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Anisotropy in the equation of state of magnetized quark matter
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The anisotropies in the pressure obtained from the energy-momentum tensor are studied for magnetized quark
matter within the su(3) Nambu-Jona-Lasinio model for both β-equilibrium matter and quark matter with equal
quark chemical potentials. The effect of the magnetic field on the particle polarization, magnetization, and quark
matter constituents is discussed. It is shown that the onset of the s quark after chiral symmetry restoration of the u

and d quarks gives rise to a special effect on the magnetization in the corresponding density range: A quite small
magnetization just before the s onset is followed by a strong increase of this quantity as soon as the s quark sets
in. It is also demonstrated that for B < 1018 G within the two scenarios discussed, always considering a constant
magnetic field, the two components of pressure are practically coincident.
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The structure of the QCD phase diagram is of utmost
importance in understanding many physical aspects of nature,
ranging from the early universe to possible nuclear liquid-gas
and hadronic quark matter phase transitions to the physics
of compact objects [1]. Early analyzes performed within the
Nambu–Jona-Lasinio model (NJL) framework indicate that
when strongly interacting matter is subject to intense magnetic
fields the QCD phase diagram boundaries are modified [2].
Some of the most important changes concern the size and
location of the first-order chiral transition region since the
results show that a strong magnetic field favors this type
of transition. At the same time, at low temperatures, the
value of the coexistence chemical potential decreases as B
increases in accordance with the inverse magnetic catalysis
(ICM) phenomenon [3].

The low-T and high-μ region where a first-order-type
transition is expected to occur is currently unavailable to lattice
QCD evaluations (LQCD). However, the region high-T and
low-μ has already been exploited using LQCD simulations
which indicate, in accordance with most model predictions,
that the crossover observed at B = 0 persists when B �= 0
[4–7]. On the other hand, a major disagreement between
recent LQCD results [6,7] and model calculations regards the
dependence of crossover pseudocritical temperature, Tpc, on
the strength B of the magnetic field. Specifically, the lattice
results of Refs. [6,7], performed with 2 + 1 quark flavors and
physical pion mass values, predict an inverse catalysis, with Tpc

decreasing with B, while effective models predict an increase
of Tpc with B. This problem has been recently addressed by
different groups [8,9], who basically agree that the different
results stem from the fact that most effective models miss
back reaction effects (the indirect interaction of gluons and
B) as well as the QCD asymptotic freedom phenomenon. At
the same time, other important aspects of the effects of strong
magnetic fields on the QCD phase diagram have already been
studied, including the behavior of the coexistence chemical
potential and the location of the critical end point (CEP) [10],
the dependence of the CEP on strangeness, isospin, and charge
asymmetry [11], and also the internal structure of the phase
diagram [12].

Regarding physical observables, the understanding of mag-
netized quark matter is particularly important at low densities
and high temperatures, which is the relevant regime for the
present heavy-ion collision experiments [13], as well as at
low temperatures and high densities, which is the regime
concerning magnetars [14].

As far as heavy ion-collisions are concerned, the presence
of a strong magnetic field most certainly plays a role despite the
fact that, in principle, the field intensity should decrease very
rapidly, lasting for about 1–2 fm/c only [13]. The possibility
that this short time interval may [15] or may not [16] be
affected by conductivity remains under dispute. The effects
of strong magnetic fields and their relation with the impact
parameters have also been discussed [17], while the particle
yield dependence on a constant external magnetic field has
been investigated in another approach [18]. Another aspect
related to the presence of strong magnetic fields at the early
stages of the collisions is the anisotropy of photon production
in heavy-ion collisions at the RHIC energies [19]. The new
PHENIX data brings some doubt on the conventional picture
of thermalization and subsequent hydrodynamics or implies
the possibility that a new photon production mechanism is
possible. These works tell us that there is much to be done
if a complete understanding of the effects of hadronic matter
subject to strong magnetic fields is expected.

When we look at the recent literature on magnetars, the
controversy is already present at the level of calculating the
energy-momentum tensor. While some of the first works
advocated that the pressure, having in mind the thermody-
namical pressure obtained from the thermodynamical potential
that relates pressure to density, should be isotropic [20–23],
based on an interpretation given in Ref. [24], other works
were based on the fact that the energy-momentum tensor
gives different contributions for the parallel and perpendicular
pressure [25–28] (see Ref. [29] for a discussion based on
LQCD). If two different pressures are indeed present in the
system, the usual way of using the equation of state as input
to the Tolman-Oppenheimer-Volkoff equations (TOV) [30],
which determine the structure of a spherically symmetric body
of isotropic material in static gravitational equilibrium, to
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obtain compact objects macroscopic properties, as radii and
masses, has to be done with care. What is normally done is
to observe the value of the magnetic fields where the two
pressures start to deviate and then use the TOV equations up
to this strength, so that in principle the EoS used as input is
practically isotropic [27,28,31]. Another important aspect is
related to the contribution of the electromagnetic interaction to
the pressure(s) and energy density, a term proportional to B2,
where B is the magnetic field strength. Since no field larger
than 1016 G has been observed at the surface of a magnetar,
but according to the viral theorem one could expect fields
as strong as ∼1018 G in the interior, an ad hoc exponential
density-dependent magnetic field was proposed in Ref. [32]
and widely adopted in subsequent works [21–23,33–41]. This
ansatz, however, violates Maxwell equations. Another similar
prescription for an energy-density-dependent magnetic field
was proposed in Ref. [42].

To avoid the use of the TOV equations, the authors of
Ref. [40] treated the anisotropic pressure as a perturbation
in a way similar to the Hartle-Thorn method, generally
used for slowly rotating neutron stars. In a more complete
treatment, the authors consider the anisotropy in solving
Einstein’s field equations in axisymmetric regime with a fully
general relativistic formalism [43–45]. In both cases, once the
macroscopic properties are obtained, a small increase of the
maximum mass is found, in contrast with the other previous
works.

According to classical books on gravitation [46,47], when
anisotropies are present, the concept of pressure is not so well
defined. Based on the concepts discussed in these two books,
in Ref. [42] a small-scale chaotic field is used and the stress
tensor is modified, so that the resulting EoS is also isotropic.
A curious outcome is that the increase in the maximum stellar
mass is also very small, as found in Refs. [40,45]. Hence, it is
clear that there is no unique way of computing magnetic field
effects on compact stars.

An estimation of the maximum magnetic field intensity
supported by a star before magnetic field stresses give rise to
the formation of a black hole may be obtained equating the
magnetic field energy of an uniform field in a sphere with the
star radius R to the gravitational binding energy. A maximum
field of the order of 1018 G is obtained in agreement with the
maximum fields obtained in the framework of a relativistic
magnetohydrostatic formalism, of the order of ∼5 × 1018 G
with a nucleonic EOS [44] or ∼3 × 1018 G in Ref. [48] with an
hyperonic EOS. It was suggested that a disordered field with
〈B2〉 > 〈 �B〉2 could possibly give rise to larger fields in still
stable stars. The previous estimations referred to stars that are
bound by gravitation. For self-bound stars larger fields could
in principle exist [25,49]. Taking these numbers as indicative,
we next consider fields B � 1.5 × 1019 G.

In the present work we investigate, within the su(3) version
of the Nambu–Jona-Lasinio [50] model the quark matter
polarization and magnetization, the thermodynamical pres-
sure, and the parallel and perpendicular pressure contributions
obtained from the energy-momentum tensor. We consider both
β-equilibrium matter and quark matter with equal chemical
potentials for the three flavors, which we call symmetric quark
matter or matter with isochemical potentials throughout the

text. The first scenario applies to neutron stars while the second
is relevant to heavy-ion collision investigations. Some of these
quantities are inputs for numerical codes that calculate the
structure of neutron stars subject to strong magnetic fields.

The paper is organized as follows: In Secs. I and II,
the general formalism and the resulting equation of state
developed in Refs. [20,21] are revisited. In Sec. III, the
expressions for the magnetization and the anisotropic pressures
are shown, with some of the details given in Appendix. In
Sec. IV the results are shown and discussed, and in Sec. V the
final conclusions are drawn.

I. GENERAL FORMALISM

In order to consider both symmetric quark matter and stellar
quark matter in β equilibrium with strong magnetic fields we
introduce the following Lagrangian density:

L = Lf + Ll − 1
4FμνF

μν , (1.1)

which contains a quark sector,Lf , a leptonic sector,Ll , and the
electromagnetic contribution. The quark sector is described by
the su(3) version of the Nambu–Jona-Lasinio model (NJL)

Lf = ψ̄f [γμ(i∂μ − q̂f Aμ) − m̂c]ψf + Lsym + Ldet. (1.2)

The Lsym and Ldet terms are given by

Lsym = G

8∑
a=0

[(ψ̄f λaψf )2 + (ψ̄f iγ5λaψf )2], (1.3)

Ldet = −K{detf [ψ̄f (1 + γ5)ψf ] + detf [ψ̄f (1 − γ5)ψf ]},
(1.4)

where ψf = (u,d,s)T represents a quark field with three fla-
vors, m̂c = diagf (mu,md,ms) with mu = md �= ms is the cor-
responding (current) mass matrix, while q̂f = diag(qu,qd,qs)
is the matrix that represents the quark electric charges.
In the same equation, λ0 = √

2/3I where I is the unit
matrix in the three flavor space, and 0 < λa � 8 denote
the Gell-Mann matrices. The t’Hooft interaction term (Ldet)
represents a determinant in flavor space which, for three
flavors, gives a six-point interaction [51], and Lsym, which is
symmetric under global U (Nf )L × U (Nf )R transformations,
corresponds to a four-point interaction in flavor space. The
model is nonrenormalizable, and as a regularization scheme
for the divergent ultraviolet integrals we use a sharp cutoff
� in three-momentum space. The parameters of the model,
�, the coupling constants G and K , and the current quark
masses, mu and ms , are determined by fitting fπ , mπ , mK ,
and mξ ′ to their empirical values. We adopt the parametriza-
tion of the model proposed in Ref. [52]: � = 631.4 MeV,
mu = md = 5.5 MeV, ms = 135.7 MeV, G�2 = 1.835, and
K�5 = 9.29.

The leptonic sector is described by

Ll = ψ̄l[γμ(i∂μ − qlA
μ) − ml]ψl , (1.5)

where l = e,μ. One recognizes this sector as being represented
by the usual QED type of Lagrangian density. As usual, Aμ

and Fμν = ∂μAν − ∂νAμ are used to account for the external
magnetic field. We are interested in a static and constant
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magnetic field in the z direction and hence we choose the
gauge Aμ = δμ2x1B.

II. THE EOS

We now need to evaluate the thermodynamical potential
for the three-flavor quark sector, �f , which as usual can be
written as

�f = −Pf = Ef − T Sf −
∑
f

μf ρf , (2.1)

where Pf represents the pressure, Ef is the energy density,
T is the temperature, Sf is the entropy density, μf is the
chemical potential, and ρf is the quark number density. A
similar expression can be written for the leptonic sector.

The total pressure for three flavors in β equilibrium is then
given by

P (μf ,μl,B) = Pf |Mf
+ Pl|ml

± B2

2
, (2.2)

where our notation means that Pf is evaluated in terms of
the quark effective mass, Mf , which is determined in a
(nonperturbative) self-consistent way, while Pl is evaluated
at the leptonic bare mass, ml . The term B2/2 arises due to
the kinetic term of the electromagnetic field, FμνF

μν/4, in
the original Lagrangian density. Within the formalism used
in the present work, the sign of this term comes from the
stress tensor and is shown in the section where we discuss
anisotropy. In the sequel our results will be presented in terms
of (vacuum) subtracted pressures (�P ) such that Pf = 0 at
μf = 0 (f = u,s,d) and Pl = 0 at μl = 0 (l = e,μ). With this
normalization choice only the magnetic pressure, (±B2/2),
survives at vanishing chemical potentials. Again, a similar
expression can be written for the leptonic sector, apart from
the color index. The lepton masses are me = 0.511 MeV and
mμ = 105.66 MeV.

In the mean field approximation the pressure can be written
as

Pf = θu + θd + θs − 2G
(
φ2

u + φ2
d + φ2

s

) + 4Kφuφdφs,

(2.3)

where the free gas type of term is

θf = − i

2
tr

∫
d4p

(2π )4
ln

(−p2 + M2
f

)
, (2.4)

while the scalar condensates, φf are given by

φf = 〈ψ̄f ψf 〉 = −i

∫
d4p

(2π )4
tr

1

(/p − Mf + iε)
. (2.5)

According to standard Feynman rules for this model, all the
traces are to be taken over color (Nc = 3) and Dirac space, but
not flavor.

The effective quark masses can be obtained self-
consistently from

Mi = mi − 4Gφi + 2Kφjφk, (2.6)

with (i,j,k) being any permutation of (u,d,s). So, to determine
the EOS for the su(3) NJL at finite density and in the presence
of a magnetic field we need to know the condensates, φf , as
well as the contribution from the gas of quasiparticles, θf .
Both quantities, which are related by φf ∼ dθf /dMf , have
been evaluated with great detail in Refs. [20,21] so that here
we just quote the results:

θf = (
θvac
f + θ

mag
f + θmed

f

)
Mf

, (2.7)

where the vacuum contribution reads

θvac
f =− Nc

8π2

{
M4

f ln

[
(� + ε�)

Mf

]
− ε� �

(
�2 + ε2

�

)}
,

(2.8)

and where we have also defined ε� =
√

�2 + M2
f with

� representing a noncovariant ultraviolet cutoff, the finite
magnetic contribution is given by

θ
mag
f = Nc(|qf |B)2

2π2

[
ζ ′(−1,xf ) − 1

2

(
x2

f − xf

)
ln xf + x2

f

4

]
,

(2.9)

with xf = M2
f /(2|qf |B) while ζ ′(−1,xf ) =

dζ (z,xf )/dz|z=−1 where ζ (z,xf ) is the Riemann-Hurwitz ζ
function. To take further derivatives, as well as for numerical
purposes, it is useful to use the following representation for
this quantity:

ζ ′(−1,xf ) = ζ ′(−1,0) + xf

2
[xf − 1 − ln(2π ) + ψ (−2)(xf )],

(2.10)

where ψ (m)(xf ) is the mth polygamma function and the
xf independent constant is ζ ′(−1,0) = −1/12. The medium
contribution can be written as

θmed
f = T

kf,max∑
k=0

αk

|qf |BNc

4π2

×
∫ +∞

−∞
dp[ln(1 + exp[−(E∗

f − μf )/T ])

+ ln(1 + exp[−(E∗
f + μf )/T ])], (2.11)

with α0 = 1, αk>0 = 2. In the above equation we have defined
the energy dispersion

E∗
f =

√
p2 + sf (k,B)2, sf (k,B) =

√
M2

f + 2|qf |Bk.

When considering just the zero-temperature case, Eq. (2.11)
becomes

θmed
f =

kf,max∑
k=0

αk

|qf |BNc

4π2

[
μf

√
μ2

f − sf (k,B)2 − sf (k,B)2

× ln

(μf +
√

μ2
f − sf (k,B)2

sf (k,B)

)]
, (2.12)
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where sf (k,B) =
√

M2
f + 2|qf |Bk. At T = 0, the upper

Landau level (or the nearest integer) is defined by

kf,max = μ2
f − M2

f

2|qf |B = p2
f,F

2|qf |B . (2.13)

The condensates φf entering the quark pressure at finite
density and in the presence of an external magnetic field can
be written as

φf = (
φvac

f + φ
mag
f + φmed

f

)
Mf

(2.14)

where

φvac
f = −Mf Nc

2π2

[
�ε� − M2

f ln

(
� + ε�

Mf

)]
, (2.15)

φ
mag
f = −Mf |qf |BNc

2π2

[
ln �(xf ) − 1

2
ln(2π ) + xf

− 1

2
(2xf − 1) ln(xf )

]
, (2.16)

and

φmed
f =

kf,max∑
k=0

αk

Mf |qf |BNc

4π2

∫ +∞

−∞
dp

(f+ + f−)

E∗
f

, (2.17)

where the Fermi distribution functions are

f± = 1/{1 + exp[(E∗
f ∓ μf )/T ]} . (2.18)

The quark density reads

ρf =
kf,max∑
k=0

αk

|qf |BNc

2π2

∫ +∞

−∞
dp(f+ − f−). (2.19)

At T = 0, Eqs. (2.17) and (2.19) become

φmed
f =

kf,max∑
k=0

αk

Mf |qf |BNc

2π2

×
[

ln

(μf +
√

μ2
f − sf (k,B)2

sf (k,B)

)]
, (2.20)

and

ρf =
kf,max∑
k=0

αk

|qf |BNc

2π2
kF,f , (2.21)

where kF,f =
√

μ2
f − sf (k,B)2. The entropy density Sf =

−(∂�/∂T ) is

Sf = −
∑
f

kf,max∑
k=0

αk

|qf |BNc

4π2

∫ +∞

−∞
dp[f+ ln(f+) + (1 − f+)

× ln(1 − f+) + (f+ ↔ f−)]. (2.22)

The corresponding leptonic contributions can be trivially
obtained from the above quantities by replacing Mf → ml ,
|qf | → |ql|, and μf → μl . Since the leptonic masses are
unaffected by strong interactions, one considers their bare
values which do not depend on T , μ, and B as opposed to

the effective Mf masses. Therefore, the only piece which
effectively contributes to the subtracted pressure, defined as
�P = P (T ,μ,B) − P (0,0,B), is

P med
l = T

kf,max∑
k=0

αk

|ql|B
4π2

×
∫ +∞

−∞
dp[ln(1 + exp[−(El − μl)/T ])

+ ln(1 + exp[−(El + μl)/T ])] , (2.23)

from which the leptonic density can be written as

ρl =
kf,max∑
k=0

αk

|ql|B
2π2

∫ +∞

−∞
dp(l+ − l−) , (2.24)

where μl represents the leptonic chemical potential. The
quantities El and l± can be obtained from their quark
counterparts by the replacements already mentioned.

At vanishing temperatures the above expressions become

P med
l =

μ∑
l=e

kl,max∑
k=0

αk

|ql|B
4π2

[
μl

√
μ2

l − sl(k,B)2 − sl(k,B)2

× ln

(μl +
√

μ2
l − sl(k,B)2

sl(k,B)

)]

and

ρl =
kl,max∑
k=0

αk

|ql|B
2π2

kF,l(k,sl) , (2.25)

where kF,l(k,sl) =
√

μ2
l − sl(k,B)2.

III. THE ANISOTROPY IN THE PRESSURE

The parallel and the perpendicular components of the
pressure can be written in terms of the magnetization, M =
∂�P/∂B, as [24,31,37]

P‖ = �P − B2

2
and P⊥ = �P − MB + B2

2
, (3.1)

where �P stands for the already defined subtracted pressure.
For a magnetic field in the z direction, the stress tensor
has the form diag(B2/2,B2/2,− B2/2) and this explains the
difference in sign appearing in the parallel and perpendicular
pressures. For the leptonic sector one easily gets

dP med
l

dB
= P med

l

B
− |ql|B

4π2

kf,max∑
k=0

αk(k|ql|)

×
∫ +∞

−∞
dp

1

El

[l+ + l−] , (3.2)

which, at T = 0 becomes:

dP med
l

dB
= P med

l

B
− B|ql|

2π2

kmax∑
k=0

αk ln

(μl +
√

μ2
l − s2

l

sf

)
(k|ql|),

(3.3)
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whereas for the quark sector one obtains

dPf

dB
= θ ′

u + θ ′
d + θ ′

s − 4G(φuφ
′
u + φdφ

′
d + φsφ

′
s)

+ 4K(φ′
uφdφs + φuφ

′
dφs + φuφdφ

′
s) , (3.4)

where

θ ′
f = (

θ ′ vac
f + θ

′ mag
f + θ ′ med

f

)
Mf

(3.5)

and

φ′
f = (

φ′ vac
f + φ

′ mag
f + φ′ med

f

)
Mf

. (3.6)

The primes denote derivatives with respect to B and the explicit
form of each term can be found in the appendix.

IV. RESULTS AND DISCUSSION

In this section we present and discuss results concern-
ing several properties of β-equilibrium quark matter and
symmetric quark matter (with equal chemical potentials).
We first discuss some general properties of quark matter,
in particular, its particle content and particle polarization.
We then investigate how the magnetization of quark matter
changes with the magnetic field intensity and finally we discuss
the parallel and perpendicular pressure contributions obtained
from the energy-momentum tensor.

The quark spin polarization � is usually defined as

�i = ρi(↑) − ρi(↓)

ρi(↑) + ρi(↓)
, i = u,d,s. (4.1)

In Fig. 1 it is shown how the magnetic field affects
β-equilibrium matter (left panels) and symmetric quark matter
(right panels), in particular, the quark and electron polar-
izations, their densities, and onset of total polarization. The
β-equilibrium matter onset of the s quark occurs just below
0.7 fm−3, see Fig. 1(c), and, therefore, close to these densities
the s quark density is small and feels strongly the magnetic
field, with total polarization being attained with B < 1018 G.
In denser matter, the larger densities of s quarks require larger
magnetic field intensities for a total polarization. In symmetric
quark matter the s quarks set in above 0.9 fm−3, a density that
presently is not attained in the laboratory. In β-equilibrium
matter u and d quarks are not totally polarized for fields below
1019 G; however, in symmetric quark matter u and d quark total
polarization occurs at small densities that do not exist in quark
stellar matter with a surface baryonic density which is of the
order of 0.3 fm−3. In Fig. 1(a) we also show information on the
electron polarization. The magnetic field increases the electron
content and for 1018 G their density is practically constant and
equal to ∼0.01 fm−3; see Fig. 1(c). At the onset of the s quark
the density of electrons has always a maximum, above which
the electron fraction decreases. This means that electrons are
totally polarized for fields B � 9 × 1017 G.

For totally polarized matter, all particles lie on the lowest
Landau level (LLL). In this case, the dependence of the
pressure on the magnetic field intensity of a gas of free particles
occurs only through a multiplicative factor that defines the LLL
degeneracy, and the magnetization is independent of B. For the
NJL model the interaction terms give a nonlinear dependence

to the pressure even above for totally polarized matter. This
contribution becomes small when the chiral symmetry is
restored. A comparison with the polarization obtained in quark
matter described by the Massachusetts Institute of Technology
(MIT) bag model is shown in Ref. [53], where it is also seen
that the polarization of the system increases with the increase
of the magnetic field and the total polarization occurs for
B � 2 × 1019 G for matter in β equilibrium.

In order to determine the two pressure contributions, the
magnetization is obtained using Eq. (A1). In Fig. 2 this quantity
is plotted for β-equilibrium matter, Figs. 2(a) and 2(c), and
quark matter with equal chemical potentials, Figs. 2(b) and
2(d). For each case we have considered a set of densities
of interest: (a) the surface baryonic density of a quark star
is ∼2ρ0 and in the interior we may have densities larger
than 5ρ0; (b) in heavy-ion collisions we may have densities
below ρ0 and do not expect densities as large as 5ρ0. The
magnetization has a term that explodes whenever μf = sf ,
i.e., whenever B approaches a n �= 0 Landau level from below;
see Eq. (A7) and the corresponding discussion in Ref. [26].
The spikes in this figure occur precisely at this values of B. A
small number of spikes occurs if only a few LL are occupied,
e.g., if the magnetic field is very strong with respect to the
Fermi momentum of the particle. In Figs. 2(a) and 2(b) for
the densities represented this occurs for the larger fields. For
the symmetric matter at smaller densities, fewer spikes are
obtained for larger magnetic fields. It is interesting to notice
that for β-equilibrium matter there is a range of densities
between 0.5 and 0.7 fm−3 where for all the fields shown
the number of oscillations is small: This occurs before the
onset of the s quark and after the u and q quark restoration
of chiral symmetry. In Fig. 2(c), for densities lower than
0.3 fm−3 and in between 0.8 and 1.1 fm−3, one can clearly
sees that oscillations with high frequencies are modulated
by smaller frequency oscillations. The same is seen in Fig.
2(d), for densities larger than 0.3 fm−3. This superposition of
fluctuations with different frequencies is due to a mixing of
particles with different charges and masses. In β-equilibrium
matter the oscillations defined by the u quark are wider apart
because the u quark density is smaller and its charge larger,
both effects adding to a reduction of the number of occupied
LL; see Fig. 2(c). This same effect is also present in Fig. 2(d)
where, for similar u and d quark densities, the charge of the
u explains the difference. Our results differ substantially from
the ones obtained in Refs. [26,53] (apart from the choice of
units), since the MIT bag model, used in the calculation of
the quark magnetization in these references, does not present
negative magnetization. Physically, this means that while
the NJL model studied here presents paramagnetic (M > 0)
as well as diamagnetic (M < 0) behavior, the MIT model,
studied in Ref. [31], displays only a paramagnetic phase.
This difference can be better understood by recalling that the
NJL magnetization receives contributions from θ ′med

f and φ′med
f

while only the former contributes to the MIT model [31]. As
remarked earlier θf represents the contribution from a gas
of quasiparticles and φf represents the quark condensate. As
Eq. (A7) reveals, φ′med

f may present divergencies leading to
the oscillation between diamagnetic and paramagnetic states
observed in our results (before the LLL is reached).
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MENEZES, PINTO, AND PROVIDÊNCIA PHYSICAL REVIEW C 91, 065205 (2015)

-1

-0.5

 0

 0.5

 1

 16  16.5  17  17.5  18  18.5  19

Δ d
,

Δ u
,

Δ s

Log10[B(G)]

β equil

u

d

se

 1ρ0
 3ρ0

 4.3ρ0

(a)

-1

-0.5

 0

 0.5

 1

 16  16.5  17  17.5  18  18.5  19

Δ d
,

Δ u
,

Δ s

Log10[B(G)]

μu=μd=μs

u

d

 0.5ρ0
 1ρ0
 3ρ0

(b)

 0.001

 0.01

 0.1

 1

 0.2  0.4  0.6  0.8  1  1.2

ρ i
(f

m
-3

)

ρ(fm-3)

u
d
s
e

(c)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

ρ i
/(

3ρ
B
)

ρ(fm-3)

u
d

(d)

 17

 17.5

 18

 18.5

 19

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

lo
g 1

0
[B

(G
)]

ρ (fm-3)

s
e
u

(e)

 17

 17.5

 18

 18.5

 19

 0  0.05  0.1  0.15  0.2  0.25  0.3

lo
g 1

0[
B

(G
)]

ρ (fm-3)

u
d

(f)

FIG. 1. (Color online) β-equilibrium quark matter (left panels) and symmetric quark matter (right panels): (a) and (b) particle polarizations
for several densities defined in terms of the saturation density ρ0 = 0.16 fm−3, (c) and (d) particle densities, absolute in panel (c) and relative
in panel (d), for 1017, 1018, and 1019 G magnetic field intensities, respectively, from the thinner to the thicker lines; (e) total polarization onset
density for the s quark and the electron in β-equilibrium matter, and (f) for the u and d quarks in symmetric matter. For the densities representing
u and d quarks, the total polarization occurs for stronger fields and in symmetric matter the s quark sets in at larger densities.

In Fig. 3 the two pressure contributions defined in Eq. (3.1),
except for the terms proportional to B2, are plotted for both
β-equilibrium matter (left panels) and symmetric matter (right
panels). As in the previous discussion for each scenario we take
the same representative values of the magnetic field intensity
or baryonic density. One should notice that when we analyze
matter in β equilibrium, we have in mind that quark stars have
no crust, since the pressure is zero for a still finite density, as
clearly seen in Fig. 3(a). One of the effects of the magnetic field
could be a change of the density at the surface, although non-
negligible effects occur only for magnetic fields above 1018 G.

A mantle could have been added as was done in Ref. [54].
Moreover, in Ref. [55] it was shown that within the NJL a much
larger electron chemical potential is expected at the surface,
allowing more easily for a mantle to exist. Understanding how
this mantle could be affected in the presence of a magnetic
field is an interesting question that, however, is beyond the
scope of the present work.

For fields B < 1018 G both contributions, the parallel
and the perpendicular pressures, are practically coincident.
However, due to the magnetization contribution entering the
perpendicular pressure, discontinuities occur whenever a new
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FIG. 2. (Color online) Magnetization for (a) and (c) β-equilibrium matter and (b) and (d) isochemical potential quark matter. Densities of
interest for each scenario are considered. In panels (a) and (b) the magnetization is shown as a function of B and in panels (c) and (d) as a
function of the baryonic density.

LL level is reached, giving rise to a series of discontinuities
that would correspond to unstable regions, since dM/dB < 0.
Let us point out that in the region 0.5 < ρ < 0.7 fm−3,
and for B < 1018 G, these discontinuous contributions to
the perpendicular pressure contribution are practically zero,
because, as seen before, the magnetization is very small in this
range of densities. As compared with calculations performed
with the MIT bag model [31], the behavior is the same, except
that the deviation of the two pressures takes place at even
larger magnetic fields with the MIT bag model. Nevertheless,
had we considered not only the matter contribution but also
the contributions from the the terms proportional to B2, the
deviation would start at lower magnetic field intensities. The
exact value of the magnetic field where both pressures start to
deviate depends on the model used and on the chosen fixed
density (or corresponding chemical potential), as can be seen
when we compare our results with the ones shown in Refs.
[26,53], but the qualitative results in average are the same.

One should bear in mind that the discontinuities seen in
Fig. 3 are washed out at finite temperatures as the ones

that we expect in heavy-ion collisions [56]. As suggested in
Refs. [24,26,49] the unstable regions may give rise to domains
with disordered fields that would allow continuous phase
transitions between regions with a different number of LL.

Finally, we plot in Fig. 4, top figures, the energy density
as a function of the number density, and in the figures at the
bottom, a quark binding energy for the cases of matter in
β equilibrium (left panels) and isochemical potential matter
(right panels). The energy density does not depend on the
strength of the magnetic field, what corroborates the fact that
thermodynamic consistency is achieved [26]. On the other
hand, as already expected from previously published results
[20,21], the density per particle decreases with the increase of
the magnetic field due to the change of the quark density with
the magnetic field.

V. FINAL REMARKS

In this work we have examined the effects of strong
magnetic fields in quark matter, as described by the NJL model,
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FIG. 3. (Color online) Parallel (lines) and perpendicular (marks) pressures for (a) and (c) β-equilibrium matter and (b) and (d) isochemical
potential quark matter. Densities of interest for each scenario are considered. In panels (a) and (b) the pressures are shown as a function of
the baryonic density and in panels (c) and (d) as a function of B. For fields B � 1018 G the perpendicular press falls on top of the parallel
contribution except for the van Alphen oscillations due to the magnetization contribution.

paying special attention to effects due to pressure anisotropy.
Two scenarios were investigated: matter in β equilibrium, as
the one possibly present in quark stars or in the core of hybrid
stars, and symmetric matter with isochemical potentials, as
the one present in heavy-ion collisions. For the first case, large
densities and magnetic fields up to the order of 1018 G are of
interest, whereas for symmetric matter, the relevant densities
are somewhat smaller while the magnetic fields can be larger.

Part of our work has been devoted to the analysis of quark
matter constituents, the onset of s quarks, and how much
polarized matter can be present when different field intensities
are considered since these are important ingredients for stellar
modeling.

Magnetization, which is an important quantity for the
description of magnetized matter, has also been considered
in the present work and by investigating this quantity we
conclude that the amount of spikes, related to the filling of
the LL, depends quite substantially on the density and on the
scenario examined. Of particular interest is the fact that very

few spikes are seen for densities between 0.5 and 0.7 fm−3 in
β-equilibrium matter, no matter the intensity of the magnetic
field, because the particles that constitute matter occupy only
a few LL. For symmetric matter, the same pattern is found for
densities larger than 0.5 fm−3, when the number of occupied
LL are small for the three different quarks.

This effect in β-equilibrium matter is due to the late onset
of the s quark, precisely for ρ � 0.7 fm−3. Due to its large
constituent mass magnetic fields satisfying B � 1018 G, as the
ones possibly existing inside magnetars, give rise to the filling
of many LL and large contributions to the magnetization and
perpendicular pressure, in contrast to the behavior at densities
just below the s quark onset. This effect is clearly seen by
comparing the pressure for ρ = 3ρ0 corresponding to u and d
quark matter with restored chiral symmetry with the pressure
obtained for either ρ = 2ρ0 or ρ = 5ρ0 as a function of B: In
the first case chiral symmetry is still not completely restored
and in the second the onset of s quark has occurred. If a
quark model with complete chiral symmetry restored, such
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FIG. 4. (Color online) (a) and (b) Energy density and (c) and (d) quark binding energy for matter in β-equilibrium in the left panels and
symmetric matter in the right panels.

as the MIT bag model, or a model without the strangeness
degree of freedom, such as the su(2) NJL, is used to describe
β-equilibrium quark matter, a different behavior will probably
occur for B � 1018 G and ρ > 0.5 fm−3 right until the star
center, e.g., ρ ∼ 1.2 fm−3 [21,55]; in particular, both pressure
contributions will be coincident.

Therefore within the su(3) NJL model, a non-negligible
effect of the magnetic field on the quark star structure close to
the surface and in the interior is expected even for B ∼ 1018 G.
Taking as reference the calculation done in Ref. [57] using pure
toroidal magnetic field equilibrium models of relativistic stars
for both nonrotating and rotating hadronic stars, fields as large
as 1018 G were obtained on the equatorial plane deep inside
the star. In this calculation, however, the magnetic field effects
on the EOS have been neglected.

We have then looked at the pressure anisotropy obtained
from the components of the energy-momentum tensor that
define the parallel and the perpendicular pressure contributions
and examined the relation between parallel and perpendicular
pressures for both scenarios described above when the mag-
netic field is fixed and also when the baryonic density is kept
constant. We have observed that as the magnetic field intensity

is larger, the discontinuities in the perpendicular pressure are
also larger. It is important to note that the magnetization is
not responsible for the complete picture, because it comes
multiplied by the magnetic field in the calculation of the
perpendicular pressure. In agreement with Refs. [27,31] we
have observed that when the densities are fixed, the parallel and
perpendicular pressures are practically coincident up to very
large magnetic fields, what could justify the use of isotropic
matter hydrostatic equations in stellar calculations. However,
the integration of the full relativistic hydrostatic equations
still requires the inclusion of the magnetic field contributionss
which involve a B2 term that gives rise to a quite large effect.

At this point, we would like to emphasize that compact
star macroscopic properties, as masses and radii, were not
computed because to trust our results we would need either a
self-consistent model, as the one developed in Refs. [43–45],
or a simpler approach, as the one in Ref. [40] that uses a more
appropriate space geometry. In Ref. [45] it was shown that
the contribution to the EOS of magnetic fields of the order of
7 × 1017 G is negligible on the determination of the maximum
mass compared to the uncertainties existing among the EOS
models. However, if we consider that a quark star is self-bound,
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we may expect that magnetic fields ∼1019 G or larger exist in
stable stars [25,49], and, in this case, the effects of magnetic
field on the EOS (see Fig. 3) are probably non-negligible on
the determination of the star structure.

One should also notice that strong magnetic fields affect
the proton and electron fractions of β-equilibrium stellar
matter. In particular it was shown that if the electrons and
protons are confined to their LLL, the Urca reactions are
open for an arbitrary proton concentration leading to a fast
neutron star cooling [58], because the transversal momentum
of charged particles is defined only within an accuracy of
�p⊥ ∼ √

eB. If this quantity is of the order of the neutron
Fermi momentum direct Urca processes are allowed. In
Ref. [59] is was discussed that even for much weaker fields
there is already a noticeable effect corresponding to a speeding
up of the cooling near the center of the star. Recently, it was
also shown that neutrino emissivity will be enhanced due to
B-induced unpairing of proton condensates [60]. With quark
matter the situation is different. Unpaired quark matter may
speed up the star cooling if the pairing nucleon gap is large
[61], but color superconducting quark matter hinders neutrino
emission. However, if unpaired quark matter is considered
under the effect of strong magnetic fields it has been discussed
that neutrino emission may also be hindered because direct
Urca will only occur under very specific conditions [62]. This
effect requires that all particles are in their LLL. In the present
calculation we have seen that for B � 1019 G this is not the
case, and therefore, within NJL the quark direct Urca process
will not be hindered for realistic magnetic field intensities.

Finally, we point out that other physical aspects, such as the
fermion anomalous magnetic moment, may also be important
for a more realistic description when fields in excess of 1019 G
are considered. Indeed, the introduction of a magnetic field
induces a new term corresponding to the coupling between the
field and the fermion anomalous magnetic moment (AMM)
which may influence the EoS for very high values of B. In
Ref. [63] it has been shown that the inclusion of the anomalous
magnetic moment contribution stiffens the stellar matter EOS
if B > 1018 G, and may originate a total spin polarization
of neutrons. For magnetic field intensities below the critical
intensity, obtained equating the particle cyclotron energy to
its rest mass, the Schwinger perturbative determination of
the anomalous magnetic moment, corresponding to the lowest
order correction to the magnetic moment obtained at tree level,
is valid. Recently, it has been shown that for quark matter the
scale for the perturbative approach is set by the constituent
quark mass [64], and therefore, the effect of including an AMM
should also be considered when describing quark matter under
the effect of strong magnetic fields. With a mass about one
third the nucleon mass, the critical field will be approximately
one order of magnitude smaller the nucleon critical field, but
still larger than the maximum field expected inside a neutron
or quark star. Taking into account the AMM will certainly lift
the degeneracy of Landau levels.
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APPENDIX: DERIVATIVES WITH
RESPECT TO B

As already shown in the text, the magnetization is given by

M =−
(

d�

dB

)
μ

=−
(

∂�

∂B

)
μ

−
∑
f

(
∂�

∂Mf

)
μ

dMf

dB
,

but in equilibrium (
∂�

∂Mf

)
μ

= 0,

and then

M = −
(

∂�

∂B

)
μ

. (A1)

Thus, in the following expressions we do not need to include
terms containing dMf

dB
which also means that the vacuum

contributions θ ′ vac
f and φ′ vac

f trivially vanish. Then,

θ
′ mag
f = 2

θ
mag
f

B
− Nc|qf |B

2π2

M2
f

2B

×
[

ln �(xf ) − 1

2
ln(2π ) + xf −

(
xf − 1

2

)
ln(xf )

]
,

(A2)

and

θ ′ med
f = θmed

f

B
− Nc|qf |B

4π2

kf,max∑
k=0

αkk|qf |

×
∫ +∞

−∞
dp

1

E∗
f

[f+ + f−] . (A3)

For T = 0 the above relation becomes

θ ′ med
f = θmed

f

B
− NcB|qf |

2π2

kmax∑
k=0

αk

× ln

(μf +
√

μ2
f − s2

f

sf

)
k|qf | . (A4)

A straightforward evaluation yields

φ
′ mag
f = φ

mag
f

B
+ Nc

4π2

M2
f

2B

{|qf |B + M2
f [ψ (0)(xf ) − ln(xf )]

}
, (A5)
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where ψ0(xf ) = �′(xf )
�(xf ) is the � function. The in medium contribution reads

φ′ med
f = φmed

f

B
− Nc|qf |B

4π2

kf,max∑
k=0

αkk|qf |
∫ +∞

−∞
dp

{
f+

(E∗
f )2

[
1

E∗
f

+ f+
T

exp[(E∗
f − μf )/T ]

]
+ (μ ↔ −μ ′ f+ ↔ f−)

}
, (A6)

which, at T = 0, can be written as

φ′ med
f = φmed

f

B
− Nc|qf |B

2π2

kf,max∑
k=0

αk

μf Mf k|qf |
sf (k,B)2

√
μ2

f − sf (k,B)2
. (A7)
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A. Schäfer, Phys. Rev. D 86, 071502(R) (2012).

[8] K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 110, 031601
(2013); T. Kojo and N. Su, Phys. Lett. B 720, 192 (2013); F.
Bruckmann, G. Endrodi, and T. G. Kovacs, J. High Energy Phys.
04 (2013) 112; E. S. Fraga, J. Noronha, and L. F. Palhares, Phys.
Rev. D 87, 114014 (2013).

[9] M. Ferreira, P. Costa, D. P. Menezes, C. Providência, and N. N.
Scoccola, Phys. Rev. D 89, 016002 (2014); M. Ferreira, P. Costa,
O. Lourenço, T. Frederico, and C. Providência, ibid. 89, 116011
(2014); R. L. S. Farias, K. P. Gomes, G. I. Krein, and M. B.
Pinto, Phys. Rev. C 90, 025203 (2014).

[10] S. S. Avancini, D. P. Menezes, M. B. Pinto, and C. Providência,
Phys. Rev. D 85, 091901(R) (2012).

[11] P. Costa, M. Ferreira, H. Hansen, D. P. Menezes, and C.
Providência, Phys. Rev. D 89, 056013 (2014).

[12] A. G. Grunfeld, D. P. Menezes, M. B. Pinto, and N. N. Scoccola,
Phys. Rev. D 90, 044024 (2014).

[13] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev.
D 78, 074033 (2008); D. E. Kharzeev and H. J. Warringa, ibid.
80, 034028 (2009); D. E. Kharzeev, Nucl. Phys. A 830, 543c
(2009).

[14] R. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992);
C. Kouveliotou et al., Nature (London) 393, 235 (1998).

[15] K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013); ,Phys.
Rev. C 88, 024911 (2013).

[16] L. McLerran and V. Skokov, Nucl. Phys. A 929, 184 (2014).
[17] A. Bzdak and V. Skokov, Phys. Lett. B 710, 171 (2012); W.-T.

Deng and X.-G. Huang, Phys. Rev. C 85, 044907 (2012).
[18] M. G. de Paoli and D. P. Menezes, Adv. High Energy Phys.

2014, 479401 (2014)

[19] G. Basar, D. E. Kharzeev, and V. Skokov, Phys. Rev. Lett. 109,
202303 (2012); A. Bzdak and V. Skokov, ibid. 110, 192301
(2013).

[20] D. P. Menezes, M. B. Pinto, S. S. Avancini, A. P. Martı́nez, and
C. Providência, Phys. Rev. C 79, 035807 (2009).

[21] D. P. Menezes, M. B. Pinto, S. S. Avancini, and C. Providência,
Phys. Rev. C 80, 065805 (2009).

[22] L. L. Lopes and D. P. Menezes, Braz. J. Phys. 42, 428
(2012).

[23] R. H. Casali, L. B. Castro, and D. P. Menezes, Phys. Rev. C 89,
015805 (2014).

[24] R. D. Blandford and L. Hernquist, J. Phys. C 15, 6233
(1982).

[25] E. J. Ferrer, V. de la Incera, J. P. Keith, I. Portillo, and P. L.
Springsteen, Phys. Rev. C 82, 065802 (2010).

[26] X.-G. Huang, M. Huang, D. H. Rischke, and A. Sedrakian, Phys.
Rev. D 81, 045015 (2010).

[27] L. Paulucci, E. J. Ferrer, V. de la Incera, and J. E. Horvath, Phys.
Rev. D 83, 043009 (2011).

[28] D. Manreza Paret, J. E. Horvath, and A. Perez Martinez,
arXiv:1407.2280 [astro-ph.HE].

[29] G. S. Bali, F. Bruckmann, G. Endrodi, and A. Schaefer, PoS
LATTICE 2013, 182 (2014).

[30] R. C. Tolman, Phys. Rev. 55, 364 (1939); J. R. Oppenheimer
and G. M. Volkoff, ibid. 55, 374 (1939).

[31] V. Dexheimer, D. P. Menezes, and M. Strickland, J. Phys. G 41,
015203 (2014).

[32] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev. Lett.
79, 2176 (1997).

[33] G. J. Mao, C. J. Mao, A. Iwamoto, and Z. X. Li, Chin. J. Astron.
Astrophys. 3, 359 (2003).

[34] A. Rabhi et al., J. Phys. G 36, 115204 (2009).
[35] C. Y. Ryu, K. S. Kim, and M.-K. Cheoun, Phys. Rev. C 82,

025804 (2010).
[36] A. Rabhi, P. K. Panda, and C. Providência, Phys. Rev. C 84,

035803 (2011).
[37] R. Mallick and M. Sinha, Mon. Not. R. Astron. Soc. 414, 2702

(2011).
[38] V. Dexheimer, R. Negreiros, and S. Schramm, Eur. J. Phys. A

48, 189 (2012).
[39] D. P. Menezes, M. B. Pinto, L. B. Castro, P. Costa, and C.

Providência, Phys. Rev. C 89, 055207 (2014).
[40] R. Mallick and S. Schramm, Phys. Rev. C 89, 045805 (2014).
[41] R. O. Gomes, V. Dexheimer, and C. A. Z. Vasconcellos, Astron.

Nachr. 335, 666 (2014).

065205-11

http://arxiv.org/abs/arXiv:1310.6656
http://arxiv.org/abs/arXiv:1411.7176
http://dx.doi.org/10.1016/j.physrep.2015.02.003
http://dx.doi.org/10.1016/j.physrep.2015.02.003
http://dx.doi.org/10.1016/j.physrep.2015.02.003
http://dx.doi.org/10.1016/j.physrep.2015.02.003
http://dx.doi.org/10.1143/PTP.111.371
http://dx.doi.org/10.1143/PTP.111.371
http://dx.doi.org/10.1143/PTP.111.371
http://dx.doi.org/10.1143/PTP.111.371
http://dx.doi.org/10.1007/JHEP03(2011)033
http://dx.doi.org/10.1007/JHEP03(2011)033
http://dx.doi.org/10.1007/JHEP03(2011)033
http://dx.doi.org/10.1007/JHEP03(2011)033
http://dx.doi.org/10.1007/978-3-642-37305-3_3
http://dx.doi.org/10.1007/978-3-642-37305-3_3
http://dx.doi.org/10.1007/978-3-642-37305-3_3
http://dx.doi.org/10.1007/978-3-642-37305-3_3
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://dx.doi.org/10.1103/PhysRevD.85.114504
http://dx.doi.org/10.1103/PhysRevD.85.114504
http://dx.doi.org/10.1103/PhysRevD.85.114504
http://dx.doi.org/10.1103/PhysRevD.85.114504
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://dx.doi.org/10.1103/PhysRevLett.110.031601
http://dx.doi.org/10.1103/PhysRevLett.110.031601
http://dx.doi.org/10.1103/PhysRevLett.110.031601
http://dx.doi.org/10.1103/PhysRevLett.110.031601
http://dx.doi.org/10.1016/j.physletb.2013.02.024
http://dx.doi.org/10.1016/j.physletb.2013.02.024
http://dx.doi.org/10.1016/j.physletb.2013.02.024
http://dx.doi.org/10.1016/j.physletb.2013.02.024
http://dx.doi.org/10.1007/JHEP04(2013)112
http://dx.doi.org/10.1007/JHEP04(2013)112
http://dx.doi.org/10.1007/JHEP04(2013)112
http://dx.doi.org/10.1007/JHEP04(2013)112
http://dx.doi.org/10.1103/PhysRevD.87.114014
http://dx.doi.org/10.1103/PhysRevD.87.114014
http://dx.doi.org/10.1103/PhysRevD.87.114014
http://dx.doi.org/10.1103/PhysRevD.87.114014
http://dx.doi.org/10.1103/PhysRevD.89.016002
http://dx.doi.org/10.1103/PhysRevD.89.016002
http://dx.doi.org/10.1103/PhysRevD.89.016002
http://dx.doi.org/10.1103/PhysRevD.89.016002
http://dx.doi.org/10.1103/PhysRevD.89.116011
http://dx.doi.org/10.1103/PhysRevD.89.116011
http://dx.doi.org/10.1103/PhysRevD.89.116011
http://dx.doi.org/10.1103/PhysRevD.89.116011
http://dx.doi.org/10.1103/PhysRevC.90.025203
http://dx.doi.org/10.1103/PhysRevC.90.025203
http://dx.doi.org/10.1103/PhysRevC.90.025203
http://dx.doi.org/10.1103/PhysRevC.90.025203
http://dx.doi.org/10.1103/PhysRevD.85.091901
http://dx.doi.org/10.1103/PhysRevD.85.091901
http://dx.doi.org/10.1103/PhysRevD.85.091901
http://dx.doi.org/10.1103/PhysRevD.85.091901
http://dx.doi.org/10.1103/PhysRevD.89.056013
http://dx.doi.org/10.1103/PhysRevD.89.056013
http://dx.doi.org/10.1103/PhysRevD.89.056013
http://dx.doi.org/10.1103/PhysRevD.89.056013
http://dx.doi.org/10.1103/PhysRevD.90.044024
http://dx.doi.org/10.1103/PhysRevD.90.044024
http://dx.doi.org/10.1103/PhysRevD.90.044024
http://dx.doi.org/10.1103/PhysRevD.90.044024
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.049
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.049
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.049
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.049
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1038/30410
http://dx.doi.org/10.1038/30410
http://dx.doi.org/10.1038/30410
http://dx.doi.org/10.1038/30410
http://dx.doi.org/10.1155/2013/490495
http://dx.doi.org/10.1155/2013/490495
http://dx.doi.org/10.1155/2013/490495
http://dx.doi.org/10.1155/2013/490495
http://dx.doi.org/10.1103/PhysRevC.88.024911
http://dx.doi.org/10.1103/PhysRevC.88.024911
http://dx.doi.org/10.1103/PhysRevC.88.024911
http://dx.doi.org/10.1103/PhysRevC.88.024911
http://dx.doi.org/10.1016/j.nuclphysa.2014.05.008
http://dx.doi.org/10.1016/j.nuclphysa.2014.05.008
http://dx.doi.org/10.1016/j.nuclphysa.2014.05.008
http://dx.doi.org/10.1016/j.nuclphysa.2014.05.008
http://dx.doi.org/10.1016/j.physletb.2012.02.065
http://dx.doi.org/10.1016/j.physletb.2012.02.065
http://dx.doi.org/10.1016/j.physletb.2012.02.065
http://dx.doi.org/10.1016/j.physletb.2012.02.065
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1155/2014/479401
http://dx.doi.org/10.1155/2014/479401
http://dx.doi.org/10.1155/2014/479401
http://dx.doi.org/10.1155/2014/479401
http://dx.doi.org/10.1103/PhysRevLett.109.202303
http://dx.doi.org/10.1103/PhysRevLett.109.202303
http://dx.doi.org/10.1103/PhysRevLett.109.202303
http://dx.doi.org/10.1103/PhysRevLett.109.202303
http://dx.doi.org/10.1103/PhysRevLett.110.192301
http://dx.doi.org/10.1103/PhysRevLett.110.192301
http://dx.doi.org/10.1103/PhysRevLett.110.192301
http://dx.doi.org/10.1103/PhysRevLett.110.192301
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1007/s13538-012-0093-y
http://dx.doi.org/10.1007/s13538-012-0093-y
http://dx.doi.org/10.1007/s13538-012-0093-y
http://dx.doi.org/10.1007/s13538-012-0093-y
http://dx.doi.org/10.1103/PhysRevC.89.015805
http://dx.doi.org/10.1103/PhysRevC.89.015805
http://dx.doi.org/10.1103/PhysRevC.89.015805
http://dx.doi.org/10.1103/PhysRevC.89.015805
http://dx.doi.org/10.1088/0022-3719/15/30/017
http://dx.doi.org/10.1088/0022-3719/15/30/017
http://dx.doi.org/10.1088/0022-3719/15/30/017
http://dx.doi.org/10.1088/0022-3719/15/30/017
http://dx.doi.org/10.1103/PhysRevC.82.065802
http://dx.doi.org/10.1103/PhysRevC.82.065802
http://dx.doi.org/10.1103/PhysRevC.82.065802
http://dx.doi.org/10.1103/PhysRevC.82.065802
http://dx.doi.org/10.1103/PhysRevD.81.045015
http://dx.doi.org/10.1103/PhysRevD.81.045015
http://dx.doi.org/10.1103/PhysRevD.81.045015
http://dx.doi.org/10.1103/PhysRevD.81.045015
http://dx.doi.org/10.1103/PhysRevD.83.043009
http://dx.doi.org/10.1103/PhysRevD.83.043009
http://dx.doi.org/10.1103/PhysRevD.83.043009
http://dx.doi.org/10.1103/PhysRevD.83.043009
http://arxiv.org/abs/arXiv:1407.2280
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1088/0954-3899/41/1/015203
http://dx.doi.org/10.1088/0954-3899/41/1/015203
http://dx.doi.org/10.1088/0954-3899/41/1/015203
http://dx.doi.org/10.1088/0954-3899/41/1/015203
http://dx.doi.org/10.1103/PhysRevLett.79.2176
http://dx.doi.org/10.1103/PhysRevLett.79.2176
http://dx.doi.org/10.1103/PhysRevLett.79.2176
http://dx.doi.org/10.1103/PhysRevLett.79.2176
http://dx.doi.org/10.1088/1009-9271/3/4/359
http://dx.doi.org/10.1088/1009-9271/3/4/359
http://dx.doi.org/10.1088/1009-9271/3/4/359
http://dx.doi.org/10.1088/1009-9271/3/4/359
http://dx.doi.org/10.1088/0954-3899/36/11/115204
http://dx.doi.org/10.1088/0954-3899/36/11/115204
http://dx.doi.org/10.1088/0954-3899/36/11/115204
http://dx.doi.org/10.1088/0954-3899/36/11/115204
http://dx.doi.org/10.1103/PhysRevC.82.025804
http://dx.doi.org/10.1103/PhysRevC.82.025804
http://dx.doi.org/10.1103/PhysRevC.82.025804
http://dx.doi.org/10.1103/PhysRevC.82.025804
http://dx.doi.org/10.1103/PhysRevC.84.035803
http://dx.doi.org/10.1103/PhysRevC.84.035803
http://dx.doi.org/10.1103/PhysRevC.84.035803
http://dx.doi.org/10.1103/PhysRevC.84.035803
http://dx.doi.org/10.1111/j.1365-2966.2011.18586.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18586.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18586.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18586.x
http://dx.doi.org/10.1140/epja/i2012-12189-y
http://dx.doi.org/10.1140/epja/i2012-12189-y
http://dx.doi.org/10.1140/epja/i2012-12189-y
http://dx.doi.org/10.1140/epja/i2012-12189-y
http://dx.doi.org/10.1103/PhysRevC.89.055207
http://dx.doi.org/10.1103/PhysRevC.89.055207
http://dx.doi.org/10.1103/PhysRevC.89.055207
http://dx.doi.org/10.1103/PhysRevC.89.055207
http://dx.doi.org/10.1103/PhysRevC.89.045805
http://dx.doi.org/10.1103/PhysRevC.89.045805
http://dx.doi.org/10.1103/PhysRevC.89.045805
http://dx.doi.org/10.1103/PhysRevC.89.045805
http://dx.doi.org/10.1002/asna.201412090
http://dx.doi.org/10.1002/asna.201412090
http://dx.doi.org/10.1002/asna.201412090
http://dx.doi.org/10.1002/asna.201412090
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