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Neutron stars: From the inner crust to the core with the (extended) Nambu–Jona-Lasinio model
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Nucleonic matter is described within an SU(2) extended Nambu–Jona-Lasinio (NJL) model. Several
parametrizations with different nuclear matter saturation properties are proposed. At subsaturation, nuclear pasta
phases are calculated within two methods: the coexistence-phases approximation and the compressible liquid
drop model, with the surface tension coefficient determined using a geometrical approach at zero temperature.
A unified equation of state of stellar matter for the inner crust, with the nuclear pasta phases, and the core
is calculated. The mass and radius of neutron stars within this framework are obtained for several families of
hadronic and hybrid stars. The quark phase of hybrid stars is described within the SU(3) NJL model including a
vector term. Stellar macroscopic properties are in accordance with some of the recent results in the literature.
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I. INTRODUCTION

Neutron stars still remain today, despite several studies
started many years ago, either from an observational point
of view or from a theoretical point of view a big question
mark, with respect to their constitution and characteristics.
Currently, many efforts are being made to try to unravel a bit
further our knowledge on these exotic objects, the remnants of
core-collapse supernova events (see, e.g., the recent European
Physics Journal A topical issue, Exotic Matter in Neutron
Stars [1]).

In the inner crust of neutron stars, at subsaturation densities,
a frustrated system, named nuclear pasta, appears due to the
competition between the Coulomb and the strong forces. These
exotic structures have their geometry changing as the density
increases. One of the main interests on these nuclear shapes is
the effect that they might have on the neutrino transport [2–5]
and subsequent cooling of the neutron star. Recent studies [6]
have shown evidence on the existence of the pasta phases,
where these structures limit the maximum spin period of
isolated x-ray pulsars.

The nuclear pasta phase has been studied under differ-
ent assumptions, namely using semiclassical microscopic
treatments, such as quantum molecular dynamics calcula-
tions [3,7], or using microscopic calculations, such as 1D
Hartree-Fock [8,9] or 3D Hartree-Fock using the SLy4
Skyrme model [10]. Relativistic mean field (RMF) calculations
employing a model for the Lagrangian, which is based on
microscopic Dirac-Brueckner-Hartree-Fock calculations, us-
ing realistic nucleon-nucleon (NN) interactions [11], or using
the Thomas-Fermi calculations, based on phenomenological
energy-density functionals [12], are also widely used. RMF
models do not consider explicit chiral invariance. In this
article, we use a different set of models for the description
of the nucleonic homogeneous matter and the pasta phase:
the extended Nambu–Jona-Lasinio (NJL) model with differ-
ent parametrizations [13–19], where the chiral symmetry is
included. An advantage of these models is the fact that, since
they satisfy chiral symmetry, the equation of state (EOS) is
also valid at higher densities, such as the ones present in the
center of compact objects.

As discussed in [16], a link between QCD and the descrip-
tion of nuclear matter and nuclei through effective hadronic
fields can be established including QCD symmetries in the
Lagrangian density of the system. Using the extended NJL
(eNJL) model developed in the present study, we include chiral
symmetry, together with the mechanism of mass generation
and binding of nuclear matter, the chiral condensates being
built from nucleonic degrees of freedom.

The pasta phase calculation (see, e.g., [20] and references
therein) is done by considering two different methods: the
coexisting-phases (CP) approximation, where the Gibbs equi-
librium conditions are used to get the lowest free-energy state
and the surface and Coulomb terms are added “by hand,” and
the compressible liquid drop (CLD) model, where, unlike the
CP approximation, both the Coulomb and surface terms are
taken into account in the minimization of the total energy of
the system.

In the present paper, our aim is the complete description of
possible matter in the interior of neutron stars. Once matter
at subsaturation and suprasaturation densities are obtained
and understood within the SU(2) eNJL, we consider also
the SU(3) version of the NJL model [21–25] with a vector
interaction [26–29] to describe a possible neutron star core
in a hybrid star. We construct the complete stellar EOS by
considering the BPS EOS [30] for the outer crust, the pasta
EOS for the inner crust, and investigate two different scenarios
at high densities: (i) nucleonic matter and (ii) nucleonic and
quark matter via Maxwell construction. In the second case,
we investigate the possibility of a hybrid star with a quark
core. Whenever stellar matter is considered, either in the pasta
phase or in its center, β-equilibrium and charge neutrality are
enforced. The procedure just described allows us to obtain the
inner crust and the core stellar matter EOS, within the same
framework.

The paper is organized as follows: The formalism is briefly
reviewed in Sec. II, which is divided into different subsections.
We first analyze homogeneous nucleonic matter and its
saturation properties obtained with the SU(2) eNJL model
and then briefly outline the main aspects of the construction of
the pasta phase, including the surface tension calculation. The
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SU(3) NJLv model is then introduced for the description of
quark matter, and for the calculation of the hybrid star mass and
radius. Section III is devoted to the presentation and discussion
of the results, while the main conclusions are given in Sec. IV.

II. FORMALISM

In this section, we present the model that describes the
nucleonic equation of state (EOS), and make a review of the
different formalisms needed to describe the subsaturation and
the quark EOS.

A. eNJL model

The nucleonic NJL model can be extended to yield
reasonable saturation properties of nuclear matter, the field ψ
being the nucleon field [13–15,17–19]. An effective density-
dependent coupling constant is obtained if the following
extended NJL (eNJL) Lagrangian density, which actually
pushes chiral symmetry restoration to higher densities, is
considered:

L = ψ̄(iγ μ∂μ − m)ψ + Gs[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2]

−Gv(ψ̄γ μψ)2 − Gsv[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2](ψ̄γ μψ)2

−Gρ[(ψ̄γ μ�τψ)2 + (ψ̄γ5γ
μ�τψ)2]

−Gvρ(ψ̄γ μψ)2[(ψ̄γ μ�τψ)2 + (ψ̄γ5γ
μ�τψ)2]

−Gsρ[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2][(ψ̄γ μ�τψ)2

+ (ψ̄γ5γ
μ�τψ)2]. (1)

For nuclear matter, the degeneracy is ν = 2Nf , and 	 is
such that M = 939 MeV is the nucleon mass in the vacuum,
determined variationally. The term in Gv simulates a chiral-
invariant short-range repulsion between nucleons. The term in
Gsv accounts for the density dependence of the scalar coupling.
For nuclear matter, the NJL model leads to binding, but the
binding energy per particle does not have a minimum except
at a rather high density where the nucleon mass is small
or vanishing. The introduction of the Gsv coupling term is
required to correct this. The isovector-vector term (the Gρ

term) allows the description of isospin asymmetric nuclear
matter. A current mass m term that breaks explicitly the chiral
symmetry is introduced in some parametrizations to make the
restoration of the chiral symmetry less abrupt. The terms Gωρ

and Gsρ make the symmetry energy softer.
The thermodynamical potential per volume corresponding

to (2) is given by

ω(μ) = εkin + mρs − Gsρ
2
s + Gvρ

2 + Gsvρ
2
s ρ

2 + Gρρ
2
3

+Gvρρ2ρ2
3 + Gsρρ

2
s ρ

2
3 − μpρp − μnρn, (2)

where exchange terms have been neglected. The kinetic energy
density is defined as

εkin = 〈ψ̄( �γ · �p)ψ〉 = F1(M,kFi
) − F1(M,	),

(3)

F1(M,x) =
∫ x

0

dp

π2
p2

√
M2 + p2, i = p,n,

and ρ, ρs , and ρ3 are the baryonic, scalar, and isovec-
tor densities, respectively, and are given by ρ = ρp + ρn,

ρs = ρsp + ρsn, and ρ3 = ρp − ρn. The proton and neutron
densities and scalar densities are given by the usual expres-
sions,

ρi =
∫ kFi

0

dp

π2
p2 (4)

and

ρsi
= M[F0(M,kFi

) − F0(M,	)],

F0(M,x) =
∫ x

0

dp

π2

p2√
M2 + p2

, i = p,n. (5)

The pressure of the system is given by P = −ω(μ) + ε0,
and the total energy density is given by ε = −P + μpρp +
μnρn, with ε0 being the energy density in the vacuum. The
condition ∂ω/∂M = 0 determines the effective nucleon mass
given by

M = m − 2Gsρs + 2Gsvρsρ
2 + 2Gsρρsρ

2
3 . (6)

The free nucleon mass, M0, is the value of M at zero
chemical potential. The conditions ∂ω/∂pFi

= 0 determine
the chemical potentials,

μp = Ep
pF

+ 2Gvρ + 2Gsvρρ2
s + 2Gρρ3 + 2Gvρρ

2
3ρ

+ 2Gvρρ2ρ3 + 2Gsρρ3ρ
2
s , (7)

μn = En
pF

+ 2Gvρ + 2Gsvρρ2
s − 2Gρρ3 + 2Gvρρ

2
3ρ

− 2Gvρρ2ρ3 − 2Gsρρ3ρ
2
s , (8)

with Ei
pF

=
√

M2 + pi2
F , i = p,n. These conditions together

with Eq. (6) fix the values of pi
F ,M for given μi.

For reference and to help the discussion, we show in Table I
the coupling constants, and in Table II the symmetric nuclear
matter properties for the models we are using in this study,
eNJLx, eNJLxωρy and eNJLxσρy (without current mass),
and eNJLxm and eNJLxmσρy (with current mass). Models
eNJLxωρy (eNJLxσρ) contain the ωρ (σρ) coupling term
in the Lagrangian density, i.e., Gvρ �= 0 (Gsρ �= 0). We have
fixed the symmetry energy at ρ = 0.1 fm−3 at the same value
obtained for eNJLx (eNJLxm), and we calculated the new Gρ

constants, by fixing the Gvρ (Gsρ) coupling constant.

B. The coexisting-phases approximation and
the compressible liquid drop model

In order to describe the nonuniform npe matter inside the
Wigner-Seitz unit cell, which is taken to be a sphere (bubble),
a cylinder (tube), or a slab, in three, two, and one dimensions,
we use two different methods: the coexistence-phases (CP)
approximation and the compressible liquid drop (CLD) model.
In the CP approximation, matter is organized into separated
regions of higher and lower density, the higher ones being the
pasta phases and the lower ones being a background nucleon
gas. The interface between these regions is sharp and finite-
size effects are taken into account by surface and Coulomb
terms in the energy density [31]. The Gibbs equilibrium
conditions are imposed to get the lowest-energy state and, for
a temperature T = T I = T II and a fixed proton fraction, are
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TABLE I. The coupling constants of the models discussed in the present work.

Model Gs (fm2) Gv (fm2) Gsv (fm8) Gρ (fm2) Gvρ (fm8) Gsρ (fm8) 	 (MeV) m (MeV)

eNJL1 4.855 4.65 − 6.583 0.5876 0 0 388.189 0
eNJL1ωρ1 4.855 4.65 − 6.583 0.5976 − 1 0 388.189 0
eNJL1ωρ2 4.855 4.65 − 6.583 0.6476 − 6 0 388.189 0
eNJL2 3.8 3.8 − 4.228 0.6313 0 0 422.384 0
eNJL2ωρ1 3.8 3.8 − 4.228 0.6413 − 1 0 422.384 0

eNJL3 1.93 3 − 1.8 0.65 0 0 534.815 0
eNJL3σρ1 1.93 3 − 1.8 0.0269 0 0.5 534.815 0

eNJL1m 1.3833 1.781 − 2.943 0.7 0 0 478.248 450
eNJL1mσρ1 1.3833 1.781 − 2.943 0.0739 0 1 478.248 450
eNJL2m 1.078 1.955 − 2.74 0.75 0 0 502.466 500
eNJL2mσρ1 1.078 1.955 − 2.74 − 0.1114 0 1 502.466 500

given by

μI
n = μII

n ,

μI
p = μII

p ,

P I = P II ,

where I and II label the high- and low-density phases,
respectively. After the lowest energy state is achieved, the
surface and Coulomb terms are added to the total energy
density of the system, which is given by

ε = f εI + (1 − f )εII + εe + εsurf + εCoul, (9)

where f is the volume fraction of phase I .
In the CLD model [32–35], the equilibrium conditions of

the system are derived from the minimization of the total free
energy [33], including the surface and Coulomb terms. The
equilibrium conditions for a fixed proton fraction become

μI
n = μII

n ,

μI
p = μII

p − εsurf

f (1 − f )
(
ρI

p − ρII
p

) ,

P I = P II − εsurf

(
1

2α
+ 1

2�

∂�

∂f
− ρII

p

f (1 − f )
(
ρI

p − ρII
p

)
)

,

TABLE II. Symmetric nuclear matter properties at saturation
density ρ0 (energy per particle B/A, incompressibility K , symmetry
energy Esym, and symmetry energy slope L). All the quantities are in
MeV, except for ρ0, given in fm−3.

Model ρ0 B/A K Esym L

eNJL1 0.148 − 16.34 267.26 33.0 99.90
eNJL1ωρ1 0.148 − 16.34 267.26 32.65 95.02
eNJL1ωρ2 0.148 − 16.34 267.26 30.91 70.61
eNJL2 0.148 − 15.56 231.13 33.0 95.03
eNJL2ωρ1 0.148 − 15.56 231.13 32.65 90.15

eNJL3 0.148 − 15.69 239.70 31.65 85.26
eNJL3σρ1 0.148 − 15.69 239.70 29.91 64.45

eNJL1m 0.148 − 16.05 233.75 32.46 86.20
eNJL1mσρ1 0.148 − 16.05 233.75 30.28 60.32
eNJL2m 0.148 − 16.22 286.63 33.66 89.20
eNJL2mσρ1 0.148 − 16.22 286.63 31.13 59.04

where α = f for droplets, rods, and slabs, and α = 1 − f for
tubes and bubbles. � is given by

� =
⎧⎨
⎩

(
2−Dα1−2/D

D−2 + α
)

1
D+2 , D = 1,3,

α−1−ln α
D+2 , D = 2.

(10)

For more details on both methods, the reader should refer
to [20] and references therein.

C. The surface tension

We use a geometrical approach to obtain a numerical value
for the surface tension coefficient. This method was introduced
and discussed in [36] for quark matter. The surface tension
coefficient, σ , is given by

σ = a

ρg

(2εg)1/2
∫ ρ2

ρ1

(�ε)1/2dρ, (11)

with ρg = ρ1+ρ2

2 , εg = ε(ρ1)+ε(ρ2)
2 , and �ε the difference

between the energy density of homogeneous matter and
the nonuniform matter, given by �ε = εhm − εnhm. These
energy densities were fitted to a functional form given by
ε = b0 + b1ρ + b2ρ

2. ρ1 and ρ2 are the two coexistence
points. In Fig. 1, we show the energy per baryon and the
energy density as a function of the density for the homogeneous
and nonhomogeneous cases. The surface tension, σ , which
measures the energy per unit area necessary to create a planar
interface between the two phases, is defined in terms of
the EOS, as in [36]. The width of the interface region and
magnitude of σ are controlled by the adjustable parameter a.
Here a was chosen to be 0.1 so that it reproduces the surface
tension coefficient for the NL3 model [37] within a Thomas-
Fermi calculation [38], for a fixed proton fraction of yp = 0.5.
We also tested for a different RMF model, the TW model [39],
and we obtained a similar result, a = 0.13, for a fixed proton
fraction of 0.5. Since this parameter a depends on the isospin,
we calculated it for several values of the proton fraction, and
then we fitted it to a functional a = a1 + a2x

2 + a3x
4 + a4x

6,
in order to calculate the pasta phase in β-equilibrium matter.
We have obtained a1 = −0.00391407, a2 = 0.251366, a3 =
5.5648, a4 = −18.5799, taking NL3 as reference.
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FIG. 1. Energy per baryon (a) and energy density (b) versus den-
sity, where the two coexistence points are shown, for homogeneous
(hm) and nonhomogeneous (nhm) matter.

D. NJLv model

The SU(3) NJL model [21–26] is given by the following
Lagrangian density:

L = Lf + Ll + Lsym + Lvec + Ldet (12)

with

Lf = ψ̄f (iγμ∂μ − mf )ψf , Ll = ψ̄l(iγμ∂μ − ml)ψl,

Lsym = Gs

8∑
a=0

[(ψ̄f λaψf )2 + (ψ̄f iγ5λaψf )2],

Lvec = −Gv

8∑
a=0

[(ψ̄f γ μλaψf )2 + (ψ̄f γ μγ5λaψf )2],

Ldet = −Gt {detf [ψ̄f (1 + γ5)ψf ] + detf [ψ̄f (1 − γ5)ψf ]}.
Here ψf is the 3-flavor quark field. The effective mass, Mi ,

is given by

Mi = mi − 4Gsρsi
− 2Gtρsj

ρsk
,

with (i,j,k) being any permutation of (u,d,s), and the chemical
potentials by

μi = EiF + 4Gvρi

with EiF =
√

M2
i + pi2

F , i = u,d,s. These conditions fix the
values of pi

F ,M for given μi.
When applying the SU(3) NJLv model to describe the core

of hybrid stars in Sec. III C, we use a new parametrization,
recently proposed in [40], which was built by considering the
quark mass in the vacuum equal to 313 MeV, and meson prop-
erties in the vacuum. This allows both the hadronic and quark
models to have the same nucleon mass, while constructing
hybrid stars. We consider four different parameter sets, the
difference being the strength of the coupling of the vector
interaction. The scalar coupling, Gs = 1.781/	2 MeV−2, the
’t Hooft interaction constant, Gt = −9.29/	5 MeV−5, and
the cutoff parameter, 	 = 630 MeV, are equal for all four
parametrizations. The coupling for the vector interaction, Gv ,
is given as Gv = xGs,x = 0,0.05,0.12,0.2. We will be calling
our set of models NJLi,i = 1,2,3,4, for x = 0,0.05,0.12,0.2,
respectively.

The Maxwell construction

We consider different EOS for the construction of a hybrid
star: a hadronic EOS, where we use the parameter sets
presented in Tables I and II, and a quark EOS, where we
consider the NJLi models presented in the first section, and we
perform a Maxwell construction. This construction says that
two phases are in equilibrium when their chemical potentials,
temperatures, and pressures are equal:

TH = TQ = 0, (13)

μH = μQ, (14)

PH (μ) = PQ(μ). (15)

Finding the pressure at the transition, Pt , will then give us a
range of densities with a mixed phase.

With the complete EOS, we integrate the TOV [41,42]
equations and find the mass-radius relation for the family
of stars. This is a simplified approach to the description of
the deconfinement phase transition, but it has been shown
that if the surface tension of a quark droplet immersed in
nuclear matter is high enough, the results obtained are quite
realistic [43].

III. RESULTS

In the present section we use the model presented in the
previous sections to describe stellar dense matter as found in
neutron stars. In particular, we present a unified EOS, except
for the outer crust, which is, however, essentially constrained
by observational data. We fix the parameters of the model
constrained by the properties of nuclear matter at saturation.
Properties of symmetric matter and pure neutron matter are
discussed. It has been shown that in order to get consistently
the radius of stars with masses M � 1.5 M�, it is important to
describe the inner crust in an appropriate way. We, therefore,
calculate the inner crust EOS and discuss how the properties
of the EOS affect the structure of the pasta phases. Finally,
we build the EOS of β-equilibrium matter and integrate the
TOV equations in order to get the mass versus radius curves.
We consider both nucleonic stars and hybrid stars. The EOS
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for hybrid stars takes into account a possible deconfinement
phase transition to quark matter. Quark matter is described
within the SU(3) NJLi, discussed above, taking into account
the possibility of the strangeness onset.

A. Equation of state for symmetric matter

We consider the parametrizations eNJL1, eNJL2, eNJL3,
and eNJL1m and eNJL2m, as referred before, with their
parametrizations given in Table I and their properties for
symmetric nuclear matter in Table II. For eNJL1, eNJL2, and
eNJL3, the symmetry energy properties at saturation are very
similar, but their isoscalar properties differ slightly, eNJL2
having a smaller incompressibility. Their values are, however,
all within the interval proposed in [44], K = 230 ± 40 MeV.
Another property that distinguishes these three models is the
density of chiral symmetry restoration, respectively, 0.35,
0.45, and 0.998 fm−3, for eNJL1, eNJL2, and eNJL3; see
Fig. 2, bottom right panel. As we see next, this allows
the construction of EOS for hadronic matter with different
behaviors at intermediate and high densities.

In Fig. 2, the energy per particle, and pressure (left panels),
and the incompressibility and effective mass (right panels)
of symmetric nuclear matter are plotted as a function of
density. The main feature of these EOS is the change that
occurs at the chiral symmetry restoration density, ρχ : the EOS
becomes much stiffer after the transition, which, for eNJL3,
only happens at ρ ∼ 7ρ0. Just before the transition, there is
a softening clearly seen in the incompressibility, K , followed
by a change of the slope of the pressure, and a discontinuity

of the incompressibility. The models with current mass do not
present this feature. With a proper choice of the parameters,
the chiral symmetry restoration takes place at higher densities,
and the EOS becomes much softer at intermediate densities.
As we will see later, the stiffening of the EOS will allow for
very massive stars.

eNJLx and eNJLxm have a quite large slope of the
symmetry energy at saturation density, larger than lab-
oratory constraints seem to impose [45]. We, therefore,
built six other parametrizations with a smaller slope, L,
by including in the Lagrangian density a mixed vector-
isoscalar–vector-isovector (scalar-isoscalar–vector-isovector)
eight point term. These parametrizations are designated by
eNJLxωρy [eNJLx(m)σρy]. The symmetry energy and its
slope at saturation density of all these models are shown
as a function of the density in Fig. 3. While below ρχ ,
the eNJL1, eNJL2, and eNJL3 models behave as relativistic
mean field (RMF) models, see [46,47], above this density,
the symmetry energy becomes much softer and its slope
may even become immediately negative. This occurs for all
models with the mix vector-isoscalar–vector-isovector term.
The symmetry energy will eventually become negative at some
density above ρχ , indicating an instability and a tendency for
stellar matter to become pure neutron matter. If the restoration
of chiral symmetry occurs at a density not high enough, the
model becomes inadequate to describe stellar matter. In the
last subsection, only models which do not predict a neutron
instability will be used to describe stellar matter.

The models with current mass (right panels) do not show
such an abrupt behavior as they have a softer restoration
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FIG. 2. Symmetric nuclear matter properties as a function of the density for all the models considered in this study.
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FIG. 3. Symmetry energy, Esym, (a) and (c), and its slope, L, (b) and (d), for the models considered in this study.

of the chiral symmetry. For these models, we also consider
a term that couples the chiral condensate and the isospin
density, to make the symmetry energy less hard, allowing
the parametrizations to satisfy constraints from microscopic
calculations based on chiral NN and 3N interactions [48]
and quantum Monte Carlo results [49]. At the same time, we
avoid that the symmetry energy becomes negative below a
reasonably high density. This behavior is possible by including
a coupling of the isovector-vector term to a isoscalar-scalar
term, and not to a isoscalar-vector term, because at high
densities the chiral condensate weakens.

In Fig. 4, we compare the symmetric nuclear matter
pressure to experimental results obtained from collective
flow data in heavy-ion collisions [50] and from the KaoS
experiment [51–54]. The left panel only contains nucleonic
EOS. All EOS shown in this panel satisfy the constraints
imposed by the KaoS experiment, which refer to densities
from above the saturation density to twice the saturation
density. The models eNJL2 and eNJL3 are also compatible
with constraints from HIC flow experiments. The eNJL1
model, however, becomes quite hard above 2.5ρ0, even
considering that the constraints imposed in [50] are too

 1

 10

 100

 1  2  3  4  5

P
 (

M
eV

 fm
-3

)

ρ/ρ0

(a)

T=0, yp=0.5

Flow exp.
Kaons exp.

eNJL1
eNJL2
eNJL3

eNJL1m
eNJL2m

500

 1

 10

 100

 2  4  6  8  10  12

P
 (

M
eV

 fm
-3

)

ρ/ρ0

(b)

Flow exp.
Kaons exp.

eNJL1 Maxwell
eNJL2 Maxwell

eNJL3
eNJL1m
eNJL2m

FIG. 4. Pressure as a function of the density for symmetric nuclear matter and for all the models considered in this study. The red
region represents the experimental results from Danielewicz et al. [50] and the green region from the KaoS experiment. In the right panel,
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stringent, since the data analysis contains some model
dependence.

We have allowed for a possible deconfinement phase
transition in models eNJL1 and eNJL2. The symmetric matter
EOS obtained within a Maxwell construction are plotted in
the right panel of Fig. 4. We observe that, for both models,
the deconfinement phase transition occurs above the range
of densities constrained by the flow data, and, therefore, the
conclusions are similar to the ones derived from the left panel.
However, for densities above 4ρ0, deconfinement gives rise to
a clear softening of the EOS. For comparison, we replot in the
right panel the EOS of models eNJL1m, eNJL2m, and eNJL3.

We next compare the behavior of neutron matter, calculated
with the models under study, with microscopic calculations.
In Fig. 5, we show the pressure as a function of the density
for pure neutron matter obtained with the eNJLx, eNJLxωρy,
and the eNJLxmσρ models. The two colored bands in the
figure are the results from microscopic calculations based on
chiral NN and 3N interactions (green) [48] and quantum Monte
Carlo results (gold) [49]. In general, almost all models are
stiffer than predicted by the microscopic calculations. Only
eNJL1ωρ2, eNJLxmσρ1, and eNJL3σρ1 models are inside
the constrained region for a wide range of densities.

In the following, we will not consider anymore the
eNJL1ωρ2 model because, although it presents good proper-
ties at saturation and subsaturation densities, at suprasaturation
it fails, not only to satisfy heavy-ion flow constraints, but even
worse, it predicts a transition to pure neutron matter at a too
low density and therefore is not appropriate to describe stellar
matter.

B. Subsaturation EOS

At subsaturation densities, homogeneous nuclear matter is
not stable and matter has the tendency to clusterize. Applying
the formalisms, CP and CLD, described in Sec. II B, we present
in Fig. 6 the energy per particle and the pressure versus density
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temperature is fixed to 0 MeV.

obtained for homogeneous and clusterized matter, and three
different types of matter, β-equilibrium matter and matter with
a proton fraction equal to 0.5 and 0.3. As expected, clusterized
matter has a smaller energy per particle. The CLD and CP
methods give similar results, CP giving rise to a slightly
smaller energy per particle due to the fact that the Coulomb
field and surface energy contributions are included after the
minimization of the free energy. For yp = 0.3 and 0.5, there
is a first-order phase transition between the clusterized phase
and the homogeneous phase.

The different geometries that are present in the nonhomoge-
neous phase depend on the proton fraction, model, and method.
In Fig. 7, the distributions of the different types of shapes as
a function of the density are given for four models, eNJL1,
eNJL1ωρ1, eNJL3, and eNJL3σρ1, and the two methods, CP
and CLD. In all models, β-equilibrium matter does not contain
exotic shapes, and clusters are all spherical, independently of
model and method, except for a very small region where rods
appear for eNJL3σρ1. This behavior has been obtained in [55],
for models with a large symmetry energy slope at saturation
density. In their analysis, L � 80 MeV was the condition to
obtain other shapes besides droplets.

Matter with yp = 0.3 and 0.5 has, besides droplets, rods,
slabs, and tubes. Bubbles are never present. Generally, the
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CLD predicts an earlier transition to homogeneous matter and
larger tube regions, but this is not always the case.

C. Neutron stars

We have built an EOS, appropriate to describe cold stellar
matter in β-equilibrium, as explained in the following: (a)
for the outer crust, the Baym-Pethick-Sutherland (BPS) [30]
EOS was taken; (b) the inner crust EOS was obtained within
the CP method, and, for reference, we will also show results
where the homogeneous matter EOS was taken for densities
above neutron drip; (c) the core of nucleonic stars is described
using all models, except eNJL1ωρ2, none of which predicts
the transition to neutron matter at a density below the central
density of the most massive star; (d) for the core of hybrid
stars, eNJL1 is considered for the hadronic phase, and the
quark phase is described within the SU(3) NJL model.

The M(R) curves of the nucleonic stars are plotted in
Figs. 8 and 9, and some of their properties are given in
Table III. These properties are the maximum gravitational and
baryonic masses and corresponding radii, the central and chiral
symmetry restoration densities, the radius of a 1.4 M� star, and
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its respective central density. It is seen that the maximum mass
and central densities do not depend on how the inner crusts are
described, but the radius is sensitive to the crust EOS, a larger
radius being obtained when the pasta is included; see Fig. 9.
This difference can be as high as 500 m for a 1.4 M� star, and
1 km for a 1.0 M� star. The β-equilibrium EOS of the inner
crust, obtained both within the CLD and CP approaches, are
very similar, giving rise to almost identical radii, as seen in
Fig. 9.

Maximum masses are all above two solar masses, satisfying
the constraint imposed by pulsars PSR J0348+0432 [56] and
PSR J1614−2230 [57,58]. All models predict a central core of
matter for the maximum-mass star with the chiral symmetry
restored, except for eNJL3 and eNJL3σρ1. However, the
1.4 M� stars are formed only of matter in the broken phase.
Confirming previous results of [59], 1.4 M� stars have a
smaller radius for smaller slopes L. Their radii are quite large,

TABLE IV. The models considered and the experimental, obser-
vational, and microscopic calculation constraints.

Model Experimental Microscopic Observational

KaoS Flow χ -NN,3N QMC 2 M�

eNJL1 yes no no no yes
eNJL1ωρ1 yes no no no yes
eNJL1ωρ2 yes no yes yes no

eNJL2 yes practically no no yes
eNJL2ωρ1 yes practically no no yes

eNJL3 yes yes no no yes
eNJL3σρ1 yes yes yes yes yes

eNJL1m yes yes no no yes
eNJL1mσρ1 yes yes yes yes no

eNJL2m yes yes no no yes
eNJL2mσρ1 yes yes yes yes yes

and the smallest one, obtained including the pasta in the inner
crust, is 13.21 km, for a model without current mass in the
EOS. The two models with the same value of L have different
incompressibilities, and the larger radius corresponds to the
larger K . Stars within eNJL1 models have larger maximum
masses because they have stiffer EOS; see Fig. 2. In the right
panels of Fig. 8, we show the M/R relation and mass as a
function of the density for the models with current mass in
the EOS. eNJL1mσρ1 is the only one that does not produce a
maximum-mass star of 2 M�. All the other models are within
the observational constrains.

In Table IV, we show which models satisfy or do not
satisfy the experimental and observational constraints and the
microscopic calculations ([48,49]).

We have next built a hybrid star EOS, using the Maxwell
construction to match the hadronic and quark EOS. Quark
matter is described within a new parametrization for the

TABLE III. Some properties of the families of hadronic stars considered. The masses, M , the radii, R, and the densities, ρ, are given in
units of M�, km, and fm−3, respectively. * These models contain broken chiral symmetry up to the densities considered.

Model Mgmax Mbmax R ρc ρχ RM=1.4M� ρcM=1.4M�

with pasta
eNJL1 (CP) 2.607 3.177 12.397 0.776 0.35 14.406 0.324
eNJL1 (CLD) 2.607 3.177 12.386 0.776 0.35 14.406 0.324
eNJL1ωρ1 2.520 3.052 12.427 0.796 0.35 14.198 0.343
eNJL2 2.365 2.835 11.556 0.916 0.45 14.086 0.350
eNJL2ωρ1 2.195 2.592 11.926 0.891 0.45 13.786 0.383
eNJL3 2.289 2.714 12.057 0.875 0.998 13.931 0.339
eNJL3σρ1 2.192 2.602 11.445 0.966 0.998 13.212 0.391
eNJL1m 2.072 2.409 12.398 0.866 * 13.839 0.356
eNJL1mσρ1 1.884 2.180 11.521 1.013 * 12.809 0.449
eNJL2m 2.275 2.683 12.380 0.846 * 14.168 0.326
eNJL2mσρ1 2.030 2.375 11.549 0.981 * 13.084 0.414

without pasta
eNJL1 2.607 3.177 12.297 0.776 0.35 13.971 0.324
eNJL1ωρ1 2.520 3.052 12.326 0.796 0.35 13.773 0.343
eNJL2 2.365 2.835 11.477 0.916 0.45 13.708 0.350
eNJL2ωρ1 2.195 2.592 11.826 0.891 0.45 13.456 0.383
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TABLE V. Some properties of the families of hybrid stars considered. The masses, M , the radii, R, and the densities, ρ, are given in units
of M�, km, and fm−3, respectively. The vector interaction coupling constant, Gv , for the NJL model is also shown.

Model Gv/Gs (NJL) Mgmax Mbmax R ρc RM=1.4M� ρcM=1.4M�

eNJL3σρ1+NJL1 0 1.795 2.051 12.069 0.923 13.211 0.392
eNJL3σρ1+NJL2 0.05 1.884 2.166 12.386 0.840 13.211 0.392
eNJL3σρ1+NJL3 0.12 1.989 2.311 12.527 0.812 13.211 0.392
eNJL3σρ1+NJL4 0.2 2.074 2.430 12.378 0.671 13.211 0.392

SU(3) NJL model [40], with a vector interaction, and several
strengths of this interaction are considered. Results are
presented in Table V and Fig. 10. We observe that a core of
quark matter is obtained for all the cases considered, except
for the largest vector coupling (NJL4), where the onset of the
quark phase makes the star unstable. This means that stable
stars are purely hadronic, or at most, contain in their core a
mixed quark-hadron phase. The other three models result in
maximum masses below 2 M�, but the one with Gv = 0.12Gs

is above the measured mass 1.928 ± 0.017 M� for PSR
J1614−2230 [58] and within the limits of the 2.01 ± 0.04
M� mass of the PSR J0348+0432 [56]. There are other
cases where NJL-type models were used for the quark matter
EOS, and where massive hybrid stars were found; see, e.g.,
Ref. [60] and references therein.

IV. CONCLUSIONS

In the present work, we have described nuclear and stellar
matter within a relativistic nuclear model with chiral sym-
metry. At first, three parametrizations with different isoscalar
properties were considered, having different onset densities
for the restoration of chiral symmetry. These models present
a quite large symmetry energy slope at normal density and,
therefore, four other models have been proposed with a
smaller slope. To accomplish this new feature, a mixed vector-
isovector–vector-isoscalar term, or a mixed scalar-isoscalar–
vector-isovector term, was included in the Lagrangian den-
sity. Above the restoration of chiral symmetry, the EOS of

symmetric nuclear matter for all models becomes much stiffer.
On the other hand, the symmetry energy softens above the
chiral symmetry restoration density and, at large enough
densities, it may even become negative, mainly if the mod-
ification of the density dependence of the symmetry energy is
accomplished by including isovector-vector–isoscalar-vector
mixed terms. A special case is the eNJL3, in which the
restoration of the chiral symmetry happens at a very high
density, ρ ∼ 7ρ0. We have also implemented two other models,
where we considered a current mass in order to soften the
restoration of the chiral symmetry, making the EOS less stiff.
A mixed scalar-isoscalar–vector-isovector term was added to
the models in order to decrease the slope of the symmetry
energy even further, allowing a softening in the EOS.

Neutron star radii are still not well constrained, and it is
expected that the future x-ray telescopes, such as NICER
and Athena, will impose much stronger constraints. Our
results are compatible with some of the present predictions.
Both hadronic and hybrid star radii of 1.4 M� are above
12.8 km, within the observations of the objects BNS 4U
1608−522 [61], BNS SAX J1748.9−2021 [62,63], and RP-
MSP PSR J0437−4715 [64,65], but out of the range 10.1–11.1
km obtained in [66], from the analysis of spectroscopic
radius measurements of twelve neutron stars obtained during
thermonuclear bursts or in quiescence. However, in [67],
it was shown that in order to prevent the EOS from vio-
lating causality, the radius should satisfy R1.4 � 10.7 km,
if it is imposed that the EOS also describes a 2 M�
star. In [45], taking experimental constraints and causality
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restrictions for large maximum masses, the 1.4 M� star radii
were constrained to be within the interval 12.1 ± 1.1 km
(see [68]).

The EOS of nonhomogeneous subsaturation matter was
built within the CP and the CLD methods, and we found that
within these models, β-equilibrium matter does not present a
nonspherical pasta phase, except for eNJL3σρ1. Nonspherical
shapes will, however, occur for larger proton fractions, and
could exist in core-collapse supernova matter. However, to
describe this kind of matter, a finite-temperature calculation
must be performed.

Having the subsaturation EOS of β-equilibrium matter, we
have built an almost unified hadronic stellar matter EOS, with
the outer crust described by the BPS EOS, and the inner crust
and core described within the eNJL model. It was shown that
an uncertainty of 0.5 and 1 km in the radius, respectively, of
a 1.4 and a 1.0 M� star is obtained when the homogeneous
matter EOS is used to describe the inner crust.

For the core, we have considered not only nucleonic matter,
but also a possible phase transition to quark matter, described
within the SU(3) NJL model. In the quark model, we have
included a vector term that allows us to turn the quark EOS

stiffer. For all nucleonic star families obtained with the models
that do not predict a neutron instability for densities below the
central density, the maximum mass obtained is well above
2 M�. The inclusion of a possible deconfinement phase
transition either decreases the maximum mass (as expected)
to values below 2 M�, but still within the mass constraints
imposed by the pulsars PSR J1614−2230 [57,58] and PSR
J0348+0432 [56], or renders the star with a quark core
unstable.
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[6] J. A. Pons, D. Viganò, and N. Rea, Nat. Phys. 9, 431 (2013).
[7] G. Watanabe, H. Sonoda, T. Maruyama, K. Sato, K. Yasuoka,

and T. Ebisuzaki, Phys. Rev. Lett. 103, 121101 (2009).
[8] P. Bonche and D. Vautherin, Nucl. Phys. A 372, 496 (1981).
[9] P. Bonche and D. Vautherin, Astron. Astrophys. 112, 268 (1982).

[10] P. Magierski and P.-H. Heenen, Phys. Rev. C 65, 045804 (2002).
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[61] J. Poutanen, J. Nättilä, J. J. E. Kajava, O.-M. Latvala, D. K.
Galloway, E. Kuulkers, and V. F. Suleimanov, Mon. Not. R.
Astron. Soc. 442, 3777 (2014).
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