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Abstract

We study the error propagation of time integrators of solitary wave solutions for the regularized long wave
equation,ut +ux+ 1

2(u
2)x −uxxt = 0, by using a geometric interpretation of these waves as relative equilibria. We

show that the error growth is linear for schemes that preserve invariant quantities of the problem and quadratic for
‘nonconservative’ methods. Numerical experiments are presented. 2001 IMACS. Published by Elsevier Science
B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to analyze the growth with time of the error of time-integrators for solitary
wave solutions of the regularized long wave (RLW) equation. For this problem, we establish a better error
propagation for schemes that conserve invariants of the equation. These conservative methods exhibit a
linear error growth, while for ‘general’ integrators, the propagation with time of the error is quadratic. The
evolution of these invariants in the numerical integration is also influenced by the conservation properties
of the scheme considered.

The advantages ofgeometric integrators[28], i.e., of methods that mimic geometric properties of the
system of differential equations being integrated, are well known in the case of ordinary differential
equations [5–7,14]. In Refs. [9,12], partial differential equations, as the Korteweg–de Vries equation and
the nonlinear Schrödinger equation, have been analyzed. These works are in the origin of the present
paper, along with the geometric study given in Ref. [11]. We prove that the mechanisms leading to
favorable error propagation, that were studied to those equations, can be applied to this case.
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Our results are based on several facts: first, the RLW equation admits aHamiltonian structure[1]. It

also possesses asymmetry group[1,23], generated by one of its invariants. In this context, solitary wave

solutions arise from arelative equilibrium problem[1]; this means that these solutions are critical points

of the Hamiltonian function restricted to level sets of the invariant associated to the symmetry group. This

provides a geometric point of view to understand the role of the conserved quantities in the problem.

On the other hand, in order to approximate these traveling wave solutions, we need to investigate their

stability. Several papers perform classical stability analyses for this kind of waves [2–4,34], but, for our

numerical treatment, we make use ofasymptotic stabilityresults. The papers [26] and [33] were used in

[9] and [12], respectively. In this case, asymptotic stability for RLW solitary waves were first observed

numerically [13,22] and the proof of this property is obtained in [21].

The benefits of conservative schemes for this problem are shown in some aspects. The first one, as

we mentioned previously, is the more efficient behaviour in time of the error. Another point is that the

numerical solution may admit an asymptotic expansion in which a new solitary wave appears. This is the

so-calledmodified solitary wave, that comes from the original one through perturbations in time of the

wave parameters: amplitude, velocity and initial location. We point out that these perturbations depend

on the conservative character of the integrator considered. A final comment concerns the evolution of

the conserved quantities through the numerical approximation. Here, the relative equilibrium problem,

solved by the solitary waves, states a dependency between the invariants involved. This relation implies

a better behaviour of the conservative methods for this matter.

The paper is structured as follows: Section 2 describes some relevant properties of the problem being

considered, as the Hamiltonian structure of the equation and the symmetry group we will deal with; we

also interpretate the solitary wave solutions as relative equilibria. In Section 3 we analyze the linearization

of the equation around one of these solitary wave solutions, while Section 4 is devoted to the main results

and to numerical experiments.

A natural extension of this paper concerns the application of these techniques to interactions of solitary

waves. The equations studied in [9,12] are examples of integrable partial differential equations: they

possess an infinite number of conserved quantities and the so-called soliton property, for which the

nonlinear interaction of solitary wave solutions leaves the waves basically unaltered. This is not the

case of the RLW equation, which has only a finite number of invariants [24], which indicates that the

equation is nonintegrable. The solitary wave interaction problem for the RLW equation has been studied

numerically in several papers (see, for example, Refs. [13,15,16,30]) and, from this point of view, the

present work can also be another starting-point in the treatment of this problem.

Some other generalizations of our analysis can be considered. Miller and Weinstein [21] extend

their asymptotic stability analysis to the solitary wave solutions of the modified RLW equation,

ut + ux + 1
3(u

3)x − uxxt = 0, and our numerical study could be applied here. On the other hand, the

behaviour of higher order terms in the expansion of the error or different discretizations may also be the

subject of future work.
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2. The regularized long wave equation

2.1. Hamiltonian structure and symmetry groups

The equation treated in the present case is the regularized long wave (RLW) equation

ut + ux + 1
2

(
u2)

x
− uxxt = 0, −∞< x <∞, t > 0. (1)

Eq. (1) appears in many physical applications [8,27,35], and it has been studied extensively. A classical
reference is Ref. [3]; in fact, (1) is also referred to as the Benjamin–Bona–Mahoney equation. Results on
the existence of solutions can also be seen in Ref. [21] and numerical works concerning (1) are numerous
as well [8,13,15,16,30]. In the present work, we focus on the Hamiltonian structure of (1). In this case,
the phase spaceΩ for the Hamiltonian formalism consists of sufficiently smooth real functionsu of the
spatial variablex with its derivatives decreasing sufficiently fast at infinity. Thus, Eq. (1) can be expressed
as the following infinite-dimensional evolution equation, in Hamiltonian form

du

dt
= J δH(u), (2)

whereJ is the skew-adjoint operator [3,21,27],

J =−(1− ∂xx)−1∂x, (3)

δ denotes variational derivative and the energyH is given by

H(u)=
∞∫
−∞

(1
2u

2+ 1
6u

3)dx. (4)

The Hamiltonian structure associated to the operator (3) is determined by thePoisson bracket[20,23]

{F,G} =
∞∫
−∞

δFJ δGdx. (5)

Observe that (5) admitsCasimir functions[20,23]; they are functionals with zero Poisson bracket with
any other functional. In particular, they give rise to trivial conserved quantities of Eq. (1), see Ref. [23].
In the subsequent analysis we make use of one of these Casimir functions

C(u)=
∞∫
−∞

udx, (6)

which we call ‘mass’. The RLW equation also admits another conserved quantity (‘momentum’)

I (u)=
∞∫
−∞

(1
2u

2+ 1
2u

2
x

)
dx. (7)

Observe thatδI (u)= 1− ∂xxu; then the Hamiltonian vector fieldvI = J δI (u)=−ux associated with
I , is theinfinitesimal generator[23] of the one-parameter symmetry group of Eq. (1),

Gε

(
u(x)

)= u(x − ε), ε ∈ R, (8)
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that consists of translations in the spatial variable. This means thatGε is the flow of the vector fieldvI .
In terms of the Poisson bracket (5), the condition forH to admit the symmetry group (8) is{I,H } =
constant. In fact, sinceI is a first integral of (1), we have{I,H } = 0. The Casimir function (6) is not
associated to any other group.

2.2. Solitary wave solutions

Eq. (1) admits a two-parameter family of solitary wave solutions [10,35] that can be seen as relative
equilibria [1] associated to the symmetry group (8). The reduction described in Refs. [11,12] can be
applied to this case. Here, the phase spaceΩ is foliated by level sets{I = k} of the first integralI . These
level sets are manifolds that, because of the involution condition{I,H } = 0, are invariant by the flow of
(1), that is an initial condition on{I = k} leads to a solution of (1) remaining on this level set for all t.
On the other hand, due to the fact that{I, I } = 0, each orbit{Gε(u), ε ∈ R} of the symmetry group is
contained in a level set{I = k}. Thus, each of these level sets is foliated by orbits of the group and we can
construct the corresponding reduced phase space [1,23], that is, the quotient space consisting of points
that are orbits in the original phase space, determined by the valuek. On each reduced phase space, the
original Hamiltonian system leads to a new Hamiltonian system, the reduced system [1,23], that governs
the time evolution of the group orbits, that is the evolution ofu modulo translations inx.

For a fixed level set{I = k} we look for relative equilibriau0 ∈Ω [1]

δH(u0)− cδI (u0)= 0, (9)

I (u0)= k, (10)

for, initially, c ∈ R. We are looking for stationary points ofH restricted to the level set. The group
orbit through a relative equilibriumu0 is an equilibrium of the reduced system. The condition (9) foru0

generates a solution of (1) from this initial value in a simple way, given by the one-parameter symmetry
subgroup:u(t) = Gtc(u0) [11]. Then, the time evolution of the initial profile is given by a translation
governed by parameters growing linearly with time.

The substitution of (9) for this case gives

cu
′′
0− (c− 1)u0+ 1

2u
2
0= 0,

generating, forc > 1, the solution

u0(x)= 3(c− 1)sech2
(

1

2

√
1− 1

c
x

)
. (11)

The level set (10) determines the relation with the parameterc:

k = 12(c− 1)2√
1− 1/c

(
1+ 1

5

(
1− 1

c

))
.

The group orbit throughu0 gives rise to a one-parameter family of solutions

ϕ(x, x0)=Gx0(u0)= u0(x − x0). (12)

Every solution (12) projects onto the same equilibrium in the reduced phase space. Finally, we obtain the
solutions of (1) given by

ψ(x, t, c, x0)=Gtc(ϕ)= 3(c− 1)sech2
(

1

2

√
1− 1

c
(x − ct − x0)

)
. (13)
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This is a two-parameter family of solitary wave solutions. The parameterc determines not only the
velocity of the wave but also its amplitude (compare with Refs. [9,12]), with the taller the wave the faster
it travels. On the other hand,x0 governs the initial location.

3. The variational equation

3.1. The homogeneous linearized equation

The time propagation of the error in the numerical integration of solitary wave problems for (1) can be
studied in terms of the corresponding linearized equation of (1) near a relative equilibrium solution like
ψ in (13). If δ denotes the perturbation ofψ from an initial small changeψ(x,0, c, x0)+ εδ0(x), thenδ
satisfies the homogeneous variational equation

(1− ∂xx)δt + ∂x(δ+ψδ)= 0. (14)

With the change of variables given by the symmetry groupδ =Gtc1 [12] we can write (14) as

1T −1ξξT + c1ξξξ + ∂ξ((1− c)1+ψ1)= 0, (15)

with ξ = x − ct − x0, T = t . Now, (15) can be expressed as an evolution equation

1T = L1, (16)

with the operatorL given by [21]

L= (1− ∂ξξ )−1∂ξLc, (17)

Lc =−c∂ξξ + c− 1−ψ(ξ). (18)

As in Ref. [12] we will also treat with the corresponding nonhomogeneous variational equation for source
terms that admit{Gtc: t ∈ R} as a symmetry group. By using the change of variables above, we can
present this nonhomogeneous case as

1T = L1+ s, (19)

with s constant.
In order to study (16) in more detail, we consider the Sobolev spaceH 1

a [21,26] that consists of
functionsv(ξ) such that eaξv(ξ) ∈H 1(R), for a constanta with 0< a <

√
1− 1/c. The norm considered

is

‖v‖H1
a
= ∥∥eaξ v∥∥

H1.

Observe that the solitary waveψ(ξ) and its derivatives belong to this space.
The spectral properties of the operatorL are analyzed in Ref. [21]:

Lemma 3.1. There existsc∗ > 1 such that for allc ∈ (1, c∗] and for all but a discrete set ofc> c∗, λ= 0
is the only eigenvalue ofL in H 1

a with Reλ> 0, where0< a <
√

1− 1/c. The geometric multiplicity of
this eigenvalue is1 and the algebraic multiplicity is2. The generalized kernel ofL, Kerg L, is spanned
by the functions
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Φ1(ξ)= ∂ψ
∂x0

, (20)

Φ2(ξ)= ∂ψ
∂c
, (21)

withLΦ1= 0, LΦ2=Φ1.

Then, (16) has solutions of the form

αΦ1= β(Φ2+ TΦ1),

which, in terms of the original variablesx, t , are linear combinations of the partial derivatives of the
solitary wave with respect tox0 andc. They represent changes of the wave due to the perturbation of
its parameters. Explicitly,Φ1 corresponds to the group generatorvI at the solitary wave and therefore
induces changes in the locationx0. On the other hand,Φ2 is associated to modifications in the solitary
wave corresponding to changes in the value ofI , determined byc.

We denote byP the projection ofH 1
a onto the generalized kernel ofL and byQ its complementI −P ,

that is,

Pv = 〈v,Ψ1〉Φ1+ 〈v,Ψ2〉Φ2,

Qv = v − Pv.
(22)

Here,Ψ1 andΨ2 form a basis of the generalized kernel of the adjoint operatorL∗ of L, where〈· , · 〉
denotes theL2 inner product. These functions can be chosen in such a way that〈Φi,Ψj 〉 = δij . More
precisely [21],

Ψ1= θ1

(
∂ξΦ2−

ξ∫
−∞

Φ2(y)dy

)
+ θ2(1− ∂ξξ )ψ,

Ψ2= θ3(1− ∂ξξ )ψ,
(23)

where

θ1=− 1

(d/dc)I(ψ)
, θ2=−1

2

(
(d/dc)C(ψ)

(d/dc)I(ψ)

)2

, θ3= θ1.

In fact,L∗Ψ2= 0 andL∗Ψ1=−Ψ2. Observe thatΨ2 is essentially the gradient of the invariantI evaluated
at the solitary waveψ .

An important result to analyze the solutions of the nonhomogeneous version (19) is also due to Miller
and Weinstein [21]. They show that the operatorL generates aC0 semigroup with exponentially decaying
H 1
a norm on the spectral complement of its generalized kernel.

Lemma 3.2. Assume that0< a <
√

1− 1/c and thatλ = 0 is the only eigenvalue ofL in H 1
a with

Reλ> 0. LetQ denote the projection ontoKerg(L∗)⊥ (see(22)). If 1(T ) is a solution of(16) with initial
condition10 ∈H 1

a ∩Q(H 1
a ), then1(T ) ∈H 1

a ∩Q(H 1
a ) for all T and there are constantsk1, k2> 0 such

that ∥∥1(T )∥∥
H1
a
6 k1e−k2T ‖10‖H1

a
. (24)
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That is, solutions of (16) with initial data inX = H 1
a ∩ Kerg(L∗)⊥ decay exponentially to zero in

H 1
a norm ast →∞. As far as theH 1 norm is concerned, observe that solutions of (16) conserve the

functional

F(1)=
∞∫
−∞

(
c

2
(∂ξ1)

2+ (c− 1)

2
12− 1

2
ψ12

)
dξ,

(recall thatc > 1); therefore, if1(T ) is a solution of (16), we have

∥∥1(T )∥∥2
H1 6

2

c− 1
F
(
1(T )

)+ 1

c− 1

∞∫
−∞

ψ12 dξ

= 2

c− 1
F(10)+ 1

c− 1

∞∫
−∞

ψe−2aξ12e2aξ dξ

6 2

c− 1
F(10)+C

∥∥1(T )∥∥
H1
a

∥∥1(T )∥∥
H1

6 2

c− 1
F(10)+ 1

2

∥∥1(T )∥∥2
H1 +C ′∥∥1(T )∥∥2

H1
a
.

Now,F(10) can be written in terms of‖10‖H1 and we have the following estimate:

Lemma 3.3. Under the conditions of Lemma3.2, if 10 ∈X ∩H 1, then there existsk1, k2> 0 such that∥∥1(T )∥∥
H1 6 k1

(‖10‖H1 + e−k2T ‖10‖H1
a

)
. (25)

Observe that, since the symmetry group (8) consists of translations, the growth with time of solutions
of (14) is similar to that of solutions of (16). The estimate (25) implies that the only source of growth
with time of these solutions comes from its component in the generalized kernel ofL, that is the term
that represents perturbations in the parameters of the solitary wave.

3.2. The nonhomogeneous variational equation

The results above are essential to study the solutions of (18). Ifs = s(ξ) ∈ H 1
a , we can decompose

s = sP + sQ with sP ∈ Kerg L, sQ = Qs ∈ X. By using Lemma 3.1, we can writesP = s1 + s2 with
s1 ∈ KerL ands2 in a supplement of KerL in Kerg L. More precisely,

s1= α1Φ1, s2= α2Φ2,

with

αi = 〈s,Ψi〉, i = 1,2. (26)

In this context, we have

Lemma 3.4. If 0< a <
√

1− 1/c and s ∈ H 1
a , the solution of(19) with zero initial condition can be

written in the following way:

1(T )= α1TΦ1+ α2

(
T Φ2+ T

2

2
Φ1

)
+ Γ (T ), (27)
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whereα1, α2 are given by(26). The functionΓ is of the form

Γ (T )=
T∫

0

exp
(
(T − τ)L)sQ dτ. (28)

Moreover, ifsQ ∈ H 1 and there existsβ ∈ H 1 ∩H 1
a such thatsQ = Lβ, thenΓ (T ) remains, for allT ,

bounded in theH 1 norm.

Proof. The expression (27) can be proved by using Duhamel’s principle and the previous results in a
similar way to that of Ref. [12]. Observe that we can write

1(T )= T s1+
(
T I + T

2

2
L

)
s2+

T∫
0

exp
(
(T − τ)L)sQ dτ,

whereI is the identity operator. The substitution ofs1 ands2 proves the first part of the lemma. Note that
the estimate (25) shows that, ifsQ ∈H 1, thenΓ (T ), with a bounded integrand, grows at most linearly
with time in theH 1 norm. On the other hand, ifQs is in the range of the operatorL,Qs = Lβ for
β ∈H 1∩X (note thatQ(H 1

a ) is invariant byL), then we can writeΓ (T ) in the form

Γ (T )= (exp(T L)− I)β,
and we use Lemma 3.3 to conclude the proof.2
Remarks.

(a) Note that the first two terms in (27) correspond to the projection of the solution on Kerg L, with
its components in KerL (T s1 and(T 2/2)Ls2) lying in the direction of the group generator at the
solitary wave solution. The component in Kerg L but not in KerL corresponds to the variation of
the relative equilibrium with respect to the parameterc, that governs the level manifold. Then,
this first part represents perturbations in the wave parameters, growing quadratically with time in
the direction of KerL (in the group parameterx0) and linearly in the level set parameterc. If the
source terms is orthogonal to the gradient ofI evaluated at the solitary wave, thens2= 0 and the
growth is linear.

(b) The behaviour of the integralΓ (T ) in (28) shows that the perturbations that do not correspond
to changes in wave parameters grow at most linearly with time in theH 1 norm. In the following
section, we deal with smooth source termss = s(ξ) in H 1 ∩ H 1

a which are orthogonal to the
gradients of the invariantsC and I at the solitary wave. In this case, these perturbations can
be controlled inH 1 norm uniformly in time. To see this, we first observe that the orthogonality
conditions imply

〈s,1〉 = 〈s,Ψ2〉 = 0,

with Ψ2 given by (23). Therefore,

〈Qs,1〉 = 〈s,1〉 − 〈s,Ψ1〉〈Φ1,1〉 − 〈s,Ψ2〉〈Φ2,1〉 = 〈s,Ψ1〉〈Φ1,1〉 = 0

(the last expression vanishes because〈Φ1,1〉 = 0). Then we can define

F(ξ)=
ξ∫

−∞
Qs(y)dy,



A. Araújo, A. Durán / Applied Numerical Mathematics 36 (2001) 197–217 205

that is a smooth function inH 1 ∩H 1
a such that∂ξF =Qs. On the other hand, the operatorL can

be written as

L= ∂ξMc, Mc = (1− ∂ξξ )−1Lc,

andLc, given by (18), is selfadjoint inL2 with KerLc = span(∂ξψ) [33]. Now, we have〈
(1− ∂ξξ )F,∂ξψ〉=−〈∂ξF, (1− ∂ξξ )ψ〉=− 1

θ2
〈Qs,Ψ2〉 = 0.

This means thatF is in the range ofMc; therefore,Qs is in the range ofL and the last part of
Lemma 3.4 applies.

4. Numerical approximation

4.1. Main results

We make use of the preceding theoretical results in order to study the behaviour in time of
approximations to a solitary wave of the family (13). We consider a semidiscrete (discretet , continuousx)
one-step integrators for the initial value problem for (1) of the form

Un+1= χ1t(Un
)
, (29)

where1t denotes the time step,Un =Un(x) is a numerical solution at time leveltn = n1t, n= 0,1, . . . ,
andχ1t approximates the flow of the equation. Thus, ifU0= u0, thenUn is an approximation to the value
u(tn) of the solutionu of (1) with initial conditionu0.

We make some additional hypotheses about the method (29). Takingu0 as the relative equilibrium
ϕ like (12) and if the corresponding solutionψ in (13) is approximated by (29) withU0 = ϕ, we first
assume that the local error atψ , that is the difference between the true1t-flow atψ andχ1t (ψ), admits
an expansion of the form

1tr+1l(ψ)+1tr+1R(ψ,1t), (30)

wherer is the order of the method,l,R are mappings defined inΩ with values inΩ, l is independent of
1t and‖R(· ,1t)‖H1→ 0 as1t→ 0. It is also reasonable to suppose thatl = l(ψ) is a smooth function
in H 1∩H 1

a , since this mapping depends onψ and its derivatives, which belong to this space [9].
The second hypothesis states the invariance of the mappingχ1t by the one-parameter group{Gtc:

t ∈ R} so that the mappingl in (30) admits this group as a symmetry group. Note that, since the group
consists of translations and most standard integrators are invariant with respect to linear transformations
[31], this condition is not restrictive.

Finally, we also assume that the global errorUn(x)−ψ(x, tn) has an asymptotic expansion of the form

Un(x)−ψ(x, tn)=1tre(x, tn)+1trq(x, tn,1t), −∞< x <∞, (31)

where the functione is independent of1t and satisfies the corresponding nonhomogeneous variational
equation [7]

(1− ∂ξξ )et + ∂x(e+ψe)=−l(ψ), −∞< x <∞, t > 0,

e(x,0)= 0.
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Moreover,q is a remainder that, for fixedt , tends to zero in theH 1 norm as1t→ 0.
The following theorem describes the asymptotic behaviour with time of the approximation to the

solitary wave, given by (29).

Theorem 4.1 (i) (General case).Assume that(30), (31)hold andχ1t is invariant by the one-parameter
group {Gtc: t ∈R}. Then, we have

Un(x)=ψ(x, tn, c̃, x̃)+1trρ(x, tn)+1trQ(x, tn,1t), (32)

where

c̃= c+ α2tn1t
r , (33)

x̃ = x0+
(
α1tn + α2

t2n

2

)
1tr , (34)

with αi =−〈l,Ψi〉, i = 1,2. The functionρ is independent of1t and there is a constantC > 0 such that
‖ρ(· , t)‖H1 6Ct . The functionQ is a remainder such that, for fixedt , ‖Q(· , t,1t)‖H1→ 0 as1t→ 0.

(ii) (Conservative case). If the method(29) satisfies〈
l, δI (ϕ)

〉= 0, (35)

then(33)–(34) hold withα2= 0. Moreover, if

〈l,1〉 = 0, (36)

then the functionρ is bounded in theH 1 norm uniformly in time.

Proof. The proof of (i) is similar to that of Ref. [12]. Observe that the termρ corresponds to the
component of the functione that lies in the spectral complement of the generalized kernel ofL [27].
By using Lemmas 3.3 and 3.4 this term grows, in general, at most linearly in time. On the other hand, if
the method satisfies (35), sinceΨ2 is, except multiplicative constant, the gradient of the invariant at the
solitary wave (see (23)), then it is clear thatα2= 0.

It remains to prove the last part of (ii). But if (35), (36) hold, then Remark (b) of Section 3.2 applies
and the functionρ is bounded in theH 1 norm. 2

From the expansion (32) we note that the so-calledmodified solitary wave[9,12], that is the first term
of the right hand side of (32), has a new velocityc̃ given by (33) (and, therefore, a new amplitude) that
is a linear with time perturbation of the velocityc of the original wave. The new locatioñx, given by
(34), differs from the originalx0 in terms that grow quadratically with time. If the method conserves the
quantity I , then [9] it satisfies (35) and the modified wave keeps the original velocity (and, therefore,
amplitude) while the perturbation ofx0, that determines the modified locationx̃, reduces its growth,
being only linear. Note that the same conclusion can be reached if the method preserves the Hamiltonian
(4) instead ofI . In this case, the leading term of the local error is orthogonal to the gradient ofH at the
solitary wave; but the relative equilibrium condition (9) implies that this gradient is proportional to the
gradient ofI at this wave and, therefore, the scheme also satisfies (35).

We can also note that, if the method conserves the Casimir functionC, then (36) holds. But, sinceC
is a linear functional, it is preserved by practically all methods used in practice [17], so (36) is not an
exigent condition.



A. Araújo, A. Durán / Applied Numerical Mathematics 36 (2001) 197–217 207

The second term1trρ of the right hand side of (32) is acomplementary term[9,12] that represents
errors of leading order O(1tr) not associated to changes in the parameters of the wave. Recall that it
corresponds to the component of the leading term of the global error inX. In the ‘conservative’ case, this
term is bounded in theH 1 norm, being necessary to impose the conservation not only of the quantityI

but also of the CasimirC in order to obtain this bounded behaviour. Note that the invariantC does not
seem to play any role in the perturbation of the parameters of the solitary wave solution (see (33), (34))
while we can see the influence of the invariantI in both the modified wave and the complementary term.

Finally, the third term in (32)1trQ is a remainder of higher order o(1tr).

4.2. Numerical experiments

The purpose of the experiments below is to show some advantages in the use of numerical schemes
that conserve some invariant in the numerical integration of the solitary wave problem for (1), rather than
to compare the efficiency of the methods. This idea will influence not only in the type of experiments
being presented, but also in the choice of the integrators being used.
• From this point of view, we first consider the well-known implicit midpoint rule, which we call

[ICM]. This method has order two and conserves quadratic invariants of the system being integrated
[29]. In our case, it preserves the quantityI but not the Hamiltonian (4).
• We can interchange the invariant to be preserved and construct a second-order method [HCM] that

conserves the Hamiltonian but not the functionalI [19,32]. This scheme can be written as

Un+1=Un −1t(1− ∂xx)−1∂x
(
Un+1/2+G(Un,Un+1)),

Un+1/2= U
n +Un+1

2
,

G
(
Un,Un+1)= F(Un+1)− F(Un)

Un+1−Un
, F (U)= 1

6
U3.

• Finally, the Simply Diagonally Implicit Runge–Kutta method [NCM],

γ 0

1− 2γ γ

1
2

1
2

with γ = (3+√3)/6 and order three (see Ref. [18]), has been chosen to illustrate the behaviour of
a typical nonconservative scheme, because this method does not preserve any of the quantitiesI,H .

It is not difficult to prove that the three methods considered conserve the Casimir functionC. In
fact, we have preferred to use schemes with some degree of competitivity instead of to construct mass
nonpreserving integrators.

We present results concerning approximations to the solitary wave (13) with parametersc = 2
(amplitude 3) andx0 = −10. To implement the methods, we use a fully aliased pseudospectral spatial
discretization in such a way that, virtually, errors obtained correspond only to the time discretization [9].
This makes possible to observe the error growth with time in more detail. We successively refine the
spatial grid until one is found for which no further error reduction is possible. On the other hand,
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standard analysis can check the validity of the hypotheses of the Theorem 4.1 for the three integrators
considered [12]. We classify the numerical experiments presented in three classes:
• Differences in long time behaviour of the approximations in connection with conservation

properties.
• Differences between the elements of the solitary wave solution and the form of the corresponding

numerical approximation.
• Differences in time behaviour of the invariantsI andH through numerical integration.
We first study the propagation in time of the global error of each method. Fig. 1 shows theL2 norm

of the error as a function of time, in log-log scale, up totmax= 200. Here, the solid lines correspond to
[ICM] and the dashed lines to [NCM]. Fig. 2 only differs from Fig. 1 in the scheme associated to the
solid lines, that now represent [HCM]. The step sizes (for the two figures) are1t = 1

20,
1
40,

1
80,

1
160.

The results of Table 1, which gives the errors at the final timetmax= 200 for the three methods, show
the order of convergence,r = 2 for [ICM] and [HCM] andr = 3 for [NCM]. This can also be observed
in Figs. 1 and 2 by watching the distance between parallel lines corresponding to a given method. On
the other hand, the slopes of the lines show that, for [ICM] and [HCM], errors grow linearly with time,
while for [NCM] the growth is quadratic aftert = 10 (compare with the lines plotted in the right down
corner of the figures). Recall that the second-order methods [ICM] and [HCM] conserve, respectively,
the momentumI and the HamiltonianH ; according to Theorem 4.1, the parameters of the solitary wave
solution are perturbed in terms that grow at most linearly with time. The behaviour in error propagation
must be different in the case of [NCM], that does not preserve any of the quantities and, in fact, the leading
term of its local error does not satisfy (35); here, the perturbations of the parameters grow quadratically
with time.

From Figs. 1 and 2 we can also observe that, for some values of the time step1t , [ICM] and [HCM]
give smaller errors at the final timetmax= 200 than the third order scheme [NCM] (see, for example, the
lines corresponding to1t = 1

20,
1
40). The different behaviour with time of the error propagation suggests

that, for long time integrations, it seems to be advisable to use an integrator with some conservation
property.

The conservative character of a scheme has influence not only on the perturbations of the parameters
of the wave (and therefore in the construction of the corresponding modified solitary wave) but also on
the behaviour in time of the complementary term (see Theorem 4.1). This can be analyzed numerically,
for moderate values oft , by computing the parameters of the modified solitary wavec̃ and x̃, and by
measuring the errors between this new wave and the corresponding numerical solution. Table 2 gives
these modified errors, inL2 norm, for the three schemes, at the final timetmax= 200. Observe that in all
cases, the modified error for any of the values of1t considered is smaller than the corresponding true
error (compare with Table 1). Most of the error is incorporated to the perturbations of the parameters that
determined the modified solitary wave. Figs. 3 and 4 illustrate the evolution in time of the modified error
for [HCM] and [NCM], respectively (the case of [ICM] is similar to that of [HCM] and it provides
no further information). Recall that the theoretical results reveal that, in the conservative case, the
complementary term is bounded in time, while in the general case, the growth of this element is at
most linear witht . This different behaviour is shown in Fig. 3, reflecting the bounded behaviour in the
conservative case, and in Fig. 4, where error grows linearly with time.

Note that, since we only analyze the evolution in time of the leading term of the global error, not many
things can be said about the remainder, whose behaviour in time should also affect in some way. At this
point, two facts can be remarked. First, from Table 2 we see that, in the case of the second-order methods
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Fig. 1.L2-error againstt . Solid line: [ICM]; dashed line: [NCM]. The time steps are1t = 1
20,

1
40,

1
80,

1
160. The

broken lines at the bottom show the slopes for linear and quadratic growth in time.

Fig. 2.L2-error againstt . Solid line: [HCM]; dashed line: [NCM].1t = 1
20,

1
40,

1
80,

1
160. The broken lines at the

bottom show the slopes for linear and quadratic growth in time.
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Table 1
Errors with respect to the solitary wave att = 200

1t [ICM] [HCM] [NCM]

1E−01 6.5680E−01 5.7426E−01 −
5E−02 1.6527E−01 1.4447E−01 3.9329E−01

2.5E−02 4.1371E−02 3.6164E−02 4.9593E−02

1.25E−02 1.0346E−02 9.0438E−03 6.2069E−03

6.25E−03 2.5866E−03 2.2611E−03 7.7595E−04

3.125E−03 6.4667E−04 5.6530E−04 9.6989E−05

Table 2
Errors with respect to the modified solitary wave att = 200

1t [ICM] [HCM] [NCM]

1E−01 8.1552E−02 3.8517E−02 1.4539E−01

5E−02 1.9753E−02 9.0863E−03 3.6307E−03

2.5E−02 4.8981E−03 2.2376E−03 2.5108E−04

1.25E−02 1.2220E−03 5.5732E−04 3.1149E−05

6.25E−03 3.0538E−04 1.3918E−04 3.9005E−06

3.125E−03 7.6328E−05 3.4786E−05 4.8719E−07

[ICM] and [HCM], modified errors behave as O(1t2) suggesting that, for the values of1t considered,
the complementary term dominates over the remainder; however, the influence of the remainder is noted
in the case of [NCM], where modified errors do not have an O(1t3) behaviour for moderate values of
1t relative to the final time of integration (see the values of the modified error corresponding to [MCN]
for 1t = 1

10,
1
20,

1
40, in Table 2). When we have smaller values of the time step, the complementary term

becomes dominant. This seems to show that, for a long final timetmax, we need smaller1t to find the
leading order of the method in the modified errors.

On the other hand, by making the final time of integration longer and by retaining a fixed1t ,
we have observed that, in the conservative case of [ICM] and [HCM], the bounded behaviour of the
complementary term is lost, being substituted by the growth of terms hidden in the remainder. Note that
the expansion (32) is not uniform, in the sense that this remainder will in general grow with time [7].
Here we conclude the first type of numerical experiments.

The structure of the numerical solution can be nicely illustrated by plotting the solitary waves. Here,
other differences are noted. Fig. 5 shows, att = 100, the true solitary wave, with solid line, while the
broken line and the crosses represent, respectively, the modified solitary wave and the numerical solution
corresponding to [HCM], with1t = 1

20. Fig. 6 displays the same elements for [NCM]. In both cases,
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Fig. 3.L2-error with respect to the modified solitary wave againstt . [HCM] with 1t = 1
80.

Fig. 4.L2-error with respect to the modified solitary wave againstt . [NCM] with 1t = 1
80.
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Fig. 5. [HCM] with 1t = 1
20 at t = 100. Original solitary wave (solid line), modified wave (dashed line) and

numerical solution (crosses).

Fig. 6. [NCM] with 1t = 1
20 at t = 100. Original solitary wave (solid line), modified wave (dashed line) and

numerical solution (crosses).
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we see that the numerical solution essentially behaves as a solitary wave, closer to the corresponding
modified wave than to the solution (see Tables 1 and 2). For the ‘conservative’ scheme [HCM], the
modified wave differs from the original one in a linear with time perturbation in the initial location (see
Theorem 4.1) which in the case of the figure delays its motion with respect to that of the true wave.
However, the modified wave keeps the original velocity, and therefore amplitude. In fact, the modified
wave associated to [HCM] also preserves the value of the ‘mass’ of the original solitary wave, represented
by the Casimir functionC,

C(ψ)= 12
√
c(c− 1),

because this quantity only depends on the velocityc.
This is not the situation in the case of the ‘nonconservative’ method [NCM]. Here, the modified wave

has a different velocity of propagation and, therefore, amplitude, see (33), growing linearly with time with
respect to the velocity of the solution. This is visible in Fig. 6. In particular, the modified wave does not
conserve the ‘mass’C. Since the numerical solution does preserve it, the mass lost in the approximation
to the modified solitary wave is recovered in the formation of atail [9] behind the numerical solitary wave
profile. This tail can be observed in Fig. 7, which displays the numerical solution appearing in Fig. 6,
but with a vertical scale with some more degrees of magnitude. This phenomenon does not occur in the
conservative case.

Finally, we complete the numerical experiments by analyzing the behaviour, through the numerical
integration, of the conserved quantitiesI andH . We study the evolution of the differences

H
(
Un
)−H (ψ(tn))=H (Un

)−H (U0), (37)

I
(
Un
)− I(ψ(tn))= I(Un

)− I(U0), (38)

between the values ofI andH at the solitary wave solution and the discrete versions of the quantities, at
the numerical solution given by [HCM], for (38), and by [NCM], for both (37) and (38). These discrete
versions of the invariants use the pseudospectral spatial discretization and are good approximations of
the quantities at the corresponding semidiscrete numerical solution [25]. Observe that, sinceI andH
are conserved quantities of the problem, the differences (37) and (38) also estimate the evolution ofI

andH in the numerical integration. Figs. 8 and 9 represent, respectively, the evolution ofI andH at the
numerical solution given by [NCM], while Fig. 10 shows the values (38) in the case of [HCM].

Recall that, in general, the difference between an invariant of the problem considered at the numerical
approximation and at the true solution is of the order of the method [9]; if we expand this difference
in powers of1t , the coefficient of the leading term is the inner product between the gradient of the
invariant at the true solution and the leading term of the asymptotic expansion of the global error. This
dominant order can be seen, in the case of [NCM], in Figs. 8 and 9, where errors (37) and (38) show
an O(1t3) behaviour. However, as far as [HCM] is concerned, note that, the leading term of its local
error is orthogonal not only to the gradient ofH atψ (because the scheme is Hamiltonian conserving)
but also to the gradient of the other quantityI at the solitary wave (because of the relative equilibrium
condition (9)). This fact and the conservation ofI by the solutionψ implies [9,12] that the leading term
of the global error is also orthogonal to that gradient; then as1t → 0 with tn fixed, the order of the
error (38) is o(1t2). Fig. 10 shows an O(1t4) behaviour.
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Fig. 7. [NCM] with1t = 1
20 at t = 100. Numerical solution with magnified vertical scale. A tail is formed.

Fig. 8. Momentum error againstt . [NCM] with 1t = 1
20,

1
40.
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Fig. 9. Energy error againstt . [NCM] with 1t = 1
20,

1
40.

Fig. 10. Momentum error againstt . [HCM] with 1t = 1
10,

1
20.
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