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Light clusters, pasta phases, and phase transitions in core-collapse supernova matter
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The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied
within relativistic mean-field models. Three different calculations are used for comparison: the Thomas–Fermi,
the coexisting phases, and the compressible liquid drop approximations. The effects of including light clusters
in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter
occur are also investigated. The free energy, pressure, entropy, and chemical potentials in the range of particle
number densities and temperatures expected to cover the pasta region are calculated. Finally, a comparison with
a finite-temperature Skyrme–Hartree–Fock calculation is drawn.
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I. INTRODUCTION

The complex structure of nuclear matter in the density
region approaching ρs ∼ 0.16fm−3 (central density of heavy
nuclei) at finite temperature (T < 20 MeV) critically affects
many astrophysical and nuclear physics phenomena. At low
densities, the frustrated system called the “pasta phase,”
which is caused by the competition between the Coulomb
interaction and the strong force, appears. It is constituted
by different configurations whose geometry changes as the
density increases [1–9].

The main interest in the pasta phase in core-collapse
supernovae (CCSN) is that the neutrino opacity, which plays
the main role in the development of a shock wave during
the supernova collapse, is affected by its presence [2,10,11].
At very low densities (up to 0.001 times the saturation
density), light nuclei (deuterons, tritons, helions, α particles)
can appear [12–17] and, like the pasta phase, can modify
the neutrino transport, which will have consequences in the
cooling of the proto-neutron star [18,19].

Following our previous works (see, e.g., Ref. [9] and
references therein), we use the Thomas–Fermi (TF) approxi-
mation, where the surface effects are treated self-consistently,
in the framework of relativistic mean-field (RMF) models,
to calculate the pasta phase for a fixed proton fraction,
several temperatures and densities. Besides TF, we use the
coexisting-phases (CP) method, which is numerically much
faster than the TF method, and where the Gibbs equilibrium
conditions are used to get the lowest free-energy state, and
the surface and Coulomb terms are added “by hand” (see,
e.g., Ref. [17]). Within this method, we also include the
effect of light clusters. The compressible liquid drop (CLD)
model is also considered. Unlike the CP approximation,
this method takes into account both the Coulomb and sur-
face terms in the minimization of the total energy of the
system.

In the present work we perform a thermodynamical study of
the phase transition between different shapes and we calculate
the phase transformations occurring in the inner crust. We
are interested in understanding the character of the crust-core
transition and, for that reason, we study how the subsaturation
instabilities are lifted by an appropriate description of the inner

crust. In particular, we want to identify the strong and weak
points of each approach.

We refer to phase transitions and phase transformations
as in Ref. [20], where the authors have stressed that there
should be a distinction between “continuous transition” and
“continuous transformation.” They make the difference be-
tween a transformation, which is a specific path in the space
of thermodynamic variables, and a phase transition, which is
an anomaly of the thermodynamic potential considered in the
total space of thermodynamic variables. Having this in mind,
an asymmetric system, containing a fixed proton fraction, is
going through a first-order phase transition, since the first
derivatives of the grand potential are discontinuous, though
the thermodynamic transformations may result in a continuous
evolution of the observables.

We compare our results, obtained within the three specified
methods, with the work of Raduta and Gulminelli [21], Hempel
and Schaffner–Bielich [22], Zhang and Shen [23], and Pais
and Stone [8]. Raduta et al. developed a phenomenological
statistical model for dilute star matter, in which free nucleons
are treated within a mean-field approximation, and nuclei are
considered to form a loosely interacting cluster gas, with T =
1 to 20 MeV, yp = ρp/ρ = 0 to 0.5 and ρ > 108g/cm3(ρ �
6.02 × 10−8fm−3), making it appropriate for CCSN descrip-
tion. They found that, for all subsaturation densities, matter
can be viewed as a continuous fluid mixture between free
nucleons and massive nuclei. As a consequence, the equations
of state (EoS) and the associated observables do not present
any discontinuity over the whole thermodynamic range and
the expected first-order transition to uniform matter does not
happen. Hempel et al. also used a statistical model for the
EoS that can be applied to all densities relevant for supernova
simulations, where an ensemble of nuclei and interacting
nucleons are in statistical equilibrium. On the other hand,
Zhang and Shen studied the nonuniform matter using a self-
consistent TF approximation, although they only considered
two geometrical configurations: droplets and bubbles. They
compared their results with a parametrized TF calculation,
where the surface energy and the nucleon distribution are
calculated differently, and they reached the conclusion that
the parametrized approximation is a reasonable one. We
also compare our results with a three-dimensional (3D)
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finite-temperature Skyrme–Hartree–Fock calculation [8,24],
where four different Skyrme interactions have been used, and
where subtle variations in the low- and high-density transitions
into and out of the pasta phase were found.

The paper is organized as follows: In Sec. II, we briefly
review the formalism used and in Sec. III, the results are
discussed. Finally, in Sec. IV, some conclusions are drawn.

II. FORMALISM

We consider a system of baryons, with mass M interacting
with and through an isoscalar-scalar field φ with mass ms ,
an isoscalar-vector field V μ with mass mv , and an isovector-
vector field bμ with mass mρ . When describing npe matter we
also include a system of electrons with mass me. Protons and
electrons interact through the electromagnetic field Aμ. The
Lagrangian density reads

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + Lγ ,

where the nucleon Lagrangian reads

Li = ψ̄i[γμiDμ − M∗]ψi, (1)

with

iDμ = i∂μ − gvV
μ − gρ

2
τ · bμ − e

1 + τ3

2
Aμ, (2)

M∗ = M − gsφ, (3)

and the electron Lagrangian is given by

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe. (4)

The isoscalar part is associated with the scalar sigma (σ )
field φ, and the vector omega (ω) field Vμ, whereas the isospin
dependence comes from the isovector-vector rho (ρ) field bi

μ

(where μ stands for the four-dimensional spacetime indices
and i is the three-dimensional isospin direction index). The
associated Lagrangians are

Lσ = 1

2

(
∂μφ∂μφ − m2

sφ
2 − 1

3
κφ3 − 1

12
λφ4

)
,

Lω = −1

4
μν

μν + 1

2
m2

vVμV μ + 1

4!
ξg4

v(VμV μ)2,

Lρ = −1

4
Bμν · Bμν + 1

2
m2

ρ bμ · bμ,

Lγ = −1

4
FμνF

μν,

where μν = ∂μVν − ∂νVμ, Bμν = ∂μbν − ∂ν bμ − gρ(bμ ×
bν), and Fμν = ∂μAν − ∂νAμ.

The model comprises the following parameters: three
coupling constants gs , gv , and gρ of the mesons to the
nucleons, the bare nucleon mass M , the electron mass me, the
masses of the mesons, the electromagnetic coupling constant
e = √

4π/137, and the self-interacting coupling constants κ ,
λ, and ξ . In this Lagrangian density, τ is the isospin operator.

We use the FSU parametrization [25], which is expected to
describe well the crust [9], even if it does not describe a 2M�
neutron star. This parametrization also includes a nonlinear

ωρ coupling term, which affects the density dependence of the
symmetry energy. This term is given by

Lωρ = �vg
2
vg

2
ρbμ · bμVμV μ. (5)

The state that minimizes the energy of asymmetric nuclear
matter is characterized by the distribution functions, f0k±, of
particles (+) and antiparticles (−) k = p,n,e, given by

f0j± = 1

1 + e(ε0j ∓νj )/T
, j = p,n, (6)

with

ε0j =
√

p2 + M∗2, νj = μj − gvV
(0)

0 − gρ

2
τjb

(0)
0 , (7)

and

f0e± = 1

1 + e(ε0e∓μe)/T
, (8)

with

ε0e =
√

p2 + m2
e, (9)

where μk is the chemical potential of particle k = p,n,e.
In the mean-field approximation, the thermodynamic quan-

tities of interest are given in terms of the meson fields,
which are replaced by their constant expectation values. For
homogeneous neutral nuclear matter, the energy density, the
entropy density, the free-energy density, and the pressure are
given, respectively, by [26–28]

ε = 1

π2

∑
j=p,n

∫
dpp2ε0j (f0j+ + f0j−) + m2

v

2
V 2

0 + ξg4
v

8
V 4

0

+ m2
ρ

2
b2

0 + m2
s

2
φ2

0 + k

6
φ3

0 + λ

24
φ4

0 + 3�g2
ρg

2
vV

2
0 b2

0,

(10)

S = − 1

π2

∑
j=p,n

∫
dpp2[f0j+ ln f0j+

+ (1 − f0j+) ln(1 − f0j+) + f0j− ln f0j−
+ (1 − f0j−) ln(1 − f0j−)], (11)

F = ε − T S, (12)

P = 1

3π2

∑
j=p,n

∫
dp

p4

ε0j

(f0j+ + f0j−) + m2
v

2
V 2

0 + ξg4
v

24
V 4

0

+ m2
ρ

2
b2

0 − m2
s

2
φ2

0 − k

6
φ3

0 − λ

24
φ4

0 + �g2
ρg

2
vV

2
0 b2

0. (13)

For the electrons, we have

εe = 1

π2

∫
dpp2ε0e(f0e+ + f0e−), (14)

Se = − 1

π2

∫
dpp2[f0e+ ln f0e+ + (1 − f0e+) ln(1 − f0e+)

+ f0e− ln f0e− + (1 − f0e−) ln(1 − f0e−)], (15)

Fe = εe − T Se, (16)

Pe = 1

3π2

∫
dp

p4

ε0e

(f0e+ + f0e−). (17)
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We consider matter with fixed proton fraction that is
neutrino free, and hence the neutrino pressure and energy
density are zero [26].

A. Light clusters

We use the same prescription as in Ref. [17] to include light
clusters (d ≡ 2H, t ≡ 3H, α ≡ 4He, h ≡ 3He) in the model.
The Lagrangian density becomes

L =
∑

i=p,n,t,h

Li + Lα + Ld + Le + Lσ + Lω + Lρ + Lγ .

(18)
The α particles and the deuterons are described as in

Ref. [12]:

Lα = 1
2

(
iDμ

α φα

)∗
(iDμαφα) − 1

2φ∗
α(M∗

α)2φα, (19)

Ld = 1
4

(
iD

μ
d φν

d − iDν
dφ

μ
d

)∗
(iDdμφdν − iDdνφdμ)

− 1
2φ

μ∗
d (M∗

d )2φdμ, (20)

Li is defined in Eq. (1) and, for all clusters, we have

iD
μ
j = i∂μ − gvjV

μ − gρj

2
τ · bμ − e

1 + τ3

2
Aμ,

j = t,h,α,d. (21)

The effective masses of the clusters are given by

M∗
t = 3M − Bt, (22)

M∗
h = 3M − Bh, (23)

M∗
α = 4M − Bα, (24)

M∗
d = 2M − Bd, (25)

with their binding energies being Bt = 8.482 MeV, Bh =
7.718 MeV, Bα = 28.296 MeV, and Bd = 2.224 MeV. The
fraction of a cluster, Yi , is given by Yi = ρi/ρ, i = α,h,d,t .
For the coupling constants, we consider gvj = Ajgv and gρj =
|Zj − Nj |gρ , where Aj is the mass number, and Zj ,Nj are the
proton and neutron numbers, respectively [17]. The chemical
potential of a cluster j is defined as μj = Njμn + Zjμp. More
realistic parametrizations for the couplings of the light clusters
were proposed in Refs. [12,15], which should be implemented.

B. Thomas–Fermi and coexisting-phases approximations

We use the Thomas–Fermi (TF) approximation to describe
the nonuniform npe matter inside the Wigner–Seitz unit cell,
which is taken to be a sphere, a cylinder, or a slab in three, two,
and one dimensions [9,26]. In this approximation, npe matter
is assumed locally homogeneous and at each point its density
is determined by the corresponding local Fermi momenta.
In 3D we consider spherical symmetry, in two dimensions
(2D) we assume axial symmetry around the z axis, and in
one dimension (1D) reflection symmetry is imposed. In the
TF approximation, fields are assumed to vary slowly so that
baryons can be treated as moving in locally constant fields
at each point [4]. In this approximation, the surface effects
are treated self-consistently. Quantities such as the energy and
entropy densities are averaged over the cells. The free energy

and pressure are calculated from these two thermodynamical
functions, using the usual expressions; see, e.g., Ref. [27].

In the coexisting-phases (CP) method, matter is organized
into separated regions of higher and lower density; the higher
ones being the pasta phases, and the lower ones being a
background nucleon gas. The interface between these regions
is sharp. Finite-size effects are taken into account by surface
and Coulomb terms in the energy density [17].

By minimizing the sum εsurf + εCoul with respect to the size
of the droplet or bubble, rod or tube, or slab one gets [1]

εsurf = 2εCoul, (26)

with

εCoul = 2α

42/3
(e2π�)1/3

[
σD

(
ρI

p − ρII
p

)]2/3
, (27)

where α = f for droplets, rods, and slabs and α = 1 − f for
tubes and bubbles, where f is the volume fraction of phase I ,
σ is the surface-energy coefficient, and � is given by

� =
{(

2−Dα1−2/D

D−2 + α
)

1
D+2 , D = 1,3

α−1−ln α
D+2 , D = 2.

(28)

The Gibbs equilibrium conditions are imposed to get the
lowest-energy state and, for a temperature T = T I = T II , are
written as

μI
n = μII

n ,

μI
p = μII

p , (29)

P I = P II ,

where I and II label the high- and low-density phases,
respectively. When clusters are present, there are equilibrium
conditions for them, too [17].

The total free-energy density and the total proton density
of the system are given by

F = f F I + (1 − f )F II + Fe + εsurf + εCoul, (30)

ρp = ρe = ypρ = fρI
p + (1 − f )ρII

p , (31)

where F i,i = I,II is the free-energy density of the homoge-
neous neutral nuclear matter, given by Eq. (12), Fe is given
by Eq. (16), and εsurf and εCoul are the surface and Coulomb
energies, given by Eqs. (26) and (27), respectively.

C. Compressible liquid drop model

In the compressible liquid drop model [18,29–31], the
equilibrium conditions of the system are derived from the
minimization of the total free energy [29], including the surface
and Coulomb terms. This minimization is done with respect
to four variables: the size of the geometric configuration, rd ,
which gives, just like in the CP case, Eq. (26), the baryonic
density in the high-density phase, ρI , the proton density in
the high-density phase, ρI

p, and the volume fraction, f . The
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equilibrium conditions become

μI
n = μII

n ,

μI
p = μII

p − εsurf

f (1 − f )
(
ρI

p − ρII
p

) , (32)

P I = P II − εsurf

(
1

2α
+ 1

2�

∂�

∂f
− ρII

p

f (1 − f )
(
ρI

p − ρII
p

))
.

Note that there is an extra term in both the proton chemical
potential and in the mechanical equilibrium conditions, as
compared to the ones obtained in the CP approximation (29).
These terms arise from the inclusion of the surface and
Coulomb terms in the minimization of the total energy. The
Coulomb repulsion induces an extra positive term whereas the
surface tension reduces the cluster internal pressure.

The total pressure, and the total proton chemical potential
of the system are given by

Ptot = μpρp + μnρn + μeρe − F, (33)

μp = f μI
p + (1 − f )μII

p , (34)

where F is the total free-energy density, given by Eq. (30), and
f is the volume fraction of phase I .

III. RESULTS

In the present section, we discuss how the nuclear liquid-gas
instability, occurring at subsaturation densities for asymmetric
nuclear matter, is partially lifted by an adequate description
of the inner crust, allowing for the appearance of nonhomo-
geneous phases. In particular, we compare several physical
quantities obtained within a TF calculation, a CP approach,
supposing a zero-thickness surface, and the CLD model, where
finite-size effects are included in a consistent way, with the
corresponding quantities for homogeneous matter. We also
discuss the effect of the inclusion of light clusters in the
calculation.

The free energy per particle, the pressure, the proton,
neutron, and baryonic chemical potentials, and the entropy
per particle of the inner crust, obtained within the approaches
referred to above, are plotted in the following figures as
a function of density or chemical potential, for the FSU
interaction, the two temperatures T = 4 and 8 MeV, and
the proton fraction yp = ρp/ρ = 0.3. The results are shown
for homogeneous matter (red), CP (blue) calculations with
(dashed) and without (solid line) clusters, CLD (green solid
line), and TF (points) calculations.

For reference and to help the discussion, we show in Table I
the symmetric nuclear matter properties for all the models we
are using in this study to compare with our calculations with the
FSU interaction: another RMF parametrization, TW [32], with
density-dependent couplings, and four Skyrme interactions,
SkM∗ [33], SLy4 [34], NRAPR [35], and SQMC700 [36],
chosen based on their overall performance in modeling a wide
variety of nuclear matter properties [37].

In Fig. 1, we show the free energy per particle F/A as a
function of the density. As expected, F/A is lowered when
nonhomogeneous matter is present, making these states more
stable. A second effect is the disappearance of the negative

TABLE I. Symmetric nuclear matter properties at saturation
density ρ0 (energy per particle B/A, incompressibility K , symmetry
energy Esym, and symmetry energy slope L) for the FSU parametriza-
tion, and five other parameter sets for comparison. All quantities are
in MeV, except for ρ0, which is given in fm−3.

Model ρ0 B/A K Esym L

FSU 0.148 −16.3 230 32.6 60.5
TW 0.15 −16.3 240 33 55
NRAPR 0.16 −15.85 226 33 60
SQMC700 0.17 −15.49 222 33 59
SkM∗ 0.16 −15.77 217 30 46
SLy4 0.16 −15.97 230 32 46

curvature that the EoS of homogeneous matter presents below
saturation density. This effect is present in all three methods
considered.

The light clusters are only present for very small densities,
and start melting for ρ � 0.001fm−3. However, their presence
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FIG. 1. (Color online) Free energy per baryon as a function of
the density for the FSU interaction, yp = 0.3, for (a) T = 4 MeV
and (b) 8 MeV. Results are shown with pasta (within CP, CLD,
and TF approaches) and for homogeneous matter, and including (for
homogeneous matter and pasta within CP) or not clusters. The effect
of these aggregates are only seen for very small densities (insets).
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lowers the free energy of the homogenous matter EoS and
of the CP calculation, as can be seen in the insets. A TF
calculation, including light clusters, should also be performed
(see, e.g., Ref. [38]). The CP approach, which does not take
into account in a consistent way the surface tension and
Coulomb energy, overestimates the effect of the clusterization,
mainly at low densities. This problem is solved within the CLD
approach, which, taking into account finite-size effects in the
phase equilibrium conditions, gives results closer to the TF
calculation. However, there is still some overestimation of the
free-energy reduction with respect to the TF calculation, pos-
sibly due to the approximate description of the surface energy.
For the surface tension, we take a parametrization which is a
function of the proton fraction and the temperature, and was
fit to the results obtained from a relativistic Thomas–Fermi
calculation for a semi-infinite slab [17]. Close to the crust-core
transition, all approaches, TF, CP, and CLD, give similar results
and predict a first-order phase transition to uniform matter. A
first-order phase transition at the crust-core transition has also
been obtained within other approaches [22,24].

When the temperature is increased to 8 MeV, similar
conclusions are drawn, the main differences being a decrease
of the free energy and the density range of the pasta. A remark
is in order: the first two points of the free energy for the
TF calculation are above the homogeneous-matter value. This
should be explained by the fact that, in the TF, we considered
different values for the masses of the protons and neutrons,
and by the fact that, for high temperatures, the precision in the
calculation begins to be very critical. Let us, however, point
out that 8 MeV is already quite a high temperature, and thermal
fluctuations of the rod-like or slab-like clusters will destroy the
Wigner–Seitz structures according to Ref. [39].

In Fig. 2, the total pressure for the FSU interaction is plotted
as a function of the baryonic chemical potential μB , which is
defined as in Ref. [22],

μB = (1 − yp)μn + yp(μp + μe), (35)

since we are performing a calculation with a fixed proton
fraction and charge neutrality. The pressure is a smooth
function of μB and, within the CLD and TF approaches, does
not show any discontinuity. The CP approach does not show
any discontinuities between the intermediate shapes, however,
at the onset of the pasta phase and at the crust-core transition,
the pasta-phase pressure does not match smoothly into the
homogenous-matter pressure. This is probably due to the
nonconsistent treatment of the surface energy. The free energy
of the pasta matches the homogeneous-matter free energy with
a different slope, both at low densities and at the crust-core
density, giving rise to discontinuities in the pressure. The
explicit inclusion of nonhomogeneous matter, also true for the
light clusters, increases the total pressure turning matter more
stable. Consistently with the conclusions drawn for the total
free energy, the contribution calculated within the CP approach
is larger than the contribution evaluated within TF, showing
the limitations of the first method. The CLD approach presents
results very similar to the TF calculation. It is interesting to
notice that the effect of light clusters is to increase the pressure,
making the system more stable.
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FIG. 2. (Color online) Total pressure as a function of the baryonic
chemical potential for the FSU interaction, yp = 0.3, for (a) T =
4 MeV and (b) 8 MeV. Results with pasta are shown (within CP, CLD
and TF approaches) and for homogeneous matter, and including (for
homogeneous matter and pasta within CP) or not clusters.

Let us now analyze the behavior of the pressure with
the baryonic density. In particular, we will discuss how the
instability at subsaturation densities in asymmetric nuclear
matter is lifted in stellar matter. In Fig. 3, the total pressure is
plotted against the density for the FSU interaction. First, it is
interesting to notice that there are no instabilities, that is, there
is no range of densities with a negative slope, except for small
discontinuities, when the transition from one shape to another
occurs, in the TF and CLD calculations. In the CP calculation,
those discontinuities do not appear, because of the method
itself: the Gibbs conditions, P I = P II , are imposed and no
contribution from the surface tension is taken into account.
There is, however, a jump at the onset and melting of the inner
crust, precisely due to the simplified description of the surface.
The occurrence of discontinuities between the different pasta
phases in the TF and CLD calculations originates from the
simplified approach we considered to describe the pasta phase,
when only some geometries are included. However, in the TF
calculation, even with this restriction, not always a transition
between different shapes is discontinuous, e.g., the transition
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FIG. 3. (Color online) Total pressure as a function of the density
for the FSU interaction, yp = 0.3, for (a) T = 4 and (b) 8 MeV.
Results are shown with and without pasta, and including or not
clusters. The effect of these aggregates are only seen for very small
densities (insets).

droplet-rod that occurs at ρd−r = 0.024fm−3 for T = 4 MeV,
and at ρd−r = 0.023 for T = 8 MeV, is continuous.

At the crust-core transition we observe a discontinuity in
all methods, with a larger density jump for the CP method and
a smaller one for TF. A similar behavior has been obtained
in other approaches [8,18,22,40]. Since the pressure does
not change continuously into the homogeneous matter, a
Maxwell construction may be used to describe the transition
from the nonuniform to uniform matter, imposing a fixed
proton fraction and charge neutrality, and equal pressures and
baryonic chemical potential as defined in Eq. (35), in both
phases. Another aspect that should also be pointed out is that
the onset of the pasta phases within the TF approach occurs
at a larger density than the CLD one. The TF approach has
also several limitations, and a calculation with the extended
TF should be performed. However, we could also consider
that, at smaller densities, the clustering onset is defined by the
appearance of light clusters.

We can also notice the effect of the clusters if we look at
the inset panels in both plots. We observe that, for T = 4 MeV
and ρ < 0.001fm−3, the clusters slightly lower the pressure,
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FIG. 4. (Color online) (a) Fractions of the nucleons and clusters
and (b) chemical potentials of the nucleons as a function of the density
for the FSU interaction, yp = 0.3, and T = 4 MeV, for homogeneous
matter with and without clusters (HMwC and HM).

bringing the homogeneous-matter result closer to the TF
calculation. Above ρ > 0.001fm−3, the clusters increase the
pressure. Increasing the temperature, the clusters increase
slightly the pressure in all range of densities shown, although
for very low densities, the inclusion of light clusters still lowers
the pressure. This occurs because the formation of light clusters
increases the neutron fraction of the homogeneous matter,
since light clusters are preferentially symmetric particles
(deuterons or α particles) and, at high temperatures, the extra
binding due to the cluster formation does not compensate the
extra repulsion experienced by homogeneous matter with a
larger neutron fraction. This is clearly seen in Fig. 4 where
we plot, for T = 4 MeV, the neutron, proton, and light-cluster
fractions versus baryonic density in the top panel, and the
neutron and proton chemical potentials in the bottom panel.
An increase of the neutron chemical potential above the
homogeneous matter one occurs close to the maximum of
α clusters. This comes together with a decrease of the proton
and neutron fractions, and a decrease of the proton fraction in
the homogeneous matter. Let us point out, however, that the
thermodynamical function we should look at to discuss the
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FIG. 5. (Color online) Pressure as a function of the density for
the FSU interaction, yp = 0.3, and (a) T = 4 MeV and (b) 8 MeV.
Homogeneous matter (HM; solid), CP (dashed line), CLD (dash-dot),
and TF (open circles) results are shown for the baryonic (red) and
electronic (blue) components.

extra stability the light clusters give to the system is the free
energy, when the baryonic density is taken as a state variable.

In order to understand the role of the electronic contribution
to the total pressure, we plot in Fig. 5 the baryonic (red)
and electronic (blue) pressure components as a function of
the density. This separation is not totally possible for the
TF calculation due to the coupling between protons and
electrons induced by the Coulomb interaction. In the CLD
method, and because of this separation problem, we are
calculating Pb, given by Eq. (13) as Pb = f P I + (1 − f )P II ,
unlike the other pressure plots, where it is calculated from
the thermodynamical expression, given by Eq. (33). The
electronic pressure Pe is given by Eq. (17). Within the CP
and CLD approaches, the electron contribution coincides with
the homogeneous matter contribution. We see that for CP, the
baryonic pressure is always positive because it corresponds to
the pressure at the binodal surface, which is always positive.
In the TF calculation, the baryonic pressure still exhibits
a region with a negative incompressibility, unlike the total
pressure shown in Fig. 2. In fact, within TF, the negative
slope of the pressure for nuclear homogeneous matter is only
partially removed with the inclusion of droplets and the pasta
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FIG. 6. (Color online) Neutron chemical potential as a function
of the density for the FSU interaction, yp = 0.3, and (a) T = 4 MeV
and (b) 8 MeV. Results with and without pasta, and including or
not clusters, are shown. The effect of these aggregates are only seen
below 0.01 fm−3.

phases. The electrons are responsible for making the total
pressure positive and with positive slope. It is also seen that
the effect of clusterization is washed out with the temperature,
so that, for T = 8 MeV, the pressure for the pasta calculation
does not differ much from the pressure for homogeneous
matter. Similar results were discussed in Ref. [21], where
subsaturation densities are described within a statistical model,
which considers a continuous fluid mixture of free nucleons
and finite nuclei, the only difference being the absence of
discontinuities between shape transitions. The discontinuity
occurring in the electron pressure, within the TF calculation,
is due to the normalization of the Coulomb field, which is set
to zero at the Wigner–Seitz cell border. This gives rise to a
jump going from slabs to tubes because, for the first geometry,
the proton density is almost zero at r = RWS , while for the
tubes it takes the largest value.

In Figs. 6 and 7, the neutron and proton chemical potentials
are plotted as a function of the density, for the FSU interaction.
Both quantities show an instability for homogeneous matter,
explicitly seen through the presence of a backbending: both
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the density for the FSU interaction, yp = 0.3, and (a) T = 4 MeV and
(b) 8 MeV. Results are shown with and without pasta, and including
or not clusters. The effect of these aggregates are only seen below
0.01 fm−3.

chemical potentials decrease in a given range of densities,
although the corresponding particle density is increasing.

In Fig. 6, we plot the neutron chemical potential. The pasta
phase practically removes the regions of instability. However,
discontinuities are observed for all the intermediate-shape
transitions in the TF and CLD calculations, and a large jump
occurs at the onset and melting of the pasta phase in the CP
approach, and only at the melting of the crust, for the TF
and CLD calculations. It is also seen that the light clusters
are affecting the neutron chemical potential, particularly for
T = 4 MeV: below ρ = 0.001fm−3, their presence decreases
the chemical potential, while above that density, corresponding
to the onset of the pasta phase, light clusters increase μn, as
already discussed in Fig. 3. This is due to the the appearance
of more symmetric light clusters at larger densities, which
induces a more neutron rich homogeneous matter.

The proton chemical potential (Fig. 7) behaves differently:
even though the back bending is reduced, it is still clearly
seen. In homogeneous matter, for a given baryonic density, the
proton fraction is considered fixed and the charge neutrality
is imposed. Consequently, there is only one global chemical
potential associated with the global conservation of the bary-
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FIG. 8. (Color online) The μp + μe chemical potential as a
function of the density for the FSU interaction, yp = 0.3, and (a)
T = 4 MeV and (b) 8 MeV. Results are shown with and without
pasta, and including or not clusters. The effect of these aggregates
are only seen for very small densities.

onic number, Eq. (35), which is obtained from the derivative of
the free energy with respect to the baryonic density. However,
the calculation of the pasta phases in the present discussion
was done by imposing a global proton fraction together with
the charge-neutrality condition. Therefore, the neutron density
and proton densities are independent, since neutrons and
protons can be exchanged freely between the two phases.
Taking as degrees of freedom the baryon number and charge
number, the neutron chemical potential is μn = μB and the
proton chemical potential is μp = μB + μC . In neutrino-free
matter, the leptonic chemical potential is zero and the electron
chemical potential is μe = −μC . Putting together the proton
and electron chemical potentials, we conclude that μp + μe =
μB , see also the discussion in Ref. [41]. In Fig. 8, the chemical
potential μp + μe is plotted and no backbending is observed
for the pasta calculations, showing that the instability has
been totally raised, just like we have seen above for the
neutron chemical potential. The large jump occurring at the
slab-tube transition in Fig. 7 is related with the boundary
conditions on the Coulomb field, when integrating the equation
of motion. Measurable physical quantities are not affected by
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of the density for the FSU interaction, yp = 0.3, and (a) T = 4 MeV
and (b) 8 MeV. Results are shown with and without pasta, and
including or not clusters. The effect of these aggregates are only
seen for very small densities.

the boundary condition, but quantities, such as the chemical
potential, are particularly sensitive to the choice.

In Fig. 9, we plot the baryonic chemical potential μB ,
defined in Eq. (35), as a function of the baryonic density. For
both temperatures shown, μB is a monotonically increasing
function of the density, even for homogeneous matter. How-
ever, by including a phase of nonhomogeneous matter, the
negative curvature of the chemical potential is removed.

At the crust-core transition, TF, CP, and CLD give similar
results. However, at the onset of the pasta phase, while TF
and CLD link continuously to homogeneous matter with
clusters, the CP calculation presents a very large discontinuity,
reflecting the nonconsistent inclusion of the surface tension.
This behavior is seen in all chemical potential figures (except
for μp at T = 8 MeV for the TF calculation). Light clusters
reduce the homogeneous matter and the CP proton chemical
potential, because clusters bring extra binding to the system,
in particular, the α particles (see Fig. 4).

The discontinuities on the chemical potentials between the
different geometrical configurations are an indication of the
limitations of the present approaches. A rearrangement of
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FIG. 10. (Color online) Total entropy per baryon as a function of
the density for the FSU interaction, yp = 0.3, and (a) T = 4 MeV and
(b) 8 MeV. Results are shown with and without pasta, and including
or not clusters. The effect of these aggregates are only seen for very
small densities.

matter and charge will wash out these discontinuities. Surface
effects such as electrical double layers as the ones occurring
on the boundary between charged solids and liquids, with an
adsorption layer and a screening layer, would give rise to a
continuous behavior of the charge chemical potential. Also the
Wigner–Seitz approximation may disfavor an optimal matter
rearrangement. Quantum molecular dynamics calculations go
beyond the Wigner–Seitz approximation and do not assume
any specific nonuniform structure of baryon matter, but
consider an uniform background of electrons [5–7]. Using
a sufficiently large cell to include several units of the pasta
structures, it has been shown recently in Refs. [40,42] that
a fcc crystalline structure for the droplet phase would be
favored with respect to the bcc one for densities just before
the transition to a rod like phase. An important conclusion
of both approaches was the natural appearance of the typical
pasta phases with rod, slab, tube, and bubble, in addition to
spherical droplets, when no assumption on the structures was
used.

The behavior described above for both the proton and
neutron chemical potential is also obtained in Ref. [23]
within a self-consistent TF description of the pasta phase,

055801-9
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FIG. 11. (Color online) Crust-core transition densities, normal-
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results for the FSU (red) model. The proton fraction is fixed to 0.3.

including only two configurations: droplets and bubbles. The
discontinuities obtained are attributed to the Coulomb field.
Small discontinuities at low temperatures are obtained in
Ref. [22], within a statistical model, due to a stepwise increase
of the average number of nucleons and protons of the clusters
with the density. Although the overall behavior is the same
in Ref. [21], where also a statistical model is applied, and
inhomogeneities are described as a continuous mixture of
loosely interacting clusters, the chemical potentials show no
discontinuities. The smooth increase of the average fragment
mass fraction and cluster mass fraction explains this difference.

In Fig. 10, the total entropy per baryon is plotted as a
function of the density. The TF, CP, and CLD calculations
lower the entropy per particle due to the formation of heavy
clusters. For T = 4 MeV, and at low densities, the same effect
is seen in homogeneous matter with light clusters. On the other
hand, in the CP calculation, the inclusion of light clusters in-
creases slightly the entropy because they reduce the formation
of heavy clusters. When temperature is increased, the entropy
for the pasta calculation gets closer to the homogeneous-matter
result because the nucleons drip out of the heavy clusters. The
reduction of the entropy with clusterization was previously

discussed in several works [19,21–23]. Looking at Fig. 16
of Ref. [22] and Fig. 21 of Ref. [21], applying a statistical
description, a smooth decrease of the entropy per baryon with
the density is obtained. Similar results have been obtained
in Ref. [23] (see Fig. 2), within a self-consistent TF (STF)
calculation for droplets and bubbles.

In Fig. 11, we show the crust-core transition densities for the
range of temperatures 4 to 10 MeV, and we compare them with
the results found for the transition densities to homogeneous
matter with a 3D finite-temperature Skyrme–Hartree–Fock
(3DHFEOS) calculation [8], and with the results found in
Ref. [26], for the TF calculation with the density-dependent
TW interaction. We see that the three approaches, TF, CLD,
and CP, give very similar results for the FSU interaction,
and lower transition densities than the values found within
a 3DHFEOS calculation, done in the framework of Skyrme
interactions. The TW parameter set has a higher transition
density between shapes and to uniform matter than the FSU
interaction, and is very close to the values found for the
Skyrme forces. This might be explained by the fact that
the behavior of the symmetry energy for RMF models with
density-dependent couplings is much closer to the behavior of
Skyrme forces [43]. It is known that the crust-core transition
density decreases with an increasing slope L [44,45], and,
therefore, this may influence the results with SkM∗ and SLy4,
having L = 46 MeV, while for all the other models, L ∼
60 MeV. Comparing models with a similar L, we conclude
that, within the 3DHFEOS, the crust-core transition densities
are larger by ∼0.04ρ0 than the transition densities for FSU,
and this difference decreases with increasing temperature.
The 3DHFEOS calculation allows a larger freedom in the
minimization of the free energy. However, differences may also
be due to the different energy density functionals generated by
each model.

In Ref. [23], even though only droplets and bubbles
were considered for simplicity, the transition densities to
homogeneous matter are very close to our results with T =
10 MeV (see, e.g., Fig. 1 of Ref. [23]).

Let us now compare how the different approaches describe
the transition between the different shapes. In Table II, we
give the densities at the droplet-rod, rod-slab, slab-tube, tube-
bubble transitions, and the onset density for homogeneous
matter.

These transition densities have been plotted in Fig. 12,
where the density range for each geometric configuration is
shown for the TF (top panel), CP (middle panel), and CLD
(bottom panel) calculations, and a range of temperatures 4 to

TABLE II. Transition densities in the pasta phase for the TF, CP and CLD calculations for the FSU interaction. ρHM is the onset density of
homogeneous matter. These values are the ones represented in Fig. 12.

T ρd−r ρr−s ρs−t ρt−b ρHM

(MeV) (fm−3) (fm−3) (fm−3) (fm−3) (fm−3)

TF CP CLD TF CP CLD TF CP CLD TF CP CLD TF CP CLD
4 0.024 0.032 0.023 0.050 0.050 0.039 0.052 0.085 0.071 0.093 0.092 0.093
6 0.025 0.032 0.024 0.047 0.049 0.040 0.083 0.068 0.087 0.086 0.088
8 0.027 0.032 0.025 0.040 0.048 0.040 0.061 0.079 0.078 0.079
10 0.031 0.032 0.047 0.047 0.068 0.066
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FIG. 12. (Color online) Pasta phases for the FSU interaction
within the (a) TF, (b) CP, and (c) CLD calculations for several
temperatures. The proton fraction is fixed at 0.3.

10 MeV. It is interesting to notice that, in the CLD approach,
tubes and bubbles do not exist, and at T = 10 MeV, the pasta
geometries no longer exist. For the CP calculation, the tubes
and bubbles are also not favored: droplets, rods, and slabs
are present for all temperatures, but tubes only briefly appear,
at T = 4 and 6 MeV, and no bubble configuration was found
within this calculation. For the TF approximation, we found all
the shapes, except for the slabs, that only appear at T = 4 MeV.
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FIG. 13. (Color online) Pasta phases for the TW interaction
within the TF calculation for several temperatures. The proton fraction
is fixed at 0.3 (data taken from [26]).

However, it is important to stress that the appearance and
density range of the different geometries is model dependent
and sensitive to properties such as the symmetry energy. In
particular, in Fig. 13, where the different pasta geometries are
represented for the density-dependent RMF model TW [32],
for a proton fraction of 0.3, we can see that all the five
geometrical configurations are present until T = 8 MeV. The
transition densities to uniform matter, as we already saw, are
represented in Fig. 11. In Ref. [43], it is shown that the behavior
of the symmetry energy, and its derivatives with respect to
density for relativistic nuclear models with density-dependent
couplings, is much closer to the behavior of Skyrme forces.

Reference [4] discusses the influence of a correct treatment
of the Coulomb interaction on the extension of each pasta
geometry. In particular, in a calculation excluding the Coulomb
field and including the Coulomb energy, as was done in the
CP calculation, the bubble geometry was not present with
Yp = 0.1, and the slab configuration was found in a wider
density range with Yp = 0.3. The same authors also discussed
the role of the surface tension and showed that a smaller surface
tension favors a larger variety of geometries. In our CP and
CLD calculations, the surface tensions were calculated within
the model; however, the treatment is not self-consistent, and
for the larger densities, when the background nucleon gas
becomes denser, the surface energy used is probably too high
and the neutron skin should have been included explicitly in
the surface energy, as in Ref. [46]. This also explains why the
crust-core transition density calculated within the CP approach
is smaller than the TF result.

IV. CONCLUSIONS

In this work, we studied the pasta geometries that appear
in core-collapse supernova events and in the inner crust
of neutron stars within three different approximations: the
Thomas–Fermi, the coexisting phases, and the compressible
liquid drop calculations, all within the single-nucleus approx-
imation. While the first is a self-consistent calculation, where
the Coulomb interaction and surface energy are adequately
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described, the other two approaches are non-self-consistent.
They use as an input the surface energy for semi-infinite matter
as a function of the proton fraction and temperature, obtained
within a Thomas–Fermi calculation. In the CLD approach, the
equilibrium conditions between the liquid and gas phases take
into account the Coulomb energy and surface contributions,
contrary to the CP method. An improvement of the last two
methods is tightly related with a realistic description of the
surface of the clusters.

We introduced light clusters into our system to understand
their effect on the EoS. We observed that their effect is only
noticeable at very low densities, before melting. It was shown
that taking light clusters into account always lowers the free
energy. The inclusion of light clusters in all the methods used
in the present work to describe the inner crust will allow going
beyond the single-nucleus approximation.

We were also interested in characterizing the transition to
uniform matter. For that effect, we plotted the free energy, pres-
sure, entropy, and chemical potentials to observe if there were
any discontinuities. We realized that the density range of the
pasta phase and the crust-core transition density decrease with
increasing temperature, as expected; however the melting tem-
perature of the different pasta-phase geometries depends on the

model properties. The stable geometries that we found depend
on the parametrizations used, and the properties that influence
them should be investigated. Also, the jumps in the pressure
and chemical potentials, as a function of density, could indicate
a first-order phase transition to uniform matter. Within the CP
method, the description of a nonhomogeneous phase gives un-
realistic results at low densities, although it predicts concordant
transition densities to uniform matter. All methods considered
in this study show a very good agreement with respect to the
transition density to homogeneous matter and, in particular,
the TF and CLD calculations give very similar results over the
whole range of densities and temperatures considered.
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