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We study the dynamics of an interacting classical gas trapped in a double-well potential at finite temperature.
Two model potentials are considered: a cubic box with a square barrier in the middle, and a harmonic trap with a
Gaussian barrier along one direction. The study is performed using the Boltzmann equation, solved numerically
via the test-particle method. We introduce and discuss a simple analytical model that allows one to provide
estimates of the relaxation time, which are compared with numerical results. Finally, we use our findings to make
numerical and analytical predictions for the case of a fermionic mixture in the normal-fluid phase in a realistic
double-well potential relevant for experiments with cold atoms.
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I. INTRODUCTION

Double-well energy potentials, with two, degenerate or not,
minima separated by a maximum, are ubiquitous in several
branches of science. These potentials are used to model a
variety of processes involving an energy barrier [1], from the
computation of rate coefficients in a chemical reaction [2] and
the modeling of solid-state junctions [3] to the calculations
involving nonperturbative instanton configurations in quantum
field theory [4]. The importance per se of the study of the
dynamics in double-wells potentials stems also from the fact
that it is often preliminary to (and useful for) the investigation
of more complex dynamical effects in multiwell potentials.

The prototypical problem of the dynamics in a double-well
potential is to determine in how much time the particles move
from one well to the other one and if (and in how much time)
they equilibrate reaching a vanishing �N , where �N is the
difference of population between the two wells. A source of
interwell motion is of course given by the quantum tunneling
[3,5]. When quantum effects are dominant, a single particle
tunnels from one well to the other, and for many particles the
macroscopic quantum coherence exhibited at low temperature
by many systems—including 4He and 3He, ultracold atoms,
and superconductors [6,7]—allows for a net current between
the wells. At variance, at high temperatures thermal effects give
rise to noise-assisted hopping events [1]: for ultracold atoms, at
temperatures higher than the temperature at which the effects
of quantum statistics become relevant, this corresponds to an
incoherent flow of atoms and the ensuing thermalization of the
two-well systems with �N → 0 (for a study of a polarized
Fermi gas in a 3D double-well potential see [8]).

Experiments with cold atoms in double-well potentials
give the concrete possibility to explore physical situations
in which both phenomena—quantum tunneling and thermal
noise-assisted hoppings—are present. The high degree of
control of atomic gases at very low temperatures [9] allows
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one to design and perform experiments where particles, either
bosons, fermions, or mixtures of both, are subjected to properly
engineered and highly tunable trapping potentials. In this
context, superfluid double- and multiwell dynamics have been
extensively studied, both theoretically and experimentally,
primarily for bosonic atoms and more recently also for
fermionic gases. For bosons in the superfluid regime at T = 0,
which are well described by the Gross-Pitaevskii equation,
this has lead to the identification of the atomic analog of the
Josephson effect of superconductivity and of the macroscopic
quantum self-trapping effect [10–14], a direct consequence
of the nonlinearity of the dynamical equations of motion.
The study of superfluid fermions in double-well potentials is
more recent and experiments for these systems are in progress.
The peculiarity of such fermionic systems is, among others,
the tunability of the strength of the interparticle interactions
via the so-called Feshbach resonances, which results in the
well known BCS-BEC crossover [15]. In a recent experiment
[16] Valtolina et al. studied ultracold fermionic 6Li atoms in
two different hyperfine states loaded in double-well potentials,
reporting on the observation of the Josephson effect between
fermionic superfluids along the crossover.

Regarding thermal effects, another class of experiments
focused during the years on the study of (i) polarized and two-
component fermionic gases across and above the transition
from the superfluid to the normal state occurring at the critical
temperature Tc, and (ii) bosons at finite temperature, also near
and above the Bose-Einstein condensation temperature TBEC

(TBEC coinciding with Tc for Bose-Einstein condensates). The
Boltzmann equation [17] provides a major tool to describe the
collective dynamics of cold atoms in the normal-fluid phase
[18–26] where one can extract the characteristic oscillation
frequency and the damping of the various modes. Very
recently undamped monopole breathing collective oscillations
were observed in a 3D classical gas of 87Rb atoms in
agreement with the prediction of the Boltzmann equation [27].
Interestingly more recent analytical developments lead to new
exact solutions of the Boltzmann equation in time-dependent
potentials which may serve to engineer dynamical protocols to
connect nonadiabatically two different equilibrium states [28].
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Quite generally from studies of collective oscillations it
emerged that the description with the Boltzmann equation
(including the quantum statistics modification of the collision
term [29]) works rather well not only for fermions above the
Fermi temperature TF and for bosons above TBEC, but also for
two-components fermions at temperature smaller than TF and
larger than Tc [30–33]. We also mention that the dynamics
of bosons at finite temperature below TBEC has been studied
resorting to a Boltzmann-like description of the thermal part
of the gas [34]—a similar approach based on the Boltzmann
description of the nonsuperfluid part of a two-component
fermionic mixture has been discussed in [35]. Most of these
studies have been performed in single-well potentials without
tunneling between wells, also given the difficulty of computing
in a quantitatively reliable way the relaxation time τ which is
determined at finite temperature by rare events of hopping
across the wells. Studies of the dynamics of a Bose gas
below TBEC in a periodic multiwell potential were presented in
[36–39], while the study of the fermionic transport in optical
lattices at finite temperature (above Tc) was reported in [40],
where the Boltzmann equation was investigated in local re-
laxation time approximation. The center-of-mass oscillations
of a normal Fermi gas in a one-dimensional periodic potential
were studied both theoretically and experimentally [41,42].

Although from one side a huge effort has been devoted to
the study of quantum tunneling for superfluid atomic gases
in double-well potentials at low temperatures, and from the
other side the study of reaction-rate theory [1] and of the
Boltzmann equation are two workhorses of nonequilibrium
physics, the study of the Boltzmann equation itself in a double-
well potential is to the best of our knowledge a relatively not
addressed topic. Motivated by systems of cold atoms in tunable
geometries at finite (and possibly) variable temperature, in
this paper we therefore study the double-well dynamics of an
interacting gas at finite temperature within the framework of
the Boltzmann equation with the classical collision term.

Our aim is to understand and describe, both qualitatively
and quantitatively, the effect of two-body collisions on the
double-well dynamics. This problem is interesting in view
of current and future experiments with cold atoms at finite
temperature, since our approach can be applied to study the
normal-fluid dynamics in double-well potentials. Here we
examine how a gas in a symmetric double well, prepared with
an initial population imbalance, relaxes towards the number-
balanced equilibrium and we propose a simple analytical
model to describe our numerical findings. Performing a
comparison between numerical and analytical results, we
analyze the relaxation time as a function of barrier heights
and interaction strengths. We observe that, even though we are
not going to consider the effect of the quantum statistics on the
collision term, we expect that both the numerical computations
and the analytical model can be straightforwardly extended to
include such correction and that the relaxation time would
have a similar dependence on barrier heights and interaction
strengths, with qualitative changes of the dependence of τ

on the temperature only for, say, T/TF � 0.5 [30,31] (and
therefore close to Tc in the unitary limit).

The article is organized as follows. In Sec. II we introduce
the formalism briefly describing the numerical method used in
the work. We also define the two model double-well potentials

we consider. The first model is a square-well potential with
a barrier of vanishing width in the middle that provides a
simplified toy model for our numerical and analytical studies.
The second model, which is directly inspired by experimental
work with cold atoms, is the superposition of a harmonic
isotropic potential and a Gaussian barrier. In Sec. III we intro-
duce a simple analytical model for the study of the dynamics.
In Sec. IV and Sec. V we present the numerical results for,
respectively, the square double-well potential and the realistic
one and compare them with the predictions of the analytical
model. Finally, we draw in Sec. VI our conclusions and discuss
possible improvements of the present paper for future work,
while some useful results are collected in the Appendixes.

II. BOLTZMANN EQUATION WITH A DOUBLE-WELL
POTENTIAL

In this section we briefly recall the Boltzmann equation and
introduce the two double-well potentials we consider in the
following. Section II A is devoted to introduce the Boltzmann
equation formalism and recall some of its basic properties used
hereafter, while in Sec. II B we briefly sketch the procedure
for the numerical solution of the Boltzmann equation based on
the test-particle method. Section II C is devoted to introducing
the two double-well potentials studied in this paper: a “toy”
square double well (SDW) with a filtering wall and a more
realistic harmonic-Gaussian double-well (HGDW) potential.
In Sec. II D we define the various time scales appearing in the
double-well problem.

A. Boltzmann equation

We consider a one-component gas of N classical interacting
particles of mass m, in an external potential V (r). The
evolution in time of the phase-space distribution function
f (r,p,t) is governed by the Boltzmann equation [17]

∂f

∂t
+ ṙ · ∇rf + ṗ · ∇pf = −I [f ]. (1)

In the left-hand side ṙ = p/m and ṗ = −∇rV , while in the
right-hand side I [f ] is the collision integral

I [f ] =
∫

d3p1

(2π�)3
d�

dσ

d�

|p − p1|
m

(ff1 − f ′f ′
1), (2)

where dσ
d�

is the differential cross section and the notation
f,f1,f

′,f ′
1 is used as a shortcut for the distribution function

evaluated at the same r,t , but with momenta p,p1,p′,p′
1,

respectively. The normalization condition is
∫

d� f = N ,
and the average of any one-body variable O(r,p) is 〈O〉 =
1
N

∫
d�fO, where the phase-space volume element is d� =

d3r d3p/(2π�)3.
At equilibrium, the distribution function reads

feq(r,p) = e−β( p2

2m
+V (r)−μ), (3)

where β = 1/(kBT ) is the inverse temperature and μ the
chemical potential. The total collision rate at equilibrium can
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be computed exactly using

�eq = 1

2

∫
d3r

∫
d3p

(2π�)3

d3p1

(2π�)3
d�

dσ

d�

|p − p1|
m

feqf1,eq,

(4)

where the factor 1/2 is needed to avoid double counting (since
we are dealing with a one-component gas). Expressions for
the collision rate in a single square well and in a harmonic
potential are collected in Appendix A.

In this work, we consider particles interacting with a
constant cross section, i.e., with no energy or momentum
dependence:

dσ

d�
= σ

4π
. (5)

B. Test-particle method

A fully numerical approach to solve the Boltzmann equa-
tion is provided by the so-called test-particle method, in
which the coordinates of all the particles in phase space
are evolved individually. This method, similar to molecular
dynamics but with a stochastic component, was developed in
the ’80s in the context of nuclear physics [43] and recently
has been applied also to cold atoms [26,33,44–47]. Formally,
the distribution function f (r,p,t) is discretized as a sum of δ

functions peaked at the position and momentum of each test
particle:

f (r,p,t) = N

Ñ

Ñ∑
i=1

(2π�)3δ(p − pi(t))δ(r − ri(t)), (6)

where N is the number of real particles and Ñ is the number
of test particles, those entering the simulation. In some cases
it is convenient to have Ñ �= N : if the number of real particles
is very low, one associates to each real particle many test
particles (Ñ > N ), to describe the evolution in phase space
with a finer resolution. At variance, in the opposite case of
too many real particles to be simulated individually, one test
particle represents many real ones (Ñ < N ) [33]. We observe
that for a generic N/Ñ , the interactions between test particles
are ruled by a cross section that is related to the real one as
follows:

σ̃ = N

Ñ
σ. (7)

In this work, we always take N = Ñ .
The average value of any one-body observable O(r,p) is

obtained as follows:

〈O〉 = 1

N

∫
d� f (r,p,t) O(r,p) = 1

Ñ

Ñ∑
i=1

O(ri ,pi). (8)

In the absence of interparticle interactions, the phase-space
coordinates of each test particle are evolved according to the
Hamilton equations

ṙ = p
m

, ṗ = −∇rV (r). (9)

The actual numerical scheme to integrate them depends on the
potential. In the case of a simple box, particles are propagated

via the Euler method (exact in this case), and the collisions
with the walls are implemented reversing the appropriate
momentum component. For a generic potential, the particle
position and momentum are evolved from the time step tn to
tn+1 = tn + �t via the velocity Verlet algorithm [48]

v(tn+ 1
2
) = v(tn) + a(tn)�t/2,

r(tn+1) = r(tn) + v(tn+ 1
2
)�t, (10)

v(tn+1) = v(tn+ 1
2
) + a(tn+1)�t/2,

with a(t) = −∇V (r(t))/m the acceleration and tn+ 1
2

an inter-
mediate time step.

For interacting particles, collisions have to be implemented
too. The cross section defines an interaction range dint =√

σ/π : in each time step, all the pair of particles (within a
certain distance) are checked, and they are collided if (1) they
reach their closest approach [46] in the time step and (2) their
distance at closest approach is within the interaction range.
A collision takes place randomly assigning new momenta to
the participants, with the constraints of energy and momentum
conservation. In our simulations the trajectories of the colliding
particles are corrected to take into account the fact that the
collision takes place at the closest approach point [46]. One
can check that in the case of a harmonic well this correction
is necessary to respect the balance of kinetic and potential
energy. We have performed reliability tests of our code, similar
to those presented in Ref. [46], to ensure that both propagation
and collisions are correctly implemented.

We conclude this section by noticing that in the double-well
case the correction of trajectories has a drawback, namely,
some particles overcome the barrier even if they should not,
and this leads to a bias flux from the more populated well to
the other one. However, we have checked that the effect on the
relaxation time is at most ∼20% (typically smaller), and we
prefer to keep the correction of trajectories for the reason
explained above. One could adopt a hybrid approach and
accept only corrections that do not cause a “leak” of particles,
but this would considerably slow down the simulation.

C. Two models for the double well

We consider two model potentials for the double well. The
SDW potential has a rectangular energy barrier (of negligible
width) located at the center of the system, which is in turn cho-
sen to be a square well. This SDW has the advantage to be more
simply numerically simulated using the test-particle method
and it allows for an analytical treatment of the approximate
model we are going to introduce in Sec. III for the determina-
tion of the relaxation times in double-well potentials. The other
potential is relevant for cold-atom experiments and it is pro-
vided by the sum of a harmonic potential plus an energy barrier,
chosen of Gaussian form both for simplicity and also because
such a barrier could be created by a superimposed blue-detuned
potential. We refer to the second double-well potential as the
harmonic-Gaussian double-well (HGDW) potential.

The first model (SDW) is a toy model corresponding to a
cubic box of side 2L partitioned into two regions by a filtering
wall: i.e., particles are allowed to pass through it or are reflected
depending upon their momentum component orthogonal to the
wall (say, px). When a particle during its propagation tries to
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cross the plane x = 0, we check for its momentum along x:
if |px | > p0, where p0 = √

2mV0 and V0 is the height of the
barrier, then the particle it is allowed to pass, as if the barrier
were not there; if instead |px | < p0, it is reflected by the barrier.
This model can be seen as a finite barrier of negligible thickness
w → 0, and the corresponding potential reads

V (r)=
{
V0

(
θ
(
x + w

2

) + θ
(

w
2 − x

) − 1
)
, |x|,|y|,|z| � L,

∞, else.

(11)

This model has the advantage to simplify both numerical and
analytical approaches and it allows one to study the effect of
the barrier without introducing a specific shape for it.

The second potential (HGDW) is more realistic and it
represents an isotropic harmonic potential (i.e., a spherical
trap) plus a Gaussian barrier in one direction:

V (r) = mω2
0r

2

2
+ Ṽ e

−x2

2w2 . (12)

This is a realistic form of double-well potential in cold-atom
experiments. In Fig. 1 we represent schematically the two
model potentials at z = 0, as a function of x and y. In this
pictorial representation, the vertical coordinate of the particles
corresponds to their energy.

In both cases, we denote by V0 the barrier height: it
is V0 = p2

0/2m for the SDW, and V0 = V (0) − V (rmin), the
difference of potential energy between the barrier top and the
well minima, in the case of the HGDW.

The quantity we use to follow the macroscopic dynamics
of the double-well problem is the fraction of particles in the
left well at time t ,

xL(t) = NL(t)

N
. (13)

The population imbalance is defined as

�N (t) = NL(t) − NR(t). (14)

In the literature, as in the case of the superfluid dynamics
in double-well potentials, is also often used as well the
relative imbalance z(t) = �N (t)/N . Typically we choose
z(t = 0) > 0.

D. Time scales

There are in general two fundamental time scales that rule
the dynamics of a trapped interacting gas in a confining trap:
one is related to the interparticle interactions, the other to the
external potential.

The average time τcoll between two consecutive collisions
experienced by the same particle is the collisional time

τcoll = (2�eq/N )−1. (15)

On the other hand, the average time τtrap a particle needs to
travel across the whole trap is

τtrap = ltrap

vrms
, (16)

where the root-mean-square velocity at equilibrium is vrms =√
3/(βm), and ltrap the system linear size. The reference length

ltrap is chosen to be 2L for the SDW model (and as well for the

FIG. 1. Plot of the SDW (top) and HGDW (bottom) potentials.
The figures represent V (x,y,z = 0), where V is the potential energy.
Particles are also pictorially shown, with their vertical coordinate
representing their energy.

single square well treated in Sec. III A) and 2
√

2Ṽ /(mω2
0) for

the HGDW model (it is the distance between the two points of
the harmonic trap having energy Ṽ , neglecting the barrier).

Depending upon the frequency of collisions, the gas can
be in different dynamical regimes, the two limiting cases
being the collisionless regime (very rare collisions) and the
hydrodynamical one (very frequent collisions): if τcoll/τtrap →
∞ the gas is collisionless, whereas it is hydrodynamical if
τcoll/τtrap → 0.

For the double-well problem, we are interested in the
time needed to smooth out the initial population imbalance,
and our aim is to relate it to the basic properties of the
system. This defines for double-well potentials a third time
scale, related to the relaxation of imbalance, and that we will
indicate with τ . Classically, the particles can cross the barrier
only if their momentum perpendicular to it is high enough.
Since the momentum is continuously redistributed between
particles in collisional events, we expect that the relaxation
time depends on τcoll. Also, an Arrhenius type of behavior
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1/τ ∝ exp (−βV0) is expected in the limit of large barriers
(βV0 � 1).

These three time scales (τcoll, τtrap, τ ) will of course depend
on the potential considered. Throughout the next sections, for
different reasons, we deal with a square single well, a square
double well, a harmonic oscillator, and a harmonic-Gaussian
double well. To keep as light as we can the notation, we use the
following convention: within any subsection, unless otherwise
stated and denoted (respectively with sw, SDW , HO, and
HGDW ), we intend that the potential-dependent quantities
are computed within the potential under consideration.

III. SIMPLE ANALYTICAL MODEL

In this section we develop a simple analytical model to
describe the effect of collisions on the relaxation dynamics.

This model takes inspiration from the tight-binding ansatz
used for the Gross-Pitaevskii equation in double- or mul-
tiwell potentials [10,49,50]. The Gross-Pitaevskii equation,
describing the dynamics of a superfluid, is an equation for a
complex wave function ψ : one then introduces two degrees of
freedom for ψ (phase, ϕ, and number, N ) and this leads for
a double-well potential to the introduction of four degrees of
freedom, two per well (say ϕL, ϕR and NL,NR in the left, L,
and right, R, wells). These four degrees of freedom are not
independent since the total number of particles NL + NR is
constant. Via these four nonindependent degrees of freedom
one then obtains a simplified, yet very good, description of the
superfluid tunneling dynamics in the weakly coupled regime.

Of course, for a classical gas in a double-well potential,
there is no tunneling and the distribution f is not a complex
number: anyway, one can still think to introduce suitable
degrees of freedom per well and after coupling the two wells
via the Boltzmann equation one obtains a description of the
double-well dynamics. This leads to a simplified model, which
allows for an approximate estimate of the relaxation time τ .
It is the choice of the degrees of freedom in the separate
wells (effectively one in the model below, or eventually
more for a more accurate description) that characterizes the
model. Such choice is suggested by the form of the potential
and by the properties of the physical system at hand: as
an example, in [51] a simplified model was introduced to
study the nonequilibrium distribution functions for electrons
in the electrodes of a metal-insulator-metal junction, while
charge transfer and coherence dynamics of a tunnelling system
coupled to an harmonic oscillator were studied in [52].

In our case, we proceed to a rather drastic modelization
of the Boltzmann equation dynamics taking into account that
it is the energy barrier V0 that sets an energy scale, dividing
particles in two classes: the particles having energy larger than
V0 (which then can move from one well to the other) and the
particles having energy smaller than V0 (which do not) [53].
The mechanism for which particles can move from the latter
class to the former is provided by interactions: two particles
scatter below barrier and as a consequence of the scattering
one of the two, conserving energy, has an energy larger than
V0. Finer details, such as higher-order scattering processes,
are neglected. As a result the model is not expected to give
a quantitatively accurate prediction of the relaxation time.
Nevertheless, since the estimate of the relaxation time is in

general a not simple problem, and what in particular is difficult
is the determination of prefactors, it provides simple analytical
formulas which are in general qualitatively reasonable. In the
regime of intermediate barriers (βV0 ∼ 1) the agreement is
found to be also quantitative.

We start with the single-well problem: this allows one to
classify the different types of collisions that will play a role in
the double-well case and quantify their relative importance.

A. Square single well

Consider N particles in a cubic box of volume � having
size 2L. This is the same potential that will be considered in
the next Sec. III B, except the fact that there a filtering wall is
added in x = 0.

In view of the double-well potential problem which we
are interested in, we choose a reference momentum p0 and a
reference energy V0 = p2

0/2m (remember that here this choice
is arbitrary since there is no barrier yet). We define ltrap ≡ 2L

and N>(t) [N<(t)] the number of particles of the gas having
|px | > p0 (|px | < p0) at time t . Clearly, N>(t) + N<(t) = N

at any time, and, at equilibrium, collisions maintain them to
their equilibrium values N

≷
eq (given in Appendix B). However,

what is their evolution in time if the system starts from a
situation with N≷ �= N

≷
eq ?

We make the following assumption for the distribution
function:

f (p,t) = g>(p)N>(t) + g<(p)N<(t), (17)

where

g>(p) ≡ e−β( p2

2m
−μ>)θ

(
p2

x − p2
0

)
(18)

and

g<(p) ≡ e−β( p2

2m
−μ<)θ

(
p2

0 − p2
x

)
. (19)

β equals 1/(kBT ) where T is the equilibrium temperature,
and the chemical potentials μ≷ are constant (see Appendix
B) and such that

∫
d� g≷(p) = 1, so that

∫
d� f = N>(t) +

N<(t) = N , as it should. Notice that the choice Eq. (17)
implies a distribution that is uniform in space, thermal for
py and pz, and has a discontinuity in the px momentum
distribution at p2

x = p2
0. Since the number of particles in the

well is fixed there is only an independent parameter, e.g. N>(t),
in Eq. (17) (given that the g’s are fixed by β and V0).

Let us now consider, among all the possible collisions,
those that will alter N> and N<. In a collision, each of the two
incoming and outgoing particles can have momentum along
x above or below the reference values: 16 cases are therefore
possible. Among these, there are six types of processes altering
N≷, namely

A : (<<; <>), B : (<>; <<),

C : (>>; <>), D : (<>; >>),

E : (<<; >>), F : (>>; <<). (20)

For example, with the notation (<<; <>) we mean that in the
collision the two incoming particles have |px | < p0, whereas
one of the outgoing ones (order does not matter) is above and
one below reference. Let us indicate as �i , i = A,B,C,D,E,F
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the rates of each kind of process: the evolution in time of N≷

satisfies

Ṅ>(t) = �A − �B − �C + �D + 2�E − 2�F ,
(21)

Ṅ<(t) = −�A + �B + �C − �D − 2�E + 2�F ,

and Ṅ>(t) + Ṅ<(t) = 0, as it should. Each term �i is
multiplied by an appropriate factor taking into account the
changes in N≷ the process implies. By a direct computation
of the rates it is found that

�A = γ1(r<)2; �B = γ1r
>r<,

�C = γ2(r>)2; �D = γ2r
>r<, (22)

2�E = γ3(r<)2; 2�F = γ3(r>)2,

where r≷(t) ≡ N≷(t)/N≷
eq . At equilibrium, r

≷
eq = 1 and the

rates of the processes just defined are equal two by two: �
eq
A =

�
eq
B , �

eq
C = �

eq
D , and �

eq
E = �

eq
F . The factors γi , i = 1,2,3

are appropriate equilibrium phase-space integrals detailed in
Appendix C. They are proportional to the equilibrium collision
rate: in fact, they are given by

γi = �eqhi(βV0), i = 1,2,3, (23)

where V0 = p2
0/2m is the reference energy and hi are

adimensional functions (see Appendix C).
Inserting these results into Eq. (21) we get

Ṅ> = −�eq(r> − r<)[(h1 + h3)r< + (h2 + h3)r>], (24)

or, equivalently, dividing by N :

ẋ> ≡ Ṅ>

N
= −�eq

N
(r> − r<)[(h1 + h3)r< + (h2 + h3)r>].

(25)

Therefore, according to this model, the relaxation dynamics
of the single-well problem depends only upon the parameter
βV0; all the others (T , N , σ , m, and the volume �) enter only
through the combination N/�eq [see Appendix A, Eq. (A3)]
with the result of setting a time scale for the problem, i.e., a
prefactor entering the time τ in which the particles move from
above (below) to below (above) the reference energy.

The stationarity condition is

r< = r> ⇔ N> = N>
eq, N< = N<

eq. (26)

The fraction of particles that at equilibrium is above
reference (have p2

x > p2
0) can be easily evaluated and is

x>
eq ≡ N>

eq

N
= erfc(

√
βV0). (27)

In panel (a) of Fig. 2 we show (lines) the various rates
at equilibrium vs βV0. The rates obtained in the simulation at
equilibrium are also shown (points) as a check of the numerical
algorithm. The empty symbols denote the rates in a single
well, and the full symbols denote the rates in a double well.
The presence of the filtering wall prevents collisions between
particles on different sides, unless both have high enough
energy; we also verified that �i and �eq are separately very
similar for the single square well and the SDW since the effect
of the tiny barrier on these bulk quantities is negligible.

10-4
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10-1

100

 0  0.5  1  1.5  2

Γ i
/Γ

eq

βV0

(a)

A, B
C, D
E, F
sum
A
B

C
D
E
F
sum sw
sum SDW

 0

 0.04

 0.08

 0.12

 0.16

 0  0.5  1  1.5  2

h i

βV0

(b)

h1
h2
h3

FIG. 2. Rates at equilibrium. Panel (a): equilibrium rates (lines)
of the processes A, B (dashed), C, D (dot-dashed), E, and F (double-
dashed), defined in (20), and their sum vs βV0. The rates are equal two
by two and correspond to h1,h2,h3/2. The simulations (points) were
performed for a square single-well potential, with parameters N =
5000, L = 0.5, and T = 10. Results with (full symbols) and without
(open symbols) a barrier are shown. Panel (b): the adimensional
functions h1, h2, and h3 (with linear scale in vertical axis) vs βV0.

From panel (a) of Fig. 2 we also see that, out of all the
collisions taking place, the processes affecting N≷ (full line)
are, on the whole, always a percentage smaller than 50%
and, for βV0 = 2, have already decreased to ∼10%. In our
simulations, we will always consider βV0 < 2. Concerning
the relative importance of the different processes, A and B are
the most probable ones for βV0 � 0.5.

For completeness, we show in panel (b) the adimensional
functions hi(βV0), i = 1,2,3; notice that these quantities,
strictly related to those shown in panel (a) [see Eq. (22) and
Eq. (23)], are shown here using a linear scale in the vertical
axis.

Finally, we would like to emphasize that, while of course
the total collision rate �eq depends on the trap shape (see
Appendix A), the ratios �i/�eq do not (see Appendix C). In
fact, the spatial dependence factors out and cancels between
numerator and denominator, leaving only integrals over the
momenta. Therefore, also the data obtained in a realistic trap
would fall on top of the curves of Fig. 2(a).
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We now discuss the linearization of the dynamical equations
(24) and the drawbacks of the analytical model.

1. Linearization and relaxation time

The evolution in time of N> is ruled by the nonlinear
equation (24). If linearized around the equilibrium, it admits an
exponentially decaying solution N>(t) = N>

eq + b e−t/τ with
the single-well relaxation time τ that (omitting details) reads

τ = N

�eq

erfc(
√

βV0) erf(
√

βV0)

h1 + h2 + 2h3
= 2τcoll

x>
eq(1 − x>

eq)

h1 + h2 + 2h3
.

(28)

In the last equality we used Eq. (15) and Eq. (27).

2. Shortcomings of the analytical model

The simple assumption Eq. (17) is expressed in terms of just
one dynamical degree of freedom, N>(t): this choice does not
allow one to respect energy conservation exactly. The energy
of our gas is purely kinetic and can be computed at any time
from the distribution function as

E(t) =
∫

d� f (p,t)
p2

2m
. (29)

At equilibrium, it yields correctly Eeq = 3
2

N
β

. However, the
assumption Eq. (17) implies the following energy variation:

δE(t)

Eeq
= N>(t) − N>

eq

N
C(

√
βV0), (30)

where

C(x) = 2

3
√

π

x e−x2

erfc(x)erf(x)
. (31)

The function C is positive for x � 0: it starts from C(0) = 1/3
and increases for larger values of x. So, by construction, energy
conservation is violated in the analytical model as soon as
N> �= N>

eq. We can expect the model to be better as long as
|δE(t)/Eeq| remains small enough during the whole evolution.
However, we explored different initial conditions having the
same �N (t = 0) and we observed that even in cases in which
|δE(t)/Eeq| becomes relatively large, the estimate of τ is good
due to a compensation of effects. It also emerged that the
estimate of τ appears to be better when δE is positive.

The limitations due to the nonconservation of the energy
could be overcome by choosing a structure for f (p,t) with at
least a further independent degree of freedom: for example,
one could introduce a variable giving the amount of energy
above the reference energy V0.

B. Square double well

We now insert an energy barrier inside the box of Sec. III A,
obtaining the SDW potential. To be specific, assume the box
is [−L,L]3 and the barrier located at x = 0. The barrier is
perfectly transparent for particles with momentum |px | > p0

and perfectly reflecting for particles with momentum |px | <

p0. The energy associated to the barrier is V0 = p2
0/2m.

We can now straightforwardly extend the model seen for
the single well to this case: we write

f (p,t) = fL(p,t) + fR(p,t), (32)

as in Eq. (17) with fα(p,t) = g>
α (p)N>

α (t) + g<
α (p)N<

α (t) and
α = L,R denoting the well. Since the role played by V0 is the
same as in the single-well model, the g’s depend on β and V0 in
the same way and they do not depend on α: gL = gR ≡ g. The
numbers of particles in the two wells are NL = N>

L + N<
L and

NR = N>
R + N<

R . Now we have four variables or components
N>

L , N<
L , N>

R , N<
R . The equations of motion are

Ṅ>
L = −�′

eq(r>
L − r<

L )[(h1 + h3)r<
L + (h2 + h3)r>

L ]

− kA(N>
L − N>

R ),

Ṅ<
L = �′

eq(r>
L − r<

L )[(h1 + h3)r<
L + (h2 + h3)r>

L ],

Ṅ>
R = −�′

eq(r>
R − r<

R )[(h1 + h3)r<
R + (h2 + h3)r>

R ]

+ kA(N>
L − N>

R ),

Ṅ<
R = �′

eq(r>
R − r<

R )[(h1 + h3)r<
R + (h2 + h3)r>

R ]. (33)

We have denoted with a ′ the quantities referring to N ′ ≡ N/2
particles in a volume �′ ≡ �/2: of course, the density is the
same and therefore the collision rate per particle is the same
too (�′

eq/N
′ = �eq/N ).

We observe that N>
L , N<

L , N>
R , N<

R obey the condition N>
L +

N<
L + N>

R + N<
R = N (N is the total number of particles in

the double well) resulting in three independent parameters.
However, during the first part of the dynamics, the particles
above the barrier rapidly flow from one well to the other
practically giving N>

L ≈ N>
R , and therefore the independent

parameters in the subsequent dynamics are in practice just
two.

With respect to the single-well case Eq. (24), there is a
qualitatively new term coupling the L and R sides of the
barrier: it is a diffusion term giving the rate of particles passing
from one side of the wall to the other

Ṅ>
L

∣∣∣
diff

= −�NL→R

�t
+ �NR→L

�t
= −kA(N>

L − N>
R ). (34)

The coefficient kA (Arrhenius) is

kA = 1

L
√

2πβm

e−βV0

erfc(
√

βV0)
. (35)

A global factor 1/L in kA arises from the ratio between the
area of the filtering wall and the volume of each partition: it
would be replaced, in a more general geometry, by �/�′.

1. Linearization and relaxation time

Linearizing Eqs. (33) around equilibrium, we find they
admit the following solution:

xL(t) = 1

2
+ c1e

λ1t + c2e
λ2t , (36)

where the eigenvalues are found to be

λ1,2 = −1

2
[2kA + ksw ±

√
(2kA + ksw)2 − 8kswkAx>

eq]

≡ − 1

τ1,2
. (37)
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We have defined the single-well rate ksw ≡ 1
τsw

, with τsw the
single-well relaxation time given by Eq. (28). We also denoted
the eigenvalues so that τ1 is larger than τ2. In the comparison
with the numerical results (see next sections), since τ2 is
associated to the short-time dynamics and τ1 to the long-time
one, we plot τ1 as the analytical prediction for the relaxation
time. In the limit of large cross sections, τ1 tends to the diffusive
limit τ1,diff ≡ limσ→∞ τ1 = L

√
πβm/2eβV0 .

Since x>
eq is small, one can get more insight approximating

the eigenvalues to lowest order in x>
eq:

τ1 �
(

1

ksw
+ 1

2kA

)
1

x>
eq

, τ2 � 1

2kA + ksw
. (38)

Notice that τ1 is a sum of two terms, one depending on the
collision (to which we may refer as τ1,coll) and the other not
(τ1,diff). The latter term is dominating for large σ , and for all
σ it is τ1 � τ1,diff .

We can also write τ1 as

τ1 � L
√

βm

[
4√
π

1

N ( dint
L

)2

erf(
√

βV0)

h1 + h2 + 2h3
+

√
π

2
eβV0

]
,

(39)

where dint = √
σ/π is the length scale associated to interac-

tions.
Summarizing, in the cubic box with a filtering barrier (the

DSW model) we get

− 1

τ1
= −1

2
[2kA + ksw −

√
(2kA + ksw)2 − 8kswkAx>

eq],

(40)

where the coefficients are

ksw = �eq

N

h1 + h2 + 2h3

x>
eq(1 − x>

eq)
, (41)

kA = 1

L
√

2πβm

e−βV0

x>
eq

, (42)

and x>
eq is given in Eq. (27).

C. Adapting the analytical model to the harmonic-Gaussian
double well

As an approximation for the realistic double well, we
suppose we can still use Eq. (40), but with other coefficients:

kHGDW
sw = 2�eq,HO at min,N/2

N

h1 + h2 + 2h3

x>
eq(1 − x>

eq)
, (43)

kHGDW
A = ωmin

2π

e−βV0

x>
eq

, (44)

with x>
eq as given in Eq. (27).

In fact, the rates hi are the same in any potential V (r),
because they are global quantities in which spatial dependence
cancels out (see Appendix C). What changes when passing
from the toy to the realistic double well are the rate of
collisions, entering ksw, and the characteristic frequency,
entering kA. In Eqs. (43) and (44) we have used the harmonic
approximation of the realistic HGDW well close to its minima,
where ω2

min = 2 ln (Ṽ /mω2
0w

2) and �eq,HO at min,N/2 is the

rate for N/2 particles in a harmonic trap of frequencies
(ωx,ωy,ωz) = (ωmin,ω0,ω0) (see Appendix A). As a conse-
quence of the modification of kA, also the expression of the
diffusive limit of τ1 is altered into τHGDW

1,diff = π
ωmin

eβV0 .

IV. NUMERICAL RESULTS FOR THE SQUARE
DOUBLE WELL

We show in this section the numerical results of test-particle
simulations for the SDW model potential. We consider a
system with given N , density, and temperature (N = 5000,
L = 0.5, T = 10) and vary the barrier height V0 and the cross
section σ . In all the simulations, the initial population is 60%
in the left well and 40% in the right one; the initial momentum
distribution is the thermal equilibrium one with the same
temperature in both wells. A comment is in order about units:
in this section we use units in which � = kB = m = 1 and
2L = 1.

As an example, we show in Fig. 3 the evolution in time
of population imbalance for two values of V0. The curves are
obtained averaging over 40 runs with different microscopic
initial conditions and smoothing over small time intervals.
These two procedures are necessary because the barrier
crossing is a rare event and leads to large fluctuations in the
well population. Notice that this is not a numerical artifact:
also in an experimental realization it would be very useful
to average over different realizations to be able to observe
the population evolution in time clearly for large barriers. As
a consequence of the smoothing, the curves in Fig. 3 start
from values different from 0.6: for example, in the case of
a very low barrier, V0 = 1, the adjustment from xL = 0.6 to
xL � 0.53 was very fast.

The obtained behavior can be nicely fitted with a single
exponential decay

f1(t) = a + b e−t/τ (45)

 0.5

 0.52

 0.54

 0.56

 0.58

 0  50  100  150  200

x L

t

T=10, V0=7.5

T=10, V0=1

simulation
fit

FIG. 3. Dynamics in the SDW potential. Time evolution of the
well population for two barrier heights. Parameters: N = 5000, L =
0.5, T = 10, and σ/π = 0.0012. The barrier height is V0 = 1 for the
lower curve and V0 = 7.5 for the upper one. The simulation curves
are obtained averaging over 40 runs with different microscopic initial
conditions and smoothing over small time intervals. The fits (dotted
lines) are done with the function f1(t) = a + b e−t/τ .
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FIG. 4. SDW potential relaxation times. The inverse relaxation
time 1/τ , in units of 1/τtrap, as a function of βV0 for different
values of the cross section: σ = π (0.001,0.004,0.008,0.016)2 with
xL(t = 0) = 0.6. The system is a box of size 2L = 1, with N = 5000
particles, at T = 10 and different barriers V0. The numerical results
are denoted by points. Each point is obtained from an average over
40 runs [64 for the largest value of the cross section σ/π = 0.0162]
and smoothing over small time intervals. The fits are done in the
whole time interval, using one of the three functions f1(t) (full
circles), f2(t) (stars), and f3(t) (full squares) defined in the text.
Different gray scales indicate different values of the cross section. For
comparison, we show (lines) the results obtained in an approximated
analytical solution presented in Sec. III, namely τ1 obtained using
Eqs. (40), (27), (41), and (42). The diffusive limit τ1,diff is also shown
(short-dashed line). Inset: inverse of τ rescaled in units of collisional
time τcoll. Gray scales correspond to the same cross section as the
main figure.

that allows one to extract the relaxation time τ . For other
choices of the cross section or other barrier heights, the
evolution in time of xL(t) is sometimes more complex, showing
an oscillatory behavior at the early times or an exponential
decay with two clearly separated time scales. Therefore, in
the following, to extract the relaxation time τ from xL(t), we
will also consider the fitting functions f2(t) = a + b e−t/τ +
c cos(ωt + d)e−t/τ2 and f3(t) = a + b e−t/τ + c e−t/τ2 .

In Fig. 4 we show the results for the relaxation time for
an initial imbalance of 20% [xL(t = 0) = 0.6], and different
values of the cross section σ = π (0.001,0.004,0.008,0.016)2

as a function of βV0. The relaxation time is shown in units of
τtrap, that for the SDW model is τtrap = 2L

√
βm/3. Any point

is the result of a fit done on a curve obtained averaging 40
(64 in the case of the largest cross section) runs with different
microscopic initializations. The fits are done on the whole
available time interval, and the chosen fitting function is the
one leading to the smaller χ2. The point gray scale indicates
the value of the cross section and the point shape the fitting
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10-2

10-1

100

 0  0.004  0.008  0.012  0.016

τ t
ra

p/
τ

dint=(σ/π)1/2

βV0 = 0.75

simulation

τtrap /τ1
τtrap /τ1,diff

FIG. 5. SDW model potential. Inverse relaxation time 1/τ , in
units of 1/τtrap, as a function of dint for a given barrier height, βV0 =
0.75. Parameters and the meaning of symbols and lines are the same
of Fig. 4. The numerical results are denoted by points and the model
prediction by lines.

function: f1 (full circles), f2 (stars), and f3 (full squares). In
the inset we show again the inverse relaxation time, but in
units of the collisional time: in this scale all the points fall in
a narrow region (notice that the range of values in the vertical
axis of the inset is much smaller than in the main plot), showing
that it is the collisional time that gives the major contribution
to τ .

In Fig. 5 we focus on a single barrier height and show the
dependence of τ (again in units of τtrap) upon the interaction
strength.

Comparison with the analytical model predictions

In Fig. 4 and Fig. 5 we compare the numerical results with
the predictions of the analytical model for the SDW (lines). The
model in general predicts a faster relaxation (smaller τ ) than
what was found in the simulation, and as the barrier height
increases the agreement is deteriorated. In Fig. 4 one sees,
however, that for low and intermediate barriers the agreement
is rather satisfactory.

A feature that the model captures nicely is the dependence
of the relaxation time upon the interaction strength: in Fig. 4
one can see that, as the cross section increases, both types of
curves accumulate towards the diffusive limit. This finding is
better seen in Fig. 5, where we fix the relative barrier height
at an intermediate value (βV0 = 0.75) and study the evolution
of τ with the interaction strength.

To better understand the discrepancy between the simu-
lation and the model, and identify a possible improvement
of the latter, we have analyzed several moments of the
momentum distributions in the simulations (averages of | �p|i
with i = −2, − 1,1,2,3,4). In the model we describe the
gas with four components [(< ,L),(> ,L),(< ,R),(> ,R)] and
assume that the population of each of them evolves in time,
but the shape of the momentum distribution “>” and “<” is
fixed and determined uniquely by T and V0 [see Eq. (32)].
Also, we assume that the parameter T is the same for all
the four components, and that at any time it is the same it
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FIG. 6. Dynamics in the HGDW. Evolution of xL with time, for three values of the temperature. The gas contains N = 5000 particles,
with an initial imbalance of xL(t = 0) = 0.6. The well parameters, in trap units, are Ṽ = 10, dint = 0.06, w = 0.8 (therefore, V0 � 7.6), and
the temperatures T = 5 [panel (a)], 7 [panel (b)], and 20 [panel (c)]. To express them in dimensional units, reported in the top x axis, we
need to specify the trap frequency ω0 and the particle mass: for 6Li atoms and with ω0 = 2π × 300 Hz one has Ṽ /kB = 144 nK, dint =
142 nm = 2684a0, w = 1.89 μm, and T = 72,101,288 nK. These values are realistic for 6Li atoms in a double well potential as in the recent
experiment [16] (which is anyway done below Tc). The fits (dotted lines) are done with the function f2(t) = a + b e−t/τ + c cos(ωt + d)e−t/τ2 .
The values of τ and ω fitted from the data for figures (a),(b),(c) in trap units are respectively τ = (37.2 ± 0.2,22.8 ± 0.2,18.6 ± 0.4) and
ω = (0.99 ± 0.03,0.962 ± 0.002,0.9859 ± 0.0001).

will be at equilibrium. After an analysis of the simulation
momentum distributions, we conclude that to improve the
analytical model one should promote the temperatures of the
“<” components to dynamical degrees of freedom [T<,L(t)
and T<,R(t)], and add an extra equation of motion to describe
the transport of energy. In fact, during the relaxation, the
distributions are compatible with Maxwell-Boltzmann ones,
but the temperature < ,L (< ,R) is smaller (larger) than the
equilibrium T . In a typical set of simulations the difference
between the temperatures is of ∼ ± 5% (e.g., for d = 0.008,
V0 = 10, and T = 10). It is not easy to assess the quantitative
impact of this difference on the final relaxation time, because
the presence of two temperatures in each well would imply
a generalization of the formulas for the rates of the various
processes [Eq. (22)]. However, we can expect that its effect
is twofold, since the temperature affects (1) the total collision
rate [see Eq. (A3)] and (2) the relative frequency of a certain
process (see Fig. 2). Since, during the equilibration, the left
well is more populated, it is reasonable that a lower effective
temperature in part of this well will slow down the relaxation.

V. NUMERICAL RESULTS FOR THE
HARMONIC-GAUSSIAN DOUBLE WELL

In this section we present our results for the realistic
HGDW, Eq. (12), that is a combination of a spherical harmonic
trap and a Gaussian barrier along one direction. We start with
an initial configuration with 60% of the particles in the left well
and 40% in the right one; their initial momentum distribution is
the thermal equilibrium one with the same temperature in both
wells. To prepare this configuration numerically, we start with
the balanced population and then move 10% of the particles
from the right to the left well.

We then let the system evolve: xL(t) results from a combi-
nation of a center-of-mass oscillation due to the harmonic
trapping, and the relaxation of population imbalance. We
choose to fit such behavior with the f2 fit function f2(t) = a +
b e−t/τ + c cos(ωt + d)e−t/τ2 , where the third term represents

the damped center-of-mass oscillation. We have checked
this interpretation exciting explicitly the c.o.m. motion, i.e.,
considering a balanced cloud and displacing it as a whole by
a certain amount. The frequency and damping of this c.o.m.
mode are in reasonable agreement with those extracted from
the oscillation that arises when the system is prepared with an
initial population imbalance and not displaced.

We fix the double-well parameters and study the relaxation
dynamics for different temperatures and interactions. In all the
cases we have N = 5000 particles and the initial imbalance is
20% [i.e., xL(t = 0) = 0.6]. The curves are obtained averaging
over 40 different microscopic realizations and smoothing over
small time intervals. Since we are in the presence of a harmonic
trap, in this section we use the harmonic-oscillator units (or trap
units), in which all the dimensional quantities are built from
�,kB,m,ω0 as usual. For example, Eho = �ω0, lho = √

�/mω0,
and so on. To pass to physical units, values have to be chosen
for the mass m and the trap frequency ω0. The well parameters
we use, in trap units, are Ṽ = 10 and w = 0.8 (therefore,
V0 � 7.6).

In Fig. 6 we show three typical behaviors of xL(t): they
correspond to a given cross section and different temperatures,
increasing from left to right. The frequency ω of the c.o.m.
oscillation is very close to ω0 at high temperatures, where
the presence of the barrier does almost not affect the cloud
oscillation; at lower temperatures, instead, it is reduced to
smaller values.

Repeating similar calculations for a set of temperatures and
interaction strengths, we obtain the results shown in Fig. 7.
In some cases, in which the c.o.m. oscillation is not visible
anymore, we use the fitting function f3 to extract the relaxation
time. As before, the symbol shape indicates the fitting function
used, with a notation similar to that of Fig. 4. Comparing with
the analogous plot for the SDW, Fig. 4, we see an analogous
accumulation of curves as the cross section increases. The
dependence upon βV0 seems qualitatively different: the point
is that here, along a curve for a given cross section, the global
collision rate changes, whereas this was not the case in Fig. 4.
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FIG. 7. HGDW relaxation time. The inverse relaxation time 1/τ

as a function of βV0, obtained varying the temperature (the trap is
fixed as in Fig. 6 with a barrier height V0 � 7.6). The numerical
results are denoted by points. Different gray scales correspond
to different values of the cross section: σ = π (0.03,0.06,0.12)2 =
π (71,142,284)2 nm2. Each point is obtained from an average over 40
runs. The fits are done in the whole time interval, using either f2(t)
(full circles) or f3(t) (stars). The dimensional quantities reported in
the figure are obtained as in Fig. 6. For comparison, we show as lines
the results obtained in an approximated analytical solution presented
in Sec. III, namely τ1 obtained using Eqs. (40), (27), (43), and (44).
Inset: inverse of τ rescaled in units of collisional time τcoll. Gray
scales correspond to the same cross section as the main figure.

If we rescale all the curves by the corresponding equilibrium
collision rate (as shown in the inset of the Fig. 7), we see that
they all fall in the same region and the trend so obtained is
similar in the SDW and in the HGDW.

In Fig. 7, together with the numerical results, we show also
(lines) the analytical predictions obtained extending our model
to the realistic double-well case (see Sec. III C). Next, in Fig. 8,
we show the analogous of Fig. 5 for the realistic HGDW well,
for βV0 � 0.76: the qualitative behavior is the same and it is
nicely reproduced by the analytical model.

In the figures of this section (Figs. 6–8), together with the
harmonic-oscillator units, we show also axes with physical
units: they are obtained assuming the 6Li mass and a trap
frequency ω0 = 2π × 300 Hz. With the considered dimen-
sionless values given above, one obtains realistic values for 6Li
atoms in a double-well potential as in the recent experiment
[16]: the main difference between the parameter values used
here and the experimental ones in [16] is that the experiment
reported in [16] is done for superfluid fermions below Tc, while
here we are exploring temperatures above Tc.

Estimates for a two-component Fermi gas

Finally, we can use our results to make an approximate
prediction for a balanced two-component mixture of 6Li.
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FIG. 8. HGDW potential. Inverse relaxation time 1/τ as a
function of dint for the same trap of Fig. 6 and a given temperature
(T = 10, then βV0 = 0.76). The numerical results are denoted by
points and the model prediction by lines. The meaning of symbols
and lines are the same of Fig. 7. The dimensional units are obtained
as explained in the caption of Fig. 6.

In fact, in this case we would have two species, equally
populated (N↑ = N↓) with only interspecies interactions. In
the Boltzmann framework, we would have two distribution
functions, but they coincide if the mode and the potential do
not depend upon the “spin”: just one distribution normalized
to N↑ is needed. Our calculations for 5000 classical particles
correspond therefore to a balanced mixture of 104 fermions.
Anyway, notice that we are not including Pauli blocking
in the collision term and we are approximating the cross
section with a constant. Of course, the one we present is
not a full calculation for fermions. However, we recall that
in the context of collective modes it has been found that the
inclusion of Pauli blocking alone may lead to results that are
in worse agreement with experiment than classical results. In
a refined theory one should include both Pauli blocking and
medium effects, that turn out to compensate each other in
particular for large interactions and this cancellation leads to a
remarkable agreement with classical Boltzmann results above
Tc as discussed for unitary fermions [25,30]. Therefore, we
expect that results based on the classical Boltzmann equation
without inclusion of in-medium effects and Pauli blocking
may give reasonable estimates for our double-well potential,
especially for small initial imbalances.

With this in mind, in Fig. 9 we plot the same results of
Fig. 7, as a function of T/TF , with TF = (6N↑)1/3 the Fermi
temperature in a harmonic trap, and N↑ = 5000. We observe
that in the thermal regime higher-order partial waves can play a
role [22]: however, we estimated that such effects are important
for temperatures much larger than TF , while our simulations
are between ∼0.1TF and ∼1.3TF .

Notice that, even if we are not explicitly considering the
effect of the quantum statistics on the collision term, both
numerical computations and the analytical model can be
straightforwardly extended to include it: we expect that, at
temperatures T/TF � 0.5 (and in any case larger than Tc), the
relaxation time has a similar qualitative dependence on barrier
heights and interaction strengths.
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FIG. 9. HGDW potential. Inverse relaxation time 1/τ as a
function of T/TF , for a fixed barrier V0 � 7.6. The results for τ

are the same of Fig. 7, here shown in a different representation. The
Fermi temperature has been computed as TF = (6N↑)1/3: that is, the
Fermi temperature for a balanced mixture having N↑ = N↓ = N in
a harmonic well. For details on the parameters and the dimensional
units, see the caption of Fig. 6.

VI. CONCLUSIONS

In this work we presented a study of the double-well
dynamics of a classical gas that obeys the Boltzmann equation,
with the purpose of assessing the role played by collisions in
the relaxation of population imbalance between the two wells.
We think that a detailed study of the Boltzmann equation
in a variety of double-well potentials is a rewarding subject
of interest, not only for its paradigmatic and pedagogical
importance, but also to concretely model currently ongoing
experiments in a range of temperature T � Tc (Tc being the
critical temperature for superfluidity) and to set a basis for
further quantitative theoretical studies of tunneling of ultracold
atoms at finite temperature below Tc, in particular near Tc.

Two model potentials have been considered: a toy square
double-well (SDW) potential with a filtering wall and a
more realistic double well obtained by combining a Gaus-
sian to a harmonic potential (HGDW) which is of interest
for experimental realizations with ultracold atoms. In both
cases, we have performed numerical simulations (test-particle
method) of the relaxation dynamics from an initial imbalanced
population of the symmetric wells to the balanced equilibrium,
in a range of cross sections σ values and barrier heights
V0/T . For convenience, in the toy SDW potential we have
fixed the temperature and varied the barrier height, whereas
in the realistic HGDW one we have fixed the trap shape,
therefore the barrier height, and varied the temperature. We
have also provided a detailed discussion of the time scales
of the problem, namely the collisional time τcoll, the time
associated to the external potential τtrap, and the time τ with
which the population imbalance equilibrates (see Sec. II D).

Our numerical results obtained using the test-particle
method show that the particles already above the barrier
at the initial time spread fast across the system. The main
contribution to the relaxation time τ comes from the particles
below barrier which can reach the other well through scattering

processes. We find that τ exponentially increases with the
barrier height, as expected, and that the larger is the interaction
the faster is the relaxation. Our numerical results indicate that,
for βV0 fixed, when increasing the interaction strength the
relaxation time saturates to a finite value.

Beside the numerical results, we have also presented an
analytical model for the dynamics that allows one to compute
the relaxation time analytically from the system parameters.
The dynamical variables of our model are the number of
particles in each well, below and above the potential barrier,
which satisfy a set of nonlinear differential equations in
which parameters depending upon the temperature and the
double-well pontential enter. Upon linearization, our simple
model predicts a fast relaxation time τ2 and a slow relaxation
time τ1 which, in the limit of large cross sections, tends
to the diffusive limit τ1 ∼ eβV0 , also in agreement with an
Arrhenius-type law. An advantage of the model is that it also
yields an estimate of the prefactor in front of eβV0 in τ1. The
model also predicts that the relaxation time saturates to a finite
value for increasing cross sections.

The physical content of our work can be summarized
by observing that the thermal Boltzmann dynamics of a
classical gas in a double-well potential can be efficiently
simulated through the test-particle method. The results can
be interpreted with a simple analytical model which shows a
reasonable agreement with the numerical findings for low up
to intermediate barriers (βV0 � 1). The agreement improves
in the case of the realistic HGDW potential in a wide range of
barrier heights and interaction cross sections.

The relaxation of some of the constraints we imposed on
the distribution functions in the analytical model may naturally
provide a better agreement with the numerics. Monitoring
the momentum distributions of the simulation allowed us to
identify and discuss possible improvements of the analytical
model. In particular a concrete possibility would be to put
time-dependent effective temperatures below the barrier.

As a possible continuation of this study, it would be
interesting to compare our results with those obtained in the
framework of a Klein-Kramers equation in the presence of a
barrier [1]: to this end, the friction parameter appearing in the
Klein-Kramers equation should be appropriately (we mean,
quantitatively) computed.

In the final part we used our results to estimate the relaxation
times for a set of parameters which are realistic for ongoing
experiments with mixtures of fermionic 6Li cold atoms in a
double-well potential above the critical temperature. Another
extension of this work, relevant for ultracold atom experiments
at low temperature, would be to include, beyond the classical
crossing mechanism studied here, the hopping via quantum
tunneling: a possible way could be to include an effective ad
hoc term in the Boltzmann equation or to couple the Boltzmann
equation to the equations for the superfluid dynamics.
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APPENDIX A: COLLISION RATES AT EQUILIBRIUM

In a generic potential and for constant cross section, the
collision rate at equilibrium reads

�eq = 2σ√
πβm

∫
d3r ρ2

eq(r), (A1)

where ρeq(r) = ∫
d3p/(2π�)3feq(r,p) is the local equilibrium

density: in some cases, this integral can be performed analyti-
cally.

For a box with hard walls, the distribution function reads

feq(p) = e−β( p2

2m
−μ), (A2)

where μ the chemical potential. The normalization condition∫
d� f = N sets the value of the chemical potential eβμ =

�
3(2πβ/m)3/2ρ where ρ = N/�. One then finds

�box
eq = 2N2σ

�
√

πβm
= 2Nρσ√

πβm
. (A3)

The average time in a square single well between two
consecutive collisions of the same particle is

τ box
coll = (

2�box
eq /N

)−1 = 1

4

√
πβm

ρσ
. (A4)

On the other hand, the average time a particle needs to travel
across the whole box is

τ box
trap = �1/3

vrms
= �1/3

√
βm

3
, (A5)

where the root-mean-square velocity at equilibrium is vrms =√
3/(βm). Defining the adimensional quantity α ≡ τ box

coll /τ
box
trap ,

if α → 0 the gas is hydrodynamical, whereas it is collisionless
if α → ∞. The condition on α turns out to be a purely
geometrical one since

α =
√

3π

4

1

�1/3ρσ
: (A6)

if the volume and number of particles are fixed, it is a condition
on the cross section σ .

Finally, we use in the text the equilibrium collision rate
for a harmonic anisotropic trap V (r) = m(ω2

xx
2 + ω2

yy
2 +

ω2
zz

2)/2, which is given by

�HO
eq = σN2βmωxωyωz

4π2
. (A7)

APPENDIX B: CHEMICAL POTENTIALS FOR THE
SQUARE SINGLE WELL

Regarding the chemical potential, in a square single well μ

is such that

e−βμ = 1

N

�

(2πβ/m)3/2�3
. (B1)

On the other hand, the chemical potentials μ≷ entering the
analytical model presented in Sec. III are given by

e−βμ< = �

(2πβ/m)3/2�3
erf(

√
βV0) (B2)

and

e−βμ> = �

(2πβ/m)3/2�3
erfc(

√
βV0). (B3)

The equilibrium values of N≷ are

N>
eq = N erfc(

√
βV0), N<

eq = N erf(
√

βV0). (B4)

APPENDIX C: RATE COEFFICIENTS γi AND hi

For a gas of N particles in a volume �, the rates introduced
in Sec. III A [see relations (20), (21), and (22)] are

γ1 = �
eq
A = e2βμ�

∫
d3p1d

3p2

(2π�)6

dσ

d�′ d�′ |p1 − p2|
m

e−β
p2

1+p2
2

2m �
(
p2

1x − p2
0

)
�

(
p2

0 − p2
2x

)
�

(
p2

0 − p′2
1x

)
�

(
p2

0 − p′2
2x

)
,

γ2 = �
eq
C = e2βμ�

∫
d3p1d

3p2

(2π�)6

dσ

d�′ d�′ |p1 − p2|
m

e−β
p2

1+p2
2

2m �
(
p2

0 − p2
1x

)
�

(
p2

2x − p2
0

)
�

(
p′2

1x − p2
0

)
�

(
p′2

2x − p2
0

)
, (C1)

γ3 = 2�
eq
E = e2βμ�

∫
d3p1d

3p2

(2π�)6

dσ

d�′ d�′ |p1 − p2|
m

e−β
p2

1+p2
2

2m �
(
p2

0 − p2
1x

)
�

(
p2

0 − p2
2x

)
�

(
p′2

1x − p2
0

)
�

(
p′2

2x − p2
0

)
,
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where the prefactors come from the relation eβμ>N>
eq = eβμ<N<

eq = eβμ that can be easily checked. The equilibrium total collision
rate is

�eq = 1

2
e2βμ�

∫
d3p1d

3p2

(2π�)6

dσ

d�′ d�′ |p1 − p2|
m

e−β
p2

1+p2
2

2m . (C2)

By passing to adimensional variables, it’s easy to see that hi ≡ γi/�eq are functions of βp2
0/2m (i.e., of βV0) only.

Notice that these ratios are global equilibrium quantities. We computed them in the uniform case; however, they are the same
in any potential V (r): in fact, the spatial dependence would factorize out and cancel between numerator and denominator.
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[20] P. Pedri, D. Guéry-Odelin, and S. Stringari, Phys. Rev. A 68,
043608 (2003).

[21] P. Massignan, G. M. Bruun, and H. Smith, Phys. Rev. A 71,
033607 (2005).
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