obviously determines the off-diagonal indices of
Aαβ : we have, for 1< s < n,

d(Aαβ, s) =
{

1 if (18),
0, otherwise.

(19)

It is easily to compute the coefficients of the characteristic polynomial ofAαβ

and check the following

σs(Aαβ) = 0⇐⇒
(
n− 1
s

)
α +

(
n− 1
s − 1

)
β = 0. (20)

Comparing (19) with (20), the reader may find classes of examples where the
converse to Theorem 4.3(d) fails. An interesting case occurs whenβ = 0 and n is
not a multiple of p. We then have, for 1< s < n

d(Aα0, s) = 1⇐⇒ p dividesn− s, (21)

σs(Aα0) = 0⇐⇒ p divides

(
n− 1
s

)
. (22)

The examples we are looking for are based on the fact that the right-hand sides
of (21) and (22) are not equivalent; this is the case whenp = 5,n = 7 ands = 4; so
the converse to Theorem 4.3(d) is not true in general.

Note that, ifn is invertible inF we have

σs(Aαβ) = 0⇐⇒
(
n

s

)
[nα − s(α − β)] = 0. (23)

So, if F has zero characteristic,σs(Aαβ) = 0 is equivalent tod(Aαβ, s) = 1.
Therefore, the counterexamples we have to the converse of Theorem 4.3(d) all live
in nonzero characteristic. So we ask:

Problem 2. For fields of characteristic zero, if thesth coefficient of the character-
istic polynomial ofA is zero, may we always find a matrixA ∈A with all s × s
principal minors zero?

Our examples also show that we may have strict inequality in (12). Consider
again the case whenβ = 0 andn is not a multiple ofp. ThenA1, the nonsingu-
lar part ofAα0, is the Singleton class of the scalar matrixαIn−1, and so we have



14 E.M. de S´a, Y.-L. Zhang / Linear Algebra and its Applications 305 (2000) 1–14

d(A1, s) = 0 for s 6 n− 1. However, according to (21), we haved(Aα0, s) = 1
for all scongruent withn modulop.

Again, all counterexamples we found live in fields of nonzero characteristic. We
then ask:

Problem 3. Is it trued(A, s) = d(A1, s), for fields of zero characteristic?

An interesting fact occurs with our examplesAαβ . Whenn is invertible inF, the
matrixG0 := αI − ((α − β)/n) · Xn satisfies

d(G0, s) = d(Aαβ, s) for all s > 1.

This suggests:

Problem 4. Which similarity classes satisfy the property: there existsA ∈A such
thatd(A, s) = d(A, s) for all s?

Nilpotent and nonderogatory matrices also satisfy this property. However, ifn is
multiple ofp, α = β andp > 2, no matrixA ∈Aαα satisfiesd(A, s) = d(Aαα, s)

for all s. We still have no clue for a general answer.
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