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Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified
ab initio approach based on the generalized Baym-Kadanoff ansatz
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We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons,
and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the
nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on
the Keldysh contour, for the Green’s functions of electrons, phonons, and photons where the different kinds of
interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem
to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed
collision approximation, we introduce a series of efficient but controllable approximations. In this way, we
reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and
dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical
quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same
time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these
observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.

DOI: 10.1103/PhysRevB.93.155102

I. INTRODUCTION

The impressive progresses in ultrafast and ultrastrong
laser-pulse technology have paved the way to the modern
nonequilibrium (NEQ) attosecond spectroscopies [1–5]. Un-
like conventional spectroscopies, the sample is driven away
from equilibrium by a strong laser pulse (the pump) and then
probed with a weaker field (the probe). This second field is used
to monitor a wealth of physical properties of the material in
order to disclose the complex properties of the excited system
through the different phases of the real-time evolution [6,7].
Indeed, experiments are carried out using pump pulses with
frequency in the infrared-ultraviolet range and ultrashort probe
pulses (down to a few hundreds of attoseconds). By varying
the delay between the pump and the probe pulses, one can
monitor the excited-state dynamics in a wide energy and time
range.

The elemental processes that are induced by the pertur-
bation with a strong laser field and studied in this work are
schematically represented in Fig. 1. The external laser pulse
first excites a certain density of carriers from the valence to
the conduction bands. The duration of this process is directly
controlled by the duration of the laser field. In addition, the
density of carriers is dictated by the intensity of the laser that
also controls the amount of energy transferred to electrons and
holes [6–12].

Already during this first step of the whole dynamics, static
and coherent correlation effects play a crucial role. As an
example, it is well known that the light absorption process
is accompanied by the formation of excitonic states [13].
These are bound electron-hole pairs created by the initial
laser excitation. The electron-hole attraction is described by
a screened Coulomb interaction. Nevertheless, at this stage
the quantization of the electromagnetic field is not requested
and, indeed, in studying simple optical absorption the simpler
classic treatment is commonly adopted [13,14].

After the photoexcitation, the carriers will relax by dis-
sipating and transferring energy among themselves and to
the lattice. During this first step of the dynamics (that can
be as long as few picoseconds), the ensemble of electrons
interact via repeated collisions mediated by the Coulomb
(e–e) and the electron-phonon (e–p) interactions. Indeed, the
complex interaction of the carriers with the lattice imposes
the quantization of the atomic oscillations in the form of
phonon modes. These then enter naturally in the dynamics
and must be included in a coherent framework together with
excitonic effects. This already represents a first important and
challenging aspect in the description of out-of-equilibrium
processes.

The last step in the dynamics of the photoexcited carriers
is the recombination with the consequent spontaneous light
emission. This process is entirely a quantistic phenomenon
and requires the quantization of the electromagnetic field. As
a consequence, it is evident that a comprehensive description
of all phases of the dynamics following a photoexcitation event
requires the simultaneous quantistic treatment of electron,
phonons, and photons. This is well beyond the state of the
art and it represents the goal of this work.

In a typical pump and probe experiment (P&p), a weaker
and perturbative second laser pulse is used to probe the system
at any time between the processes (a) and (c) of Fig. 1.
A wealth of time-dependent observables are then measured
experimentally. Examples are the change in the absorption
of the probe induced by the pump (transient absorption)
[15–17], the time-dependent light-emission spectrum [18], the
time-dependent photoelectron spectrum [19,20].

The key point is that all these observables are inherently
connected, as they are produced from the same elemental
dynamics of the system, although from different perspectives.
From a theoretical point of view, the device of a coherent
description of the excited state of the materials has followed
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FIG. 1. Schematic representation of the different processes in-
duced by the interaction of a material with a short and intense
laser pulse. The action of the laser creates electron-hole pairs
[process (a)]. These pairs interact through the screened Coulomb
interaction (zigzag line) creating transient excitonic states. After the
photoexcitation, the carriers undergo repeated collisions with other
carriers and with the lattice [process (b)]. During these processes,
phonons and electron-hole pairs are emitted and/or absorbed. Finally,
after picoseconds to microseconds, the excited carriers eventually
relax to the ground-state emitting photons [process (c)]. ωγ and ω′

γ

are photon energies, ωqλ is a phonon energy, and ωe-h represents
electron-hole pair energy.

several distinct and often fragmented and uncorrelated paths.
The most up-to-date scheme to calculate and predict the
ground- and excited-state properties of a wide range of
materials is based on the merging of density functional theory
(DFT) [21] with many-body perturbation theory (MBPT)
[13]. DFT is a broadly used ab initio ground-state theory,
that allows to calculate exactly the electronic density and
total energy without adjustable parameters. The merging of
DFT with perturbation theory gives the so-called density
functional perturbation theory [22,23] (DFPT). The DFPT
is a powerful computational tool for the direct treatment of
phonons. However, the DFT computation of excited electronic
states properties, like the band-gap energies, is a known
problematic topic [21]. As a result, MBPT is nowadays the
preferred alternative to DFT for that purpose. It is based
on the accurate treatment of correlation effects by means of
the Green’s function formalism. MBPT is formally correct
and leads to a close agreement with experiment [24], but
is extremely computationally demanding. A natural way to
solve this issue is to merge the quick DFT calculation with the
accurate MBPT one. The latter method is often referred to as ab
initio many-body perturbation theory [13] (ai-MBPT). In this
method, DFT provides a suitable single-particle basis for the
MBPT scheme. This method has been applied successfully, for
example, to correct the well-known band-gap underestimation
problem of DFT [25].

Therefore, as far as equilibrium properties are concerned,
the theoretical and methodological developments have con-
stantly contributed to create a consistent and efficient envi-
ronment that can now count on a number of well-established
standards and codes.

The situation in the out-of-equilibrium case is rather
different. Indeed, the standard tools of equilibrium MBPT
cannot be applied and one has to switch to more advanced
nonequilibrium Green’s function (NEGF) techniques. From
a purely theoretical point of view, the NEGF theory has
been extensively studied and reviewed in many books [9–12].
Nevertheless, its development has been mainly confined to

simple models or specific models suitable to interpret specific
properties. A merging with DFT, in the NEGF case, is still at
the very beginning and an inclusive approach is lacking. As a
main consequence, there are not standard numerical tools that
can be used even by nonexperts or experimentalists to support
their observations. This is the main motivation of this work.

The NEGF theory is indeed, as far as the electron-
electron (e-e) interaction is concerned, at an excellent level
of development. By using the Keldysh contour formalism
[26], we can obtain the Baym-Kadanoff equations (BKE) that
govern the electronic motion. The fundamental ingredient of
the BKE is the self-energy, which embodies all the information
on the many-particle interaction. The self-energy can be
calculated from single-particle quantities [26]. The BKE can
also be reduced to a Boltzmann-type equation in the Markovian
limit [26].

The e-p interaction has been widely studied both at the and
out of the equilibrium. In the first case, the MBPT approach
has been applied and reviewed in Ref. [27]. In this case,
the nuclear effects are included by deriving a full set of
self-consistent equations for the screened interaction and the
self-energy operator. Also, the merging of MBPT and DFT
has been studied [28,29] and applied [30–34] extensively. In
the out-of-equilibrium case, the theory is well known as well
and it leads to a combined description of both the electronic
and phononic dynamics [10,35,36]. In this case, the merging
with DFT has been only very recently introduced within the
simplified Markovian limit [37] or in the more general scheme
based on the generalized Baym-Kadanoff ansatz (GBKA) and
on the completed collision approximation (CCA) [20,38].

It is crucial to note, at this point, that in all the above
cases the electron-photon (e-γ ) interaction is neglected and
the electromagnetic interaction is treated classically. As we
will see shortly, this approach is suitable unless we are not
interested in the long-time carrier dynamics and in the transient
light-emission spectrum.

Indeed, another family of theoretical studies is connected
to the bridging of the very general theories based on the NEGF
with the actual experiments that are performed in a typical P&p
setup. The case of the carrier dynamics is the most natural and
easy to introduce as it is a simple by product of the BKE. Once
that GBKA and the CCA are applied, the equation of motion
for the electronic occupations is obtained [20,35–38].

The time-resolved light absorption of the probe field has
been studied within the NEGF formalism in Ref. [39]. Starting
from the BKE and introducing an adiabatic approximation,
an equation of motion for the linear response function is
derived and shown to reduce to the well-known Bethe-Salpeter
equation (BSE) in the absence of the pump field or when this is
weak enough to be possible to apply the low-intensity regime
approximation (LIA). Both the LIA and the adiabatic ansatz
will be introduced and extensively used in this work.

In order to study photoluminescence (PL), the inclusion
of the e-e and e-p interactions is not enough. Indeed, light
emission is possible only when also the electromagnetic field
is quantized and it appears as a evolving term in the BKE.
As in the e-e and e-p cases also the inclusion of the e-γ
interaction has been studied [40–42]. In these works, the
theory is bridged with the BSE but the e-p interaction, and
therefore the photoexcited carriers relaxation, is neglected.
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Alternatively, e-p interaction has been included [41,43,44] but,
in this case, neglecting the e-e interaction and, therefore, the
formation of excitonic states.

A field that has been developed in parallel to MBPT is
the one based on DFT. In DFT, the most used tool is the
time-dependent Kohn-Sham equations [21] that have been
applied to study out-of-equilibrium regimes [45,46]. DFT
provides an alternative and powerful tool where, however, the
description of e-e and e-p interactions is quite problematic.
Indeed, DFT has been mainly applied to low-dimensional
systems [47] or to study very short-time effects [48] where
relaxation, dissipation, and formation of excitonic states
can be, within specific approximations, neglected. Quantized
electromagnetic fields have been recently introduced within
DFT [49].

This short introduction proves that the development of
a theory of quantized electrons, phonons, and photons out
of equilibrium is fragmented in several, often uncorrelated,
paths. In addition, these approaches often use very different
schemes and approximations, often difficult to merge together.
In addition, the complexity of all these theories has prevented
their application to realistic materials at a level of accuracy
comparable with the ai-MBPT approach. This has deprived
the theory of its potential predictive power. Also because, in
general, P&p experiments are used to measure changes in
specific observables, which are often very small quantities,
therefore making the accuracy of the theory very important.
The merging with DFT has been only recently introduced and
it is still at the initial stages of its development [14,37,38,50].

In this paper, we present a full description of an interacting
system, thus including electrons, photons, and phonons, out of
equilibrium. We start from the many-body Hamiltonian and
by following a step-by-step mathematical procedure based
on NEGF theory we derive the complete BKE including
coherently the three interactions: e-e, e-p, and e-γ . In this
way, we go beyond the state-of-the-art knowledge preparing
the field for the merging with DFT. Indeed, in order to do so, we
discuss key physical regimes (the low-intensity and adiabatic
regimes) from which we derive key approximations. By using
these approximations, the overall complexity of the equations
will be greatly simplified and suitable to be merged with DFT
in a computationally feasible approach to out-of-equilibrium
phenomena.

The structure of the paper is as follows. We will first intro-
duce the problem, the Hamiltonian (Sec. II), and the interaction
terms (Sec. II A). By extending the seminal works of Ref. [27]
on the electron-phonon interaction and of Refs. [26,40,42,51]
on the electron-photon interaction, we will introduce in
Sec. III A the equation of motion for the Green’s function,
defined in Sec. III, on the Keldysh contour. We will discuss
extensively the longitudinal and transverse response functions
(Sec. III C) and vertex functions (Sec. III D). Although we
derive a full consistent set of equations for all the different
parts entering the scattering process, here we will focus on
the electronic dynamics. The equations of motion relative to
the other particles (photons and phonons) will be introduced
in a future work. In Sec. IV, we will introduce the GW

approximation and, in Sec. V, this approximation will be used
to close the dynamics in the space of the single-time density
matrices by means of the GBKA (Sec. V). In addition, we

will investigate further simplifications obtained by treating
the memory effects within the CCA (Sec. V B). Thanks
to these crucial approximations we will arrive to a closed
equation, in Sec. VI, that will allow us to derive simple but
efficient equations to describe the carrier dynamics (Sec. VI B),
the transient optical absorption (Sec. VI C), and, finally, the
light-emission spectrum (Sec. VI D). We will conclude this
work by rewriting the theory in the frequency domain by
introducing an adiabatic ansatz (Sec. VII) and by discussing
the merging with the ab initio methods (Sec. VIII).

II. BARE HAMILTONIAN AND THE
INTERACTION TERMS

We start with the nonrelativistic Hamiltonian of a system
of interacting electrons moving under the action of an external
electromagnetic field and of the internal electron-nucleus
interaction:

Ĥ = Ĥ0 + Ĥint, (1)

Ĥ0 =
∑

i

h(r̂i) + T̂n + Ĥγ + Ĥn-n, (1′)

Ĥint = Ĥe-e + Ĥe-n + Ĥe-γ . (1′′)

Equation (1) includes terms describing the single-particle dy-
namics (T̂e,T̂n, and Ĥγ ) and interaction terms due to the mutual
interaction of electrons, nuclei, and photons (Ĥn-n,Ĥe-n,Ĥe-e,
and Ĥe-γ ). In the above equation, h(r) represents the single-
particle operator and it is summed over the electronic
positions ri .

Depending on the choice of the noninteracting part of the
Hamiltonian, h can include, aside from the kinetic part, some
kind of initial correlation in the form of a mean-field potential.
This is an essential ingredient in the merging of many-body
techniques with ab initio methods.

The electronic and nuclear kinetic parts are

T̂e = −1

2

∫
d3r ψ̂†(r)∇2ψ̂(r), (2)

T̂n = −
∑

R

∇2
R

2MR
, (2′)

with R the generic position of the nucleus with mass MR. In
Eq. (2), ψ̂(r) and ψ̂†(r) are, respectively, the electron creation
and annihilation operators in the Schrödinger’s picture. The
spinorial degrees of freedom are not considered here to keep
the notation as simple as possible. The extension of the present
theory to include their effect can be done starting from Pauli’s
equation and using the minimal coupling transformation. We
also use the convention of representing vectors with a bold
symbol (like A) and tensors using a double arrow overscript

(like
←→D ). Through this work, band indices will be represented

by a Latin subscript (i,j, . . .), while Cartesian directions and
branch indices will be denoted by Greek labels (α,β, . . .).

Ĥγ is the noninteracting Hamiltonian for the transverse
photons

Ĥγ =
∑
q,λ

ωqd̂
†
q,λd̂q,λ, (3)
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with q and ωq the photon’s momentum and energy, λ its
polarization, and d̂

†
q,λ and d̂q,λ the creation and annihilation

operators, respectively (also in Schrödinger’s picture).
The first group of interaction terms describes the nuclear-

nuclear and e-e interactions. Those do not make the different
subspaces of electron, nuclei, and photons interact but build
up internal (purely electronic and nuclear) correlation effects:

Ĥe-e = 1

2

∫
d3r d3r ′ ψ̂†(r)ψ̂†(r′)v(r − r′)ψ̂(r′)ψ̂(r), (4)

with v(r − r′) the bare Coulomb potential. The nucleus-
nucleus interaction reads as

H̃n-n = 1

2

′∑
R,R′

ZRZR′v(R − R′), (5)

with
∑′

ij = ∑
i �=j and ZR the nucleus atomic number.

The e-p interaction Ĥe-γ is given by

Ĥe-γ = −1

c

∫
d3r Â(r) · Ĵ(r) + 1

2c2

∫
d3r ρ̂(r)Â2(r). (6)

Here, the paramagnetic electronic current and the density are
defined as

Ĵ(r) = 1

2i
[ψ̂†(r)∇ψ̂(r) − c.c.], (7)

ρ̂(r) = ψ̂†(r)ψ̂(r). (7′)

We work in the second quantization formalism and intro-
duce a suitable single-particle basis with orthonormal wave
functions {ϕi(r)}. Then, the creation and annihilation field
operators ψ̂†(r) and ψ̂(r) for a particle at position r in space
are expanded according to

ψ̂(r) =
∑

i

ϕi(r)ĉi . (8)

The one-particle density-matrix operator takes the form

ρ̂(r,r′) = ψ̂†(r)ψ̂(r′) =
∑
ij

ϕ∗
i (r)ϕj (r′)ρ̂j i , (9)

with ρ̂j i = ĉ
†
i ĉj .

The first important step is the quantization of the electro-
magnetic field that, as it will be clear shortly, will appear as an
explicit ingredient of the time evolution. We start by rewriting
the vector potential of the electromagnetic radiation in terms
of photon creation and annihilation operators

Â(r) =
∑

G,q,λ

(
2πc2

ωq+G�

) 1
2 [

d̂q+G,λe
i(q+G)·r

+ d̂
†
q+G,λe

−i(q+G)·r]eλ(q + G), (10)

with � being the volume of the lattice and eλ(q + G) the
polarization vectors orthogonal to the photon’s momentum
q + G.

We aim at describing any kind of system by using a supercell
approach. This means that the periodic part of the system (if
any) is represented by a unit cell of volume �s containing N

momenta q (� ≡ N�s). This unit cell is periodically repeated
displaced of a generic vector G of the reciprocal lattice. In the

case of isolated systems N = 1 and �s is chosen large enough
to avoid spurious interactions.

The e-p interaction arises from the term Ĥe-n where the
nuclear and electronic densities are coupled via the Coulomb
interaction

Ĥe-n = −
∫

dr dR
ρ̂(r)N̂(R)

|r − R| . (11)

N̂ (R) is the nuclear density operator that we take as the
counterpart of the electronic case. The actual definition of
the nuclear density is a delicate issue that has been already
discussed in Ref. [27].

A. Coupling to the external perturbations

The Hamiltonian H describes the complete dynamics of the
coupled systems of electrons, photons, and phonons. In order to
rewrite this dynamics in the form of equations of motion for the
corresponding Green’s functions, we can use two equivalent
paths. One is based on the standard diagrammatic technique
[52] which constructs approximations for the different terms
of the theory by using a geometrical and graphical approach.
An alternative approach, that we follow here, is based instead
on the equation-of-motion approach [53]. This method leads,
both in the equilibrium and the out-of-equilibrium regimes,
to a closed set of integrodifferential equations that at the
equilibrium are known as Hedin’s equations [54].

In order to extend these equations to account for the
correlated dynamics of electrons, photons, and phonons in
an out-of-equilibrium context, we start by discussing some
key aspects of the purely electronic case. In the equation-of-
motion approach, the Hamiltonian is perturbed with a fictitious
time-dependent term

Ĥ (t) = Ĥ + Ĥext(t). (12)

In the original derivation of Hedin’s equations [53], Ĥext(t)
describes the coupling of the electronic charge with an external
fictitious field φext(r,t) that, at the end of the derivation, is set
to zero:

Ĥext(t) =
∫

d3r φext(r,t)ρ̂(r,t). (13)

Now, the problem is that this perturbation cannot be used
in the present case where we want to describe a quantized
electromagnetic field. The reason is that the vector potential
is now quantized and it cannot be set to zero at the end of the
calculations. This is connected to the well-known existence of
a vacuum energy of the electromagnetic field.

To solve this problem, we follow a different path. We notice
that the external potential φext(r,t) is solution of the Poisson
equation

∇2φext(r,t) = −4πρext(r,t). (14)

The solution of Eq. (14) can be rewritten in integral form

φext(r,t) =
∫

d3r ′ v(r − r′)ρext(r′,t), (15)

that, plugged into Eq. (13), yields

Ĥext(t) =
∫

d3r φ̂(r)ρext(r,t), (16)

with ρext the inhomogeneous part of Eq. (14).
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By comparing Eq. (13) with (16), we notice that, now, the
potential can be quantized and the external charge sent to zero.
As it will be clear in the following, these two procedures are
equivalent, as far as the solely electronic limit is concerned.

Another important aspect is that we can now couple the
external test charge to the potential generated by both the
nuclear and the electronic charges:

φ̂(r,t) =
∫

d3r ′ v(r − r′)[ρ̂(r′) − N̂ (r′)]

=
∫

d3r ′ v(r − r′)n̂(r′), (17)

where n̂ = ρ̂ − N̂ is the total internal density of the system,
since now we have to account for the quantized nuclei as well.
By following Ref. [27] we introduce an external perturbation
of the nuclear density Next(R,t), that is coupled, via Eq. (15),
to the electric potential generated by the nuclei V̂n(r,t).

A similar procedure can be applied to the perturbation
induced by an external vector potential by using the equation
of motion (

1

c2
∂2
t − ∇2

)
Aext(r,t) = 4π

c
Jext(r,t). (18)

In this way, the total interaction part of the Hamiltonian looks
like

Ĥext(t) =
∫

d3r φ̂(r,t)ρext(r,t) − 1

c

∫
d3r Â(r) · Jext(r,t)

−
∫

d3R V̂n(R)Next(R,t). (19)

The last term in Eq. (19) describes the coupling with the
nuclear motion. This was first introduced by Baym in Ref. [55]
and also used in Ref. [27]. Here, we work with a fictitious
external density in order to maintain coherence with the other
perturbative terms. As it will be clear in the next sections,
we use these external quantities to decouple the dynamics of
electrons, nuclei, and photons. In Eq. (19) we have neglected
the second term on the right-hand side of Eq. (6). The reason
is that this term is multiplied by 1/c2 and therefore, for a
given order in the perturbative expansion, it leads to correction
much smaller than those induced by the A · J term. From a
diagrammatic point of view, the ρA2 term is responsible of a
series of diagrams well known and studied in the e-p problem
[28], where they arise from the second-order e-p interaction. In
the e-γ case, however, these diagrams can be safely neglected.

III. GREEN’S FUNCTIONS AND EQUATIONS
OF MOTION ON THE KELDYSH CONTOUR

The time evolution in nonequilibrium processes is more
complicated than for equilibrium systems because it is not
guaranteed that after an arbitrarily long enough time the system
will return to the ground state. The extension of Hedin’s
equations to an out-of-equilibrium system can be done with
recourse to a contour in the complex plane known as the
Keldysh contour [10]. The contour runs as shown in Fig. 2 with
the upper (positive) branch running from an instant t0 where
the system is assumed to be at equilibrium to an unknown
state. The system is brought back to equilibrium via the lower

T ime

+

−

FIG. 2. The Keldysh contour. Any time index runs on the contour
which defines a natural time ordering that only in the upper branch is
equivalent to the ordering in the standard real-time axis.

(negative) branch and it is this mathematical description for
the time evolution which permits us to have all the necessary
rules to reconstruct an equation system similar to the original
one of Hedin’s [10].

Therefore, the Green’s function G(1,2) for nonequilibrium
processes is defined on the Keldysh contour [11]

G(1α,2β ) = −iβ
Tr{ρ0TC[ŜCψ̂I (1α)ψ̂†

I (2β)]}
Tr{ρ0ŜC} , (20)

where the subscript I indicates that operators are in the
interaction picture and subscripts α, β = ±1 indicate the
branch on the Keldysh contour where the time argument of the
respective operator is located. The operator TC is the contour
time-ordering operator. In Eq. (20), we introduce the compact
notation 1 ≡ (r1,t1). Note that the time t runs on the Keldysh
contour.

The transition from the Heisenberg picture (where the
electron operators are usually defined) to the interaction one
is done via the following expression:

Ô(tα) = Ŝ(−∞,tα)ÔI (tα)Ŝ(tα,−∞), (21)

where Ô is a generic operator and

Ŝ(tα,t ′α) = Tαexp

[
−iα

∫ tα

t ′α
dτ Ĥ α

ext,I (τ )

]
. (22)

Note that, in Eq. (22), the time arguments lie on a single time
branch of the Keldysh contour. This implies that we can intro-
duce a branch-specific evolution operator Ŝα(t,t ′) ≡ Ŝ(tα,t ′α).
With this definition the overall time evolution operator ŜC

entering Eq. (20) can be rewritten as

ŜC = Ŝ−(−∞,∞)Ŝ+(∞,−∞), (23)

and we have that the expectation value of Ô taken on the
contour is

〈Ô(1)〉C = Tr{ρ0TC[ŜCÔI (1)]}
Tr{ρ0ŜC} . (24)

The structure of Eq. (20) with respect to the position of the
time arguments on the Keldysh contour defines the different
kind of Green’s functions:

G(1+,2+) ≡ Gc(1,2), (25)

G(1−,2+) ≡ G<(1,2), (25′)

G(1+,2−) ≡ G>(1,2), (25′′)

G(1−,2−) ≡ Gc̃(1,2). (25′′′)
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In Eq. (25), Gc is the time-ordered or causal Green’s function,
G< and G> are the lesser and greater Green’s functions, and
Gc̃ is the anti-time-ordered Green’s function.

A. Equation of motion for the Green’s function
on the Keldysh contour

In order to obtain the equation of motion for G we start
from i∂t1G(1α,2β ). From Eqs. (20) and (25) we get

∂t1 TC[ŜCψ̂I (1α)ψ̂†
I (2β)]

= δ(1α − 2β)TC[ŜC] + TC[ŜC∂t1ψ̂I (1α)ψ̂†
I (2β)]

+ iαTC[ŜCĤext(t1α)ψ̂I (1α)ψ̂†
I (2β)]

− iαTC[ŜCψ̂I (1α)Ĥext(t1α)ψ̂†
I (2β)]. (26)

In the second term of the right-hand side of Eq. (26) we have
the time derivative of the electron annihilation operator that is,
in the interaction picture,

i∂t1ψ̂I (1) = [ψ̂I (1),ĤI (t1)]

=
[
ĥ(1) − i

c
Â(1) · ∇1 + φ̂(1)

]
ψ̂I (1). (27)

ĤI is the representation, in the interaction picture, of Ĥext(t),
defined in Eq. (12), while the third and fourth terms in Eq. (26)
give

iαTC[ŜCĤext(t1)ψ̂I (1α)ψ̂†
I (2β)]

− iαTC[ŜCψ̂I (1α)Ĥext(t1)ψ̂†
I (2β)]

= −iαφext(1)Tc[Ŝcψ̂(1α)ψ̂†(2β)]. (28)

Equations (26)–(28), finally, lead to the following equation of
motion for G:[

i∂t1 − ĥ(1) − i

c
〈Â(1α)〉C · ∇1 − U (1α)

]
G(1α,2β)

= δ(1α − 2β) + i
δG(1α,2β)

δρext(3γ )

∣∣∣∣
3γ =1α

−∇1 · δG(1α,2β )

δJext(3γ )

∣∣∣∣
3γ =1α

.

(29)

In Eq. (29), we defined the total potential

U (1) = φext(1) + 〈φ̂(1)〉C , (30)

and used the following identities for the functional derivatives

δG(1α,2β)

δρext(3γ )
= iγ 〈φ̂γ (3γ )〉

C
G(1α,2β )

−βγ 〈φ̂(3γ )ψ̂(1α)ψ̂†(2β)〉
C

(31)

and

δG(1α,2β)

δJext(3γ )
= i

γ

c
〈Â(3γ )〉

C
G(1α,2β )

+ βγ

c
〈Â(3γ )ψ̂(1α)ψ̂†(2β)〉

C
. (32)

Equation (29) can be also used to define the noninteracting
Green’s function in order to rewrite it as Dyson equation or,

alternatively, as BKE. Indeed, we start by noticing that G0 is
the solution of Eq. (29) when δG

δρext
= δG

δJext
= 0:[

i∂t1 − hext(1α)
]
G0(1α,2β ) = δ(1α − 2β), (33)

with

hext(1) = h(1) − i

c
〈Â(1)〉C · ∇1 − U (1). (34)

Equations (33) and (34) imply that

G−1
0 (1α,2β ) = [

i∂t1 − hext(1α)
]
δ(1α − 2β ). (35)

By using Eq. (35) we can further rewrite Eq. (29) in terms of
the bare and of the fully interacting Green’s functions. This
is, clearly, a step towards the final form of the Dyson-type
equation:

G(1α,2β ) = G0(1α,2β) + G0(1α,4σ )

×
[
i
δG(4σ ,2β )

δρext(3γ )

∣∣∣∣
3γ =4σ

− ∇1 · δG(4σ ,2β )

δJext(3γ )

∣∣∣∣
3γ =4σ

]
.

(36)

The electromagnetic field and the nuclei are now quantized, so
the entire theoretical scheme is closed only when the equations
of motion for their propagators are introduced. Indeed, it is
interesting to note that all different effects induced by the
mutual interactions (e-e, e-p, e-γ ) will mix together in the
dressing of the total fields connected to the external sources.
This dressing will involve the ensemble of electrons, photons,
and phonons via oscillations (collective and not) described by
the corresponding response functions. Indeed, as it will be clear
shortly, at difference with the well-known purely electronic
case new response and vertex functions must be introduced.

B. Equation of motion for the electromagnetic potentials

The equation of motion for the fields is obtained by taking
the macroscopic average of U and 〈Â〉. Indeed, from classical
electrodynamics, we know that the scalar potential U is the
solution of the Poisson equation

∇2U (1) = −4π [ρext(1) + 〈n̂(1)〉C], (37)

while the expectation value of the vector potential 〈Â〉 satisfies
the equation of motion(

1

c2
∂2
t1

− ∇2
1

)
〈Â(1)〉C = 4π

c
J⊥

tot(1)

= 4π

c

∫
d2

←→
δ ⊥(1,2)Jtot(2). (38)

The ⊥ superscript means that only the transverse part of the
current enters in the Eq. (38). This is obtained from the total
current vector using the transverse delta function

δ⊥
αβ(1,2) = δ(t1 − t2)

[
δ(r1 − r2)δαβ

+ 1

4π

∂

∂r1,α

(
1

|r1 − r2|
∂

∂r2,β

)]
. (39)
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C. Response functions, vertex functions, and self-energies

The equation of motion for G [Eq. (29)] is still written in an
obscure way and the different physical ingredients describing
the complex many-body dynamics are hidden inside the
functional derivatives [ δG(4σ ,2β )

δρext(3)
and δG(4σ ,2β )

δJext(3γ ) ]. In this section,
we investigate the structure of these derivatives by introducing
the longitudinal and transverse response function and vertex
functions.

We start by noticing that, as a consequence of the Green’s
function definition, it follows that

G(1α,2β)G−1(2β,3γ ) = δ(1α − 2β) ⇒ δG(1α,2β )

δh(3γ )

= −G(1α,4η)

[
δG−1(4η,5ξ )

δh(3γ )

]
G(5ξ ,2β )

(40)

for any well-behaved function h. In Eq. (40) we have
introduced the right G−1 function that acts on the right
arguments of G. Note that an alternative formulation can be
introduced by using the left G−1 defined in such a way that
G−1(1α,2β)G(2β,3γ ) = δ(1α − 2β ) [53].

We can now apply a second rule that states that

δG−1(4η,5ξ )

δh(3γ )
= δG−1(4η,5ξ )

δg(6σ )

δg(6σ )

δh(3γ )
. (41)

From Eqs. (40) and (41), we get that, by using h = ρ and
g = U [see Eq. (30)],

δG(1α,2β)

δρext(3γ )

∣∣∣∣
3γ =1α

= G(1α,4η)γ (4η,5ξ ,6σ )

×W (6σ ,1α)G(5ξ ,2β). (42)

With Eq. (42) we can now introduce the scalar (longitudinal)
part of the total self-energy operator �long, defined as

i
δG(1α,2β )

δρext(3γ )

∣∣∣∣
3γ =1α

= �long(1α,3γ )G(3γ ,2β ), (43)

and, from Eq. (42), it follows that

�long(1α,2γ ) ≡ G(1α,3γ )γ (3γ ,2β,4σ )W (4σ ,1α). (44)

The definition of the self-energy operator naturally introduces
scalar response function

W (1,2) = δU (1)

δρext(2)
, (45)

and the longitudinal vertex function γ (1,2,3),

γ (1,2,3) = −δG−1(1,2)

δU (3)
. (46)

A similar procedure can be applied to the other derivative
that appears in Eq. (29), δG

δJext
. At difference with the charge

derivative, this new term is a vector and we use Greek symbols
(α,β, . . .) to label its Cartesian components. By applying the
following substitutions to Eqs. (40) and (41),

δ

δρext
⇒ δ

δJext,α
, (47)

δ

δU
⇒ δ

δAα

, (48)

we get that

δG(1α,2β)

δJext,λ(3γ )

∣∣∣∣
3γ =1α

= −
3∑

θ=1

G(1α,4η)
δG−1(4η,5ξ )

δ 〈Âθ (6σ )〉C

× δ 〈Âθ (6σ )〉C
δJext,λ(1α)

G(5ξ ,2β ). (49)

Equation (49) allows to introduce the second important
term in the total self-energy corresponding to its transverse
contribution �trans:

�trans(1α,2β) = −
3∑

λ=1

∇1,λ

δG(1α,2β )

δJext,λ(3γ )

∣∣∣∣
3γ =1α

= i

3∑
λ,θ=1

�λ(1,3)G(1α,4η)�θ (4η,5ξ ,6σ )

×Dθλ(6σ ,3β )G(5ξ ,2β )|3γ =1α
, (50)

where

�(1,2) = − i

2
(∇1 − ∇2) = �(1) + �∗(2). (51)

The transverse self-energy (50) further introduces two func-
tions. The transverse photon propagator, which we will call←→D (1,2),

←→D (1,2) = − c

4π

δ 〈Â(1)〉C
δJext(2)

, (52)

and the transverse vertex (vectorial) function �,

�(1,2,3) = −4π

c

δG−1(1,2)

δ 〈Â(3)〉 . (53)

We notice now that the longitudinal screened potential and
vertex are connected, via Eq. (37), to the total density. This
includes both an electronic and a nuclear component. It is then
clear that the nuclear motion will enter directly in the electronic
dynamics via the longitudinal components.

This sharp separation between longitudinal and transverse
components of the theory is possible thanks to the use of the
Coulomb gauge. This allows the electromagnetic field to be
separated into two independent parts and the entire theory
follows the same structure. As we will be seeing shortly,
the final expression for the self-energy will also be split in
a longitudinal and in a transverse part (see Fig. 3).

The final step of this section is obtained by using Eqs. (50)
and (46) to define the total self-energy � = �long + �trans.
This can be introduced in Eqs. (36) and (29) to obtain the
final form of the equation of motions for the G written as time
derivative [

i∂t1 − hext(1)
]
G(1α,2β)

= δ(1α − 2β) + �(1α,3γ )G(3γ ,2β), (54)

and as Dyson-type equation

G(1α,2β ) = G0(1α,2β) + G0(1α,3γ )�(3γ ,4η)G(4η,2β).

(55)
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i∂t1G (1α, 2β)

(Sec. III.A)

δG (4σ, 2β)

δρext(3)

δG (4σ, 2β)

δJext (3γ)

U (1) = φext (1) + φ̂ (1) C

W (1, 2) =
δU (1)

δρext (2)

(Sec. III.C.2)

←→D (1, 2) = − c

4π

δ Â (1) C

δJext (2)

(Sec. III.C.1)

γ (1, 2, 3) = −δG−1 (1, 2)

δU (3)

(Sec.III.D)

Γ (1, 2, 3) = −4π

c

δG−1 (1, 2)

δ Â (3)

(Sec.III.D)

Σ(1, 2) = i G(1, 3)γ(3, 2, 4)W (4, 1+) +

3

α,β=1

Πα(1, 1 )G(1, 3)Γβ(3, 2, 4)Dβα(4, 1 )

1 =1

(Sec.III.E)

FIG. 3. Schematic representation of the mathematical procedure followed to get the Dyson equation within the framework of the Hedin’s
equations. The initial derivative is split in longitudinal (left) and transverse (right) contributions.

Equations (54) and (55) are equivalent and represent two
different formulations of the well-known KBE.

From the equation of motion for the scalar and for the
vector potential, we can now derive the equations governing
the response functions. Indeed, these functions describe the
change in the observables due to the total (external plus
induced) perturbations and provide a connection between
Eqs. (37), (38), and (29). We analyze, now, separately the two
contributions: transverse (photon induced) and longitudinal
(electronic and phonon mediated).

1. Photon-induced response function

The photon-induced response function represents the trans-
verse photon propagator. We start from Eq. (38) and divide
the total current in an external and an induced part: Jtot =
Jext + Jind. Thus, we can express the solution of Eq. (38) as

〈Â(1)〉C = −4π

c

∫
d2

←→D 0(1,2)[Jext(2) + Jind(2)], (56)

where D0(1,2) is the free transverse photon propagator
solution of (

1

c2
∂2
t1

− ∇2
1

)←→D 0(1,2) = ←→
δ ⊥(1,2). (57)

By applying the chain rule (40), we derive the equation of
motion for the transverse photon propagator

←→D (1,2) = ←→D 0(1,2) + ←→D 0(1,3)
←→
P (3,4)

←→D (4,2), (58)

where we have defined the transverse photon polarization←→
P (3,4):

←→
P (1,2) = −4π

c

δJind(1)

δ 〈Â(2)〉C
. (59)

To obtain the equation for the transverse polarization we need
a microscopic expression for the induced current Jind. This is
related to the electronic Green’s function by

Jind(1) = 〈Ĵ(1)〉C − 〈ρ̂(1)Â(1)〉C
= i�(1,1′)G(1,1′)|1′=1+ . (60)

In deriving Eq. (60), we have omitted the ρA term as we
are considering averages on states with a fixed population of
photons such that 〈d†

q+G,λ〉C = 〈dq+G,λ〉C = 0. This implies

that 〈ρ̂(1)Â(1)〉C = 0. From Eqs. (59) and (52), we finally get
a closed expression for the transverse photon polarization:

Pαβ (1,2) = −i�α(1,1′)G(1,3)�β(3,4,2)G(4,1′)|1′=1. (61)

155102-8



UNIFIED THEORY OF QUANTIZED ELECTRONS, . . . PHYSICAL REVIEW B 93, 155102 (2016)

2. Phonon-induced response function

We now look into the screened Coulomb interaction W

defined in Eq. (45). By using Eq. (30), we obtain

W (1,2) = w0(1,2) + w0(1,2)

[
δ 〈ρ̂(3)〉C
δρext(2)

− δ 〈N̂ (3)〉C
δρext(2)

]

= w0(1,2) + w0(1,3)

[
pe(3,4)W (4,2) − δ 〈N̂ (3)〉C

δρext(2)

]
,

(62)

where w0(1,2) = δ(t1 − t2)v(|r1 − r2|) is the bare Coulomb
interaction, and pe is the longitudinal electronic polarization:

pe(1,2) = δ 〈ρ̂(1)〉C
δU (2)

. (63)

Equation (62) includes two contributions. One is coming from
the electronic density (via pe) and the other from the nuclear
density (via δN/δρ). Thus, by following Ref. [27], we separate
W into an electronic plus a nuclear part.

The electronic polarization is still defined, as in the purely
electronic case [53], in terms of the electronic component of
the total density

〈ρ̂(1)〉C = −iG(1,1+), (64)

from which it immediately follows that

pe(1,2) = iG(1,2)γ (3,4,2)G(4,1). (65)

Again, in the derivation of Eq. (65) we used Eq. (40).
The new contribution in Eq. (62) is due to the change in the

nuclear density induced by a change of the purely electronic
part of the external charge. Indeed, this is the source of e-p
interaction that describes the link between the nuclear motion
and the electronic dynamics:

δ 〈N̂ (3)〉C
δρext(2)

. (66)

In order to link this quantity to the microscopic correlation
functions, we need to introduce the nuclear density-density
correlation function D given by

D(1,2) = −i 〈�N̂ (1)�N̂(2)〉C , (67)

where the fluctuation of an operator is expressed as �Ô =
Ô − 〈Ô〉.

It is now possible to define an equation for D thanks to the
introduction, in Eq. (19), of the external nuclear charge Next.
Indeed, we start by noticing that, as the interaction with the
electronic density is

∫
d3r φ̂(r,t)ρext(r,t), it follows that

δ 〈N̂ (1)〉C
δρext(2)

= −i 〈�N̂ (1)�φ̂(2)〉C . (68)

If now we use the solution of the Poisson equation to rewrite
�φ̂ in terms of charge variations, we get

δ 〈N̂ (1)〉C
δρext(2)

= iw0(2,3)[〈�N̂ (1)�N̂ (3)〉C
− 〈�N̂ (1)�ρ̂(3)〉C]. (69)

Using the same procedure as above we can evaluate a similar
derivative δ〈n̂(1)〉

δNext(2) . In this case, the interaction with Next is

∫
d3r V̂n(r)Next(r,t). It follows, then, that

δ 〈n̂(1)〉C
δNext(2)

= −i 〈�n̂(1)�V̂n(2)〉C . (70)

By using again the solution of the Poisson equation we get
that

δ 〈N̂ (3)〉
δρext(2)

= − δ 〈n̂(3)〉
δNext(2)

. (71)

We can, now, easily evaluate Eq. (66) via Eq. (71). Taking
into account the definition of n̂ we can use the functional
derivative chain rule to obtain a Dyson-type equation

w0(1,3)
δ 〈n̂(3)〉
δNext(2)

= w0(1,3)D(3,4)w0(4,2) + w0(1,3)
δ 〈ρ̂(3)〉
δNext(2)

= w0(1,3)D(3,4)w0(4,2)

+w0(1,3)
δ 〈ρ̂(3)〉
δU (4)

δU (4)

δ 〈n̂(5)〉
δ 〈n̂(5)〉
δNext(2)

= w0(1,3)D(3,4)w0(4,2)

+w0(1,3)pe(3,4)w0(4,5)
δ 〈n̂(5)〉
δNext(2)

. (72)

Iterating the equation leads to the following solution:

w0(1,3)
δ 〈n̂(3)〉
δNext(2)

= [1 − w0pe]−1(1,3)w0(3,4)D(4,5)w0(5,2), (73)

which we can then replace in Eq. (62) obtaining the final
expression for the total screened interaction

W (1,2) = w0(1,2) + w0(1,3)pe(3,4)W (4,2)

+ [1 − w0pe]−1(1,3)w0(3,4)D(4,5)w0(5,2), (74)

and solving it in order to W , which leads to two separate
contributions

W (1,2) = We(1,2) + Wph(1,2). (75)

The first term We accounts for the interactions between the
electrons and has no direct contribution from the nuclei

We(1,2) = [1 − w0pe]−1(1,3)w0(3,2), (76)

while the second term introduces the effects of the contribution
from the nuclear density fluctuations

Wph(1,2) = [1 − w0pe]−1(1,3)We(3,4)D(4,5)w0(5,2). (77)

3. Vertex functions

In Eqs. (42) and (49), we have introduced a longitudinal
and a transverse vertex function. The equations of motion that
govern their dynamics can be easily found by differentiating
the inverse of the Dyson equation (36):

G−1(1,2) = G−1
0 (1,2) − �(1,2). (78)
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Thus, we can write for the longitudinal vertex, which is given
by Eq. (46), the following equation:

γ (1,2,3) = −δG−1(1,2)

δU (3)
= δ(1,2)δ(1,3)

+ δ�(1,2)

δG(4,5)
G(4,6)γ (6,7,3)G(7,5), (79)

and for the transverse part [Eq. (52)] we have that

�(1,2,3) = �(1)δ(1,3)δ(1,2)

+ δ�(1,2)

δG(4,5)
G(4,6)�(6,7,3)G(7,5). (80)

Vertex and response functions are the ingredients we need to
close the equation of motion for the Green’s function in a set
of integrodifferential equations. At this stage, it is important to
note that through the functional derivative δ�

δG
all interactions

mix together in a complex dynamics.

D. Final form of the Hedin’s equations

We are now ready to present the full set of the Hedin’s
equations. Those are schematically shown in Fig. 5. The first
equation gives us the electron propagator G:

G(1,2) = G0(1,2) + G0(1,3)�(3,4)G(4,2). (81)

The second equation allows us to obtain the self-energy

�(1,2) = i

⎡
⎣G(1,3)γ (3,2,4)W (4,1+)

+
3∑

α,β=1

�α(1,1′)G(1,3)�β(3,2,4)Dβα(4,1′)

⎤
⎦

∣∣∣∣∣∣
1′=1

,

(82)

in which a new term on the right-hand side is present, due to the
fact that the electromagnetic field is now quantized. The fourth
and fifth equations describe the screened Coulomb interaction

W (1,2) = We(1,2) + Wph(1,2), (83)

and the transverse photon propagator

←→D (1,2) = ←→D 0(1,2) + ←→D 0(1,3)
←→
P (3,4)

←→D (4,2). (84)

In order to evaluate them, we need the longitudinal and
transverse polarizations

pe(1,2) = iG(1,2)γ (3,4,2)G(4,1) (85)

and

Pαβ(1,2) = i�α(1,1′)G(1,3)�β(3,4,2)G(4,1′)|1′=1. (86)

These equations form the sixth and seventh Hedin’s equations
that introduce the corresponding vertex functions, whose
equations of motion represent the last two Hedin equations

γ (1,2,3) = δ(1,2)δ(1,3) + δ�(1,2)

δG(4,5)
G(4,6)γ (6,7,3)G(7,5)

(87)

+W= = D

Σ = +

Γ == γ

We= = pe+

Γ

= +γ δΣ
δG

γ

pe= γ

Γ

=

←→D = = ←→
P+

←→
P

= + δΣ
δG Γ

FIG. 4. Diagrammatic representation of the Hedin’s equations.
The bullet represents a � differential operator, defined in Eq. (51).

and

�(1,2,3) = �(1)δ(1,3)δ(1,2)

+ δ�(1,2)

δG(4,5)
G(4,6)�(6,7,3)G(7,5). (88)

The only missing term is the equation of motion for D, the
nuclear density-density correlation function. However, it is
well known [27] that the electronic and nuclear parts of Hedin’s
equations can be safely decoupled. As a consequence, the D

propagator can be thought to be given and the purely electronic
and photonic components of Hedin’s equations can be solved
self-consistently.

We have represented the new set of Hedin’s equations
in diagrammatic form in Fig. 4 and in schematic form in
Fig. 5. This last representation also provides a method to solve
the equations self-consistently. Starting from a reasonable
approximation for the longitudinal and transverse parts of
the self-energy �, we can then evaluate the longitudinal and
the transverse vertex, respectively, γ and �. Following that,
we can obtain the longitudinal and transverse polarizations pe

and
←→
P and incorporate the results in the photon propagator←→D and, assuming that we have a good description for the

nuclear oscillations in the form of the phonon propagator
D, the screened longitudinal interaction W . As the last
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G

Σ

γpe

W

(a)

G

←→D ←→
P

Γ

Σ

γpe

W

(b)

FIG. 5. Schematic representation of the different formulations of
Hedin’s equations. (a) Longitudinal case. This is well known and
widely used in the literature in its equilibrium and out-of-equilibrium
versions. When the interaction with the quantized electromagnetic
field is switched on, a new pentagon must be added [case (b)] where
the corners are the photon propagator and the transverse electronic
polarization and vertex function. The dashed lines correspond to
the generalized GW approximation where all vertex functions are
neglected.

step of the cycle, we can obtain the expression for the
Green’s function G. This is analogous to the usual descrip-
tion for a self-consistent MBPT calculation, only that in
this case we have two subcycles to evaluate: one for the
transverse and another for the longitudinal electromagnetic
field.

IV. THE GW APPROXIMATION

The GW approximation [25] is based on the assumption
that the corrections to the vertex can be ignored. In the
present case, it corresponds to ignore the second term in
Eqs. (87) and (88) so that the vertex functions acquire a simple
form

�GW (1,2,3) = �(1)δ(1,3)δ(1,2) (89)

and

γ GW (1,2,3) = δ(1,2)δ(1,3). (90)

As a consequence, both the longitudinal and transverse
polarization functions turn into an independent-particle rep-
resentation

pGW
e (1,2) = iG(1,2)G(2,1) (91)

and

P GW
αβ (1,2) = i�α(1,1′)G(1,2)�β(2)G(2,1′)|1′=1. (92)

Σ =
RI

kj

k
ji

I

≈(e − p)
I

D

≈(e − e)
I

k

l

≈(e − γ)
I

FIG. 6. The generalized GW approximation for the three kinds of
interactions: e-e, e-p, and e-γ . The wiggled propagator in the e-e case
represents a statically screened interaction, as explained in Ref. [38].

The final expression for the electronic self-energy in the GW

approximation is then given by

�GW (1,2) = i

⎡
⎣G(1,2)W (2,1) +

3∑
α,β=1

�α(1,1′)

×G(1,2)�β (2)Dβα(2,1′)

⎤
⎦

∣∣∣∣∣∣
1′=1

. (93)

The longitudinal GW self-energy has been extensively studied
and its formulation for the e-e and e-p parts is well known (see
Fig. 6).

V. A SIMPLIFIED FORMULATION USING A
SINGLE-TIME DENSITY MATRIX REPRESENTATION

The BKE [Eq. (54)] is very hard to solve for practical ap-
plications and in realistic materials. The reason is the complex
two-times dependence and spatial nonlocality that enormously
increases the complexity of the problem compared to the more
common methods used in the ai-MBPT scheme [13].

An approach that is attracting great interest is based on
the reduction of the complex equation for G(1α,2β) in a
closed equation for the density matrix ρ(1) ≡ −iG(1−,1+) =
−iG<(1,2). This approach is based on the GBKA and, in the
most recent approaches, on the CCA.

The aim of this section is to extend the derivation of the
reduced KBE to the general case of the simultaneous presence
of e-e, e-p, and e-γ interactions. We start by expressing all
quantities in the second quantization basis

G(1,2) =
∑
i,j

φi(r1)φ∗
j (r2)Gij (t1,t2), (94)

�(1,2) =
∑
i,j

φi(r1)φ∗
j (r2)�ij (t1,t2), (95)
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in such a way to remove the spatial dependence and concentrate
our attention on the time arguments. We will discuss in
Sec. VIII the properties of the single-particle basis used in (95).

In this single-particle basis, the KBE for G<(t,t ′) can be
rewritten in a compact, matrixlike form

[i∂t − hext(t)]G
<(t,t ′) =

∫
dt̄[�r (t,t̄)G<(t̄ ,t ′)

+�<(t,t̄)Ga(t̄ ,t ′)] (96)

and its adjoint

−i∂t ′G
<(t,t ′) − G<(t,t ′)hext(t

′)

=
∫

dt̄[Gr (t,t̄)�<(t̄ ,t ′) + G<(t,t̄)�a(t̄ ,t ′)]. (97)

In Eqs. (96) and (97), the retarded/advanced functions carry
a superscript r/a and are defined in terms of the lesser and
greater functions according to

Xr (t,t ′) = [Xa(t ′,t)]† = θ (t − t ′)[X>(t,t ′) − X<(t,t ′)],

(98)

where X can be G, �, or any other two-time correlation
function.

By subtracting the Eqs. (96) and (97), and taking the
derivative on the macroscopic time axis T = (t + t ′)/2 we
get the equation of motion for ρ(t) = −iG<(T ,T ):

d

dT
ρ(T ) + i[hext(T ),ρ(T )] = −S[{G},{�}](T ), (99)

where all the self-energy effects are embodied in the complex
collision integral S[{G},{�}](t) that is still a function of the
≶ two-times Green’s functions and self-energies:

S[{G},{�}](T ) =
∫ T

−∞
dt[�>(T ,t̄)G<(t̄ ,T )

+G<(T ,t̄)�>(t̄ ,T ) − (≶�≷)]. (100)

In Eq. (100), the (≶�≷) indicates that the second part of the
integral is obtained from the first part by exchanging > (<)
with < (>).

The collision integral includes contributions from the local
and nonlocal self-energies �(t,t ′) = �s(t) + �c(t,t ′). The
local part of the self-energy defines a coherent part of S

moving out of the time integral: S[{G},{�}](T ) = Scoh(T ) +
Sdyn[{G},{�}](T ). Such splitting has already been discussed
in Refs. [14,38].

The coherent part is embodied in the hext(t) term which
turns into

i[hext(T ),ρ(T )] + S[{G},{�}](T )

= i[h(T ),ρ(T )] + Scoh[ρ](T ) + Sdyn[{G},{�}](T ), (101)

with

Scoh[ρ](T ) = i[�s(t),ρ(T )]. (102)

The different possible approximations to �s reflect the
different kind of physics introduced in the dynamics and can
already account for important effects. Different cases can be
considered:

(i) A mean-field potential that mimics the correlation
effects. An example is DFT, where �s(t) is local in space
and given by the sum of the Hartree and exchange-correlation
potentials.

(ii) HF self-energy. In this case no correlation is included.
The Hartree-Fock (HF) self-energy reads as

[�s(t)]pq = Vpq

mn

ρnm(t), (103)

with the four-index tensor V ij

mn

= 2[w0]imnj − [w0]imjn and

[w0]imnj the two-electron bare Coulomb integrals:

[w0]imnj ≡
∫

dr dr′φ∗
i (r)φ∗

m(r′)v(r − r′)φn(r′)φj (r). (104)

(iii) Hartree plus a Coulomb hole and screened ex-
change (COHSEX) self-energy. In this case, correlation is
included using a linear response approximation but dynamical
effects are neglected. The COHSEX self-energy reads as

[�s(t)]pq = Vpq

mn

(t)ρnm(t), (105)

with now V (t) ij

mn

= 2[w0]imnj − W [ρ(t)]imjn and W the

screened Coulomb hole potential. This is routinely calculated
in the random-phase approximation (RPA) where

W [ρ](r,r′) ≡
∫

dr ε−1
RPA[ρ](r,r)v(r − r′). (106)

The choice of the local part of the self-energy is essential
as it already describes a large part of the level of correlation
embodied in the many-body dynamics. It has been formally
proved, for example, that the COHSEX self-energy describes
in the linear regime the excitonic effects and reduces Eq. (99)
to the well-known Bethe-Salpeter equation [14].

The collision integral Sdyn(t) is nonlocal in time and its
functional form is uniquely determined once an approximation
for the correlation self-energy �c is made. Let us consider
here the GW approximation [Eq. (93)] that can be rewritten,
by using Eq. (94), in a very general and compact form as

�
≶
ij (t,t ′) = i

∑
I

[(RI )†G≶(t,t ′)RI ]ijW
≶
I (t,t ′). (107)

In Eq. (107), RI and G are matrices [see Eqs. (94) and (95)]
and the product in the square brackets represents a matrix
multiplication. In Eq. (107), and from this point onward, we
use the Einstein convention that repeated indices are summed
over. WI , instead, is a scalar function. RI and W have different
definitions depending on the kind of interaction they are
describing.

(a) In the e-p case I = (qλ) and represents the phonon
branch (λ) and momentum (q) pair. It follows that

RI
ij = R

(qλ)
ij ≡

∫
dr φ∗

i (r)∂qλVn(r)φj (r), (108)

with ∂qλ the derivative of the bare ionic potential (Vn) along the
phonon state (qλ). Note that, if the present formalism is applied
on top of DFT, Vn(r) is replaced by the dressed self-consistent
derivative of the DFT ionic potential as discussed in Ref. [28].
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(b) In the e-γ case the I index represents the photon
polarization index (λ) and momentum (q) and

RI
ij =

∫
dr eiqI ·rφ∗

i (r)(eλ · ∇)φj (r). (109)

(c) In the e-e case the derivation of the analytic expression
for RI is more mathematically involved. At the same time,
however, this procedure has been extensively studied in the
literature. We take as reference [38,56] to rewrite the out-of-
equilibrium screened e-e interaction as an effective interaction
with a time-dependent plasma of electron-hole pairs with
scattering amplitudes given by

RI
ij =

∫
dr dr′ φ∗

i (r)W [ρ](r,r′)φj (r)[�I (r′)], (110)

where I = (k,l) and �I (r) ≡ φ∗
k (r)φl(r). In this case, indeed,

the elemental excitations are electron-hole pairs (k,l).
In all of the three cases above, W has the form

W
≶
I (t,t ′) ≡ W

≶
I (t − t ′) ≡ (−i)N±

I e±iωI (t−t ′). (111)

In Eq. (111), N±
I acquires different meanings depending on

the interaction. In the e-p case it represents the occupation of
the phonon bath at a given temperature that, for simplicity,
we assume to be fixed. An extended derivation can be carried
on by taking into account the simultaneous set of equations
of motion for the electrons, phonons, and photons. However,
here we would like to outline the method so we use as test case
the electronic motion only.

In the e-p and e-γ cases, then, N+
I = NI (β) + 1

and N−
I = NI (β) with NI (β) that Bose occupation and

β = 1/kBTel with kB the Boltzmann constant and Tel the
lattice temperature. In the e-e case N+

I = ρkk(t)[1 − ρll(t)]
and N−

I = ρll(t)[1 − ρkk(t)].
By using Eq. (111) in Eq. (107), we get that

�
≶
ij (t,t ′) = i

∑
I

[(RI )†G≶(t,t ′)RI ]ijW
≶
I (t − t ′). (112)

A. Generalized Baym-Kadanoff ansatz

Now that W≶ is a function of the time difference, in
order to close Eq. (99) in the space of the single-time density
matrices we introduce the generalised Baym-Kadanoff ansatz.
The GBKA is an ansatz for G≶ which turns it, and hence the
collision integral, into a functional of ρ and Gr/a:

G<(t,t ′) = −Gr (t − t ′)ρ(t ′) + ρ(t)Ga(t − t ′), (113)

G>(t,t ′) = +Gr (t − t ′)ρ̄(t ′) − ρ̄(t)Ga(t − t ′), (113′)

where ρ̄ = 1 − ρ. To transform Sdyn(t) into a functional of
the density matrix, and hence to close Eq. (99), one needs to
express the propagator Gr in terms of ρ. Depending on the
system there are optimal approximations to the propagator,
the most common one being the quasiparticle (QP) propagator

Gr (t,t ′) = −iθ (t − t ′)T e−i
∫ t

t ′ dt̄ hQP(t̄). (114)

For (small) finite systems the choice hQP = heq (usually heq

is the HF single-particle Hamiltonian) is a good choice.
For extended systems, however, the lack of damping in heq

prevents the system to relax. In these cases the propagator is
typically corrected by adding non-Hermitian terms given by
the quasiparticle lifetimes hQP = heq + iγ [31,38,56–58].

By using Eq. (112) we rewrite Sdyn(t) as

S
dyn
ij [{G},{�}](T ) ≡ S

dyn
ij [{G}](T ) = i

∑
I

∫ T

−∞
dt{[(RI )†G>(T ,t ′)RIG<(t ′,T )]ijW

>
I (T − t ′)

+ [G<(T ,t ′)(RI )†G>(t ′,T )RI ]ijW
>
I (t ′ − T ) − (≶�≷)}, (115)

and, finally, we use Eqs. (113) and (113′) to rewrite the first terms of Eq. (115):

[(RI )†G>(T ,t ′)RIG<(t ′,T )]ijW
>
I (T − t ′) = (−i)

∑
±

[(RI )†Gr (T − t ′)ρ(t ′)RIρ(t ′)Ga(t ′ − T )]ijN
±
I e±ωI (T −t ′), (116)

with ρij (T ) ≡ δij − ρij (T ). We now notice that, because of the time ordering of G(r/a), the integral in Eq. (115) runs between
−∞ and T .

In order to proceed with the derivation and obtain a final expression that can be easily compared with the well-known
Boltzmann equation, we use a drastic but simple approximation for G(r/a) based on the noninteracting approximation

Gr
ij (T ) ≈ −iθ (T )e−iεiT δij . (117)

Equation (117) allows us to carry on to the final steps of the derivation in a more comfortable way by introducing the scattering
matrix SIs

ij as

SIs
ij (T ) ≡ −i

∫ T

−∞
dt

[
e−isωI t

(
RI

ki

)∗
ei(εj −εk )(T −t)

] [
ρkl(t)R

I
lnρnj (t)N−s

I − ρkl(t)R
I
lnρnj (t)Ns

I

]︸ ︷︷ ︸
ξ Is
kj (t)

. (118)

In Eq. (118), we have also defined the ξ Is
kj (t) function. The Sdyn(t) can be finally rewritten in terms of S as

S
dyn
ij (T ) ≡ i

∑
I,±

[
eisωI tSIs

ij (T ) + H.c.
]
. (119)
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Sdyn
ij (T ) = −iΣIs

k

I

I

−Ns
I

i

l

n

j

(I, s)

k

I

k

I

I

N−s
I

i

l

n

j

(I, s)

I

+N−s
I

i

l

n

j

(I, s)

I

k

−N−s
I

i

l

n

j

(I, s)

I

FIG. 7. Graphical representation of Eq. (121). A single line represents the density matrix ρ, while the double line is its adjoint ρ. The
wiggled line, in the spirit of Fig. 6, represents a generic interaction propagator.

B. Completed collision approximation

The time integral in Eq. (118) can be removed analytically by using the well-known completed collision approximation. This
is based on the adiabatic ansatz introduced in Ref. [39] which is based on the assumption that the characteristic time scales of
the dynamics are much longer compared to the time window where the physical properties are calculated. We will discuss more
in detail the adiabatic ansatz in the next sections. Here, we just formulate it by approximating ξ Is

kj (t) ≈ ξ Is
kj (t) in Eq. (118), so to

take it outside the time integral. At this point, this can be solved analytically leading to the final expression for the S function:

SIs
ij (T ) ≈ (−i)

(
RI

ki

)∗ e−isωI T

εk − εj − sωI + i0+ ξ Is
kj (T ). (120)

By plugging Eq. (120) into (119) we get the final, explicit, form of Sdyn(T ):

S
dyn
ij (T ) = −i

∑
Is

[(
RI

ki

)∗
ρkl(T )RI

lnρnj (T )N−s
I − (

RI
ik

)∗
ρkl(T )RI

lnρnj (T )Ns
I

(εk − εj − sωI − i0+)
− H.c.

]
. (121)

Equation (121) represents an important result of this work.
It shows that for any kind of interaction (e-e, e-p, e-γ ) the
scattering term of the equation of motion for the density matrix
can be rewritten in a closed form.

Now, before moving to the next section where we will
turn Eq. (121) into a working scheme to calculate several
quantities, we want to analyze in detail the structure of
Sdyn in order to draw its very general properties. Indeed,
in simple terms, Eq. (121) represents an elemental scat-
tering event, where an initial state (i) is scattered in a
series of states [(k), (l), (n), and finally (j )] via the emis-
sion/absorption of an elemental excitation (photon, e-h pair,
phonon).

In order to see this graphically, we proceed as fol-
lows. We associate a density matrix ρij (T ) with a single
line connecting the state j to the state i, while ρij (T )
is represented by a double line. A large circle (©) will
represent a generic interaction matrix RI . A label I will
denote an adjoint matrix (RI )

†
. A wiggled line, instead,

represents the propagation of an excitation (I,s). By using
these simple rules, the generic form of S

dyn
ij (T ) is shown in

Fig. 7.
Now, the next step is to link the properties of Sdyn(T )

to the actual quantities that are measured in a typical
pump-and-probe experiment. The procedure that reduces the
complex dynamical equation to the simple Eq. (121) form is
schematically represented in Fig. 8.

COHSEX approx. GW approx.

GKBA + CCA

q

q

(a)

(c)(b) (d)

FIG. 8. Schematic representation of the different links between
the terms of Eq. (123) and the most elemental physical processes
occurring in a typical pump-and-probe experiment: the photoex-
citation (a), the relaxation via e-e scattering (b), the relaxation
and dissipation via e-p scattering (c), and the final, slow, radiative
recombination (d). It is crucial to note that the use of �COHSEX allows
to include excitonic effects (caused by the electron-hole attraction) in
all the processes.
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VI. CARRIER DYNAMICS, TRANSIENT ABSORPTION,
AND LIGHT EMISSION IN THE ADIABATIC REGIME

In the typical experiment sketched in Fig. 1, a strong pump
laser field is followed by a second weaker probe impulse
whose physical properties are measured as a function of the
pump-probe temporal delay. The low intensity of the probe and
pump field and their temporal duration and delay can be used
to simplify further the equations. Those are the physical basis
for the low-intensity approximation and for the introduction
of the adiabatic ansatz regime. These two special regimes
are motivated by well-defined physical arguments that are
introduced in this section.

The aim of this section is to use the fact that Eq. (121)
is closed in the space of the density matrices and rewrite all
possible observables relevant to the dynamics schematically
represented in Fig. 1 as functions of the time-dependent density
matrix.

A. Adiabatic ansatz

The adiabatic ansatz has been first introduced in Ref. [39]
and in the following we present a short review in order
to introduce the physical basis for the low-intensity and
completed collision approximations. The temporal geometry
of the pump and probe fields must appear explicitly in Eq. (19)
connected to two components of the external charge

ρext(1) = ρ
p
ext(1) + ρP

ext(1), (122)

with ρP/p referring to, respectively, the pump/probe compo-
nents of the external charge. These terms define the pump
and probe fields EP/p(1) = −∇φ

P/p
ext (1). In a pump and probe

experiment we have that, in general, |EP| � |Ep| and the two
fields are separated by a temporal delay τ .

The delay time τ is a crucial ingredient of the dynamics. In-
deed, the pump field excitation induces several processes with
different time scales. The laser excitation induces off-diagonal
matrix elements of the density matrix ρij , which in turn cor-
responds to a laser-induced current J(1) = ∑

ij jij (r1)ρji(t1),
with jij the matrix elements of Eq. (7). The time scale which
describes the decay of the polarization and of the current τpol

is dictated by relaxation processes.
At the same time, the pump excites electrons from the

valence to the conduction bands and these carriers first relax
towards the band minimum (in the case of electrons) and band
maximum (in the case of holes). This relaxation occurs on a
time scale τcarr. Thus, after a time τmax = max(τpol,τcarr), we
may say that the system is in a quasistationary state. In this
regime, the time to relax back to the ground state is dictated
by e-γ scattering and can be of the order of picoseconds.

The key assumption of the adiabatic ansatz is that the
delay τ is chosen in such a way that, for times t ≈ τ , we
have that ρ(t + �t) ≈ ρ(t), if �t � τmax. The fundamental
idea of such approximation is that, during the measurement
process, the nonequilibrium configuration of the system is
frozen.

By using Eq. (122) in the external interaction term of h,
we can now make explicit the different terms contributing to
Eq. (99). We start by using for the coherent part the COHSEX
approximation, and by splitting Sdyn in the three terms induced

by the different possible interactions

d

dT
ρ(T ) + i[hext(T ),ρ(T )]

= −Scoh[ρ](T ) − Sdyn
e-e [ρ](T ) − Sdyn

e-p [ρ](T ) − Sdyn
e-γ [ρ](T ).

(123)

The physical contents of the above equations are made clear by
Eq. (121). In all the three cases the elemental process described
by Sdyn is a single transition from the electronic state i to the
electronic state j by spanning all possible intermediate states
composed by an electron in the level k and a plasma (e-e case),
phonon (e-p case), and photon (e-γ ) excitation. The fact that
it is a single transition is a consequence of the use of a GW

approximation.
We start by noticing that, when the external pump and probe

fields are zero, ρ is diagonal:

ρij (T )|EP=Ep=0 = δijfi . (124)

Equation (123) is a nonlinear equation whose nonlinearity
is driven by the pump field. This nonlinearity mixes the
diagonal and off-diagonal components of ρ creating a complex
interplay between the induced carrier occupations and the
related polarization. However, in the case of a low-intense
pumping field, if the system has reached the quasistationary
state, we can approximate in the right-hand side of Eq. (121)

ρkl(T ) ≈ δklfk(T ), (125)

ρkl(T ) ≈ δkl[1 − fk(T )]. (125′)

We will refer to this set of approximations as low-intensity
approximation (LIA). This is a well-established physical
regime used in a wealth of experimental setups where the
density of carriers created in the conduction bands is low
enough to not alter substantially the physical properties of
the material.

B. Carrier dynamics

In the LIA, the complex structure of the dynamical kernel
can be further reduced to a compact and simple form

S
dyn
ij (T ) ≈ S

dyn
ij (T )|LIA

= i
∑

n

[
γ

(−)
ijn (T )ρnj (T ) + ρin(T )γ (+)

nij (T )

− γ̃
(−)
ijn (T )ρnj (T ) − ρin(T )γ̃ (+)

nij (T )
]
, (126)

with

γ
(±)
ijn (T ) = (−i)

∑
Is

(
RI

ki

)∗
fk(T )RI

knN
−s
I

(εk − εj − sωI ± i0+)
, (127)

γ̃
(±)
ijn (T ) = (−i)

∑
Is

(
RI

ki

)∗
[1 − fk(T )]RI

knN
s
I

(εk − εj − sωI ± i0+)
. (127′)

In obtaining Eqs. (126) and (127), we have used the LIA only
on the internal density matrices as their indexes are free and
do not impose the Sdyn to be diagonal.

We can now link Eq. (123) to the complex dynamics we
were aiming at describing at the beginning of this work,
schematically represented in Fig. 1. Physically, the different

155102-15



PEDRO MIGUEL M. C. DE MELO AND ANDREA MARINI PHYSICAL REVIEW B 93, 155102 (2016)

contributions to Sdyn represent the different channels that
concur to the dynamics following the primary pump excitation.
To see in practice their effect, we move to the splitting of
Eq. (123) in carrier and polarization dynamics.

The equation of motion for the carrier occupations is readily
obtained by taking the diagonal components of the ρ solution
of Eq. (123). In this case, the diagonal components of Sdyn

acquire a simple interpretation. Indeed, from Eqs. (126), (127),
and (127′) it immediately follows that

S
dyn
ii (T )|LIA = 2π

∑
Isk

∣∣RI
ki

∣∣2{
[1 − fk(T )]

× fi(T )δ(εi − εk − sωI )N−s
I

− fk(T )[1 − fi(T )]δ(εi − εk − sωI )Ns
I

}
=

∑
I

γ
(I,e)
i (T )ρii(T ) − γ

(I,h)
i (T )ρii(T ). (128)

Equation (128) represents a generic Markovian scattering of
the electron/hole [labeled by the (e/h) superscripts] in the state
i to the generic state k mediated by the emission (s = +1) or
absorption (s = −1) of a generic boson of energy ωI . In the
e-e case, this boson is an additional electron-hole pair. In the
e-p case the boson is a phonon, and in the e-γ channel it is a
photon.

In the e-p and e-e cases, Eq. (128) reduces to the equation
derived previously by one of us [38] and applied to the in-
terpretation of the time-resolved two-photon photon-emission
experiment of bulk silicon [20]. However, the present case
extends the derivation to the e-p channel. This extension
defines in a pure NEQ framework the radiative electron/hole
lifetimes. At difference with the usual formulation [59] the
γi lifetimes are time dependent and depend on the time
fluctuations of the carrier occupations. Moreover, by means
of the presence of Scoh, the coupling with the external laser
field is correctly described.

C. Light absorption

Starting from the equilibrium condition, an external field
will induce an electronic dipole defined as the expectation
value of the dipole operator, defined in terms of the density
matrix

d̂ = ηp · d̂ ≡
∫

dr (ηp · r)ρ̂(r,r) = dij ρ̂ji , (129)

with dij = ∫
dr ϕ∗

i (r)(ηp · r)ϕj (r) the dipole matrix elements.
For simplicity, in Eq. (129), we have assumed that the pump
and probe fields are polarized along the ηp direction. The
time-dependent expectation value of the dipole operator d(T )
is then given by

d(T ) = 〈�(T )|d̂|�(T )〉 = dij 〈�(T )|ρ̂j i |�(T )〉, (130)

and can be calculated using the electronic polarization function
pe(1,2) as

δd(T ) = dij

∫
dt ′pji

lk
,e

(T ,t ′)dklEp(T ′)

=
∫

dt ′[d ◦ χ (T ,t ′) ◦ d]Ep(T ′). (131)

In Eq. (131) we used the conventions listed in the Appendix
[see Eq. (A2)].

The absorption coefficient Sτ (ω) can be easily calculated
from the χ as [39]

Sτ (ω) = −2ω|e(ω)|2Im[d ◦ χτ (ω) ◦ d], (132)

with χτ (ω) defined in Sec. VII and obtained from χ (t,t ′) by
applying the adiabatic ansatz. The problem is now how to
calculate χ .

From Eq. (131) and the definition of the total (external
plus induced) scalar field [Eq. (30)], we know that the matrix
components of the reducible electronic polarization function
can be written as

χji

lk

(t,t ′) = −iθ (t − t ′) × 〈�g|

× [ĉ†iH (t)ĉjH (t),ĉ†kH (t ′)ĉlH (t ′)]|�g〉, (133)

which, together with its irreducible counterpart χ̃ , can be
rewritten as derivatives of the time-dependent density matrix

χji

lk

(t,t ′) = δρij (t)

δUkl(t ′)
, (134)

χ̃ji

lk

(t,t ′) = δρij (t)

δφext
kl (t ′)

. (134′)

The derivation of the equation of motion for both χ and χ̃ is
obtained by applying the functional derivatives to the equation
of motion for ρ(T ):

d

dt

{
δρji(t)

δφext
kl (t ′)

}
= δ

δφext
kl (t ′)

{−i[hext(t),ρ(t)]ji

− Scoh
ji [ρ](t) − S

dyn
ji [ρ](t)

}
. (135)

The first term on the right-hand side of Eq. (135) is

δ

δφext
kl (t ′)

{[hext(t),ρ(t)]ji} = [δjkρli(t) − ρjk(t)δli]δ(t − t ′)

+ [hext(t),χ̃(t,t ′)]ji

lk

, (136)

where we have used the compact form given by Eq. (A4)
to write the last term of Eq. (136). The derivative of Scoh

can be evaluated within the COHSEX approximation for �s

[Eq. (105)]:

δScoh
ji (t)

δφext
kl (t ′)

= i

[
δ�s(t)

δφext
kl (t ′)

,ρ(t)

]
ji

= i[Ks ◦ χ̃(t,t ′),ρ(t)]ij
kl

.

(137)

In order to evaluate the functional derivative acting on the Sdyn

functions, we use the following chain rule:

δ

δφext
kl (t ′)

=
∫

dt
δρmn(t)

δφext
kl (t ′)

δ

δρmn(t)
, (138)

so that
δ

δφext
kl (t ′)

S
dyn
ji [ρ](t) =

∫
dt [Kdyn(t,t) ◦ χ̃ (t,t ′)]ji

lk

. (139)
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Thus, the final equation for the longitudinal two-times linear
response function becomes

d

dt
χ̃ (t,t ′) + i[hext(t),χ̃(t,t ′)]

+ i[Ks ◦ χ (t,t ′) + 1δ(t − t ′),ρ(t)]

= −
∫

dt [Kdyn(t,t) ◦ χ̃(t,t ′)]. (140)

As explained in Sec. VII, the nonlocal time dependence of
the left-hand side of Eq. (140) can be simplified by using
the adiabatic ansatz. The most complicated term remains
the dynamical kernel Kdyn, that we will extensively discuss
in Sec. VI E. Indeed, Kdyn is a common ingredient of the
equations describing both the light absorption and emission.

D. Light emission

Thanks to the quantization of the electromagnetic field,
we can now derive a closed expression for the light-emission
spectrum. As it will be clear shortly, the present formulation
allows to introduce coherently the combined effects induced
by the e-e and e-p coupling. This represents an important step
forward compared to the state-of-the-art formulation and, more
importantly, it allows an efficient merging with DFT.

In order to derive the expression for the light-emission
spectrum in terms of the density matrix and use Eq. (123)
to create a link with the density-matrix equation of motion, we
use here the Poynting vector. In its Hermitian form, this vector
is written as

Ŝ(1) = c

8π
[Ê†(1) × B̂(1) − B̂†(1) × Ê(1)]

= c

8π
[Ê†(1) × B̂(2) − B̂†(2) × Ê(1)]|2=1. (141)

The photoemitted spectrum I (ω) along the direction η is
obtained from the Fourier transformation of the macroscopic
spatial average of the projection of the Poynting vector along
η, I (ω) ∝ 〈Ŝ(r,ω) · η〉.

We now take the relations between the fields and the vector
potential

Ê(1) = −1

c

∂Â(1)

∂t1
, (142)

B̂(1) = ∇ × Â(1). (142′)

By using Eqs. (142) and (142′), we can write explicitly
the expression for the lesser and greater transverse photon

propagator as

D<
αβ(1,2) = 1

4πi
[〈Âβ(2)Âα(1)〉 − 〈Âα(1)〉 〈Âβ(2)〉], (143)

D>
αβ(1,2) = 1

4πi
[〈Âα(1)Âβ(2)〉 − 〈Âα(1)〉 〈Âβ(2)〉]. (143′)

It is now possible to split the expectation value of the Poynting
vector into two parts: a classical part which contains the
information of the macroscopic effects

〈Ŝα(1)〉class = 1

2

3∑
β = 1
β �= α

∂ 〈Âβ(1)〉
∂t1

×
[
∂ 〈Âα(2)〉

∂r2,β

− ∂ 〈Âβ(2)〉
∂r2,α

]
, (144)

and a contribution due solely to correlation effects

〈Ŝα(1)〉corr = 1

2

3∑
β = 1
β �= α

∂

∂t1

{
∂

∂r2,β

[D>
βα(1,2) + D<

βα(1,2)]

− ∂

∂r2,α

[D>
ββ(1,2) + D<

ββ(1,2)]

}∣∣∣∣
2=1

. (145)

Equation (145) demonstrates that the evaluation of the light-
emission spectrum is linked to the calculation of the lesser and
greater transverse photon propagators that can be rewritten in
terms of the advanced/retarded counterparts and the transverse
response function [10]

←→D ≷(1,2) = ←→D r (1,3)
←→
P ≷(3,4)

←→D a(4,2). (146)

The problem of calculating the advanced and retarded photon
propagators is itself a complicated issue. Here, we assume
to be interested in systems where the renormalization of the
photons can be neglected. This is the case of simple solids
and molecules where the electronic polarization effects on the
electromagnetic field can be assumed to be negligible. We
start, then, from an independent-particle approximation for
Da/r :

Dr
αβ(r,t) = − ic2

2

∑
I

τ I
αβ[ξI (r)e−iωI t − H.c.]θ (t), (147)

Da
αβ(r,t) = ic2

2

∑
I

τ I
αβ[ξI (r)e−iωI t − H.c.]θ (−t). (147′)

In Eqs. (147) and (147′), we have introduced the single
free photon wave function ξI (r) ≡ 2π/(�ωq+G)eir·(q+G). We
remind here the convention introduced in Sec. V to label the
photon state as I ≡ (q,G). By using Eqs. (147) and (147′), we
rewrite Eq. (145) only in terms of P

≷
αβ :

D>
αβ(1,2) + D<

αβ(1,2) = c4

4

∑
I,J

α1α2

∫
d3 d4 [ξI (r1 − r3)e−iωI (t1−t3) − H.c.]τ I

αα1
[P >

α1α2
(3,4) + P <

α1α2
(3,4)]τ J

α2β

× [ξJ (r4 − r2)e−iωI (t4−t2) − H.c.]θ (t1 − t3)θ (t2 − t4). (148)
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Equation (148) reduces the calculation of the light-emission
spectrum I (ω) to the evaluation of the equation of motion for
P

≷
αβ (1,2). It is evident, then, that we can now follow a path

quite similar to the longitudinal case by using a series of chain
rules to close the equation of motion in an algebraic form.
Indeed, we start by the P

≷
αβ (1,2) definition

Pαβ (r1,t1; r2,t2) = −4π

c

δ
〈
J ind

α (r1,t1)
〉

δ 〈Aβ(r2,t2)〉 , (149)

and by rewriting the induced current as

J ind
α (r,t) = i�α(r,r′)G(r,t ; r,t ′)| r′ = r

t ′ = t+

= −�α(r,r′)ρ(r,r′; t)|r′=r. (150)

Then, by using Eq. (9) and expanding the density matrix in
the single-particle basis, we can rewrite the induced current in
terms of ρ(t):

J ind
α (r,t) = −

∑
ij

�ij,α(r)ρji(t), (151)

where �ij,α(r) = �α(r,r′)φ∗
i (r)φj (r′)|r′=r. We also expand the

variations of 〈Aα(1)〉 in the photon basis

δ 〈Aα(r,t)〉 = 1

2

∑
I

[ξI (r)δAI,α(t) + H.c.]. (152)

By using Eqs. (152) and (151), we can rewrite Eq. (149) as

−4π

c

∑
ij

�ij,α(r)δρji(t)

= 1

2

∑
I

∫
dt ′dr′ Pαβ(r,t ; r′,t ′)[ξI (r)δAI,β(t) + H.c.].

(153)

We can now recast the functional derivative with respect to δA

as

−4π

c

∑
ij

�ij,α(r)
δρji(t)

δAI,β(t ′)
= 1

2

∫
dr′Pαβ(r,t ; r′,t ′)ξI (r′),

(154)

and its adjoint

−4π

c

∑
ij

�ij,α(r)
δρji(t)

δA∗
I,β(t ′)

= 1

2

[∫
dr′Pαβ(r,t ; r′,t ′)ξI (r′)

]∗
. (155)

At this point, we can define the I th component of the transverse
linear response function as

PI
ij (t,t ′) = δρij (t)

δAI (t ′)
. (156)

This means that we can use the same procedure as we did
for the electronic polarization function χ [see, for example,

Eq. (135)] and write

δ

δAI (t ′)
[hext(t),ρ(t)]ji = δ(t − t ′)[pI ,ρ(t)]ji

+
[
hext(t),

δρ(t)

δAI (t ′)

]
ji

, (157)

with

pI
ij = − i

c

∫
dr φ∗

j (r)ξI (r)∇φj (r). (158)

In Eq. (157), we have used the compact notation defined by
Eq. (A4) in order to simplify the notation. The terms involving
the functional derivatives of the COHSEX and dynamical
kernels will follow the same procedure of the longitudinal
case. In the case of the COHSEX kernel contribution, indeed,
we have that

δScoh
ji (t)

δAI (t ′)
=

∫
dt

δρmn(t)

δAI (t ′)

δScoh
ji (t)

δρmn(t)

=
[
Ks ◦ δρ(t)

δAI (t ′)
,ρ(r)

]
ji

, (159)

and for the dynamical kernel we will write

δS
dyn
ji (t)

δAI (t ′)
=

∫
dt

(
Kdyn(t,t) ◦ δρ(t)

δAI (t ′)

)
ji

. (160)

We can now derive the final equation of motion for PI
ij (t,t ′) in

similarity with what we did for χ (t,t ′):

d

dt
PI (t,t ′) + i[hext(t),PI (t,t ′)]

+ i[Ks ◦ PI (t,t ′) + δ(t − t ′)pI ,ρ(t)]

= −Kdyn(t) ◦ PI (t,t ′). (161)

Equation (161) represents another important result of this
work. It derives a closed equation for the transverse response
function and, in turn, it provides a sound scheme to calculate
the photoluminescence spectrum. As this equation is derived
in a scheme where e-e and e-p are included, this means that,
physically, we have all essential ingredients of the dynamics.
The carriers excited by the primary pump pulse will, then,
relax, dissipate, and participate in bound electron-hole pairs
before recombining and emitting light.

A final methodological remark is due. Equation (161) is
for the response function defined in Eq. (154). An equivalent
equation can be derived for its complex conjugate, defined
by Eq. (154′)). The only difference with Eq. (161) would
be that the matrix elements pI

ij must be replaced with qI
ij =

− i
c

∫
dr φ∗

j (r)ξ ∗
I (r)∇φj (r).

E. Dynamical two-particle kernel

A common ingredient of Eqs. (163) and (161) is the

dynamical kernel K , defined in Eq. (139) as
δS

dyn
ji [ρ](t)

δρmn(t) . We
have now all ingredients to analyze the physical contents of
Kdyn and interpret its properties. The problem is now how to
calculate this functional derivative and how to use the LIA.

If we look back into Eq. (121) and Fig. 7, we see how
to evaluate the functional derivative of Eq. (139). The point

155102-18



UNIFIED THEORY OF QUANTIZED ELECTRONS, . . . PHYSICAL REVIEW B 93, 155102 (2016)

i k

n l

Ī
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FIG. 9. Diagrammatic contributions to the dynamical kernel Kdyn

resulting from the application of the functional derivative to Sdyn,
within the GW approximation.

is what happens if we apply the LIA. Indeed, we have two
possibilities: to apply the LIA before doing the functional
derivative or to apply it after the derivative.

As we will show shortly, this corresponds to neglect specific
diagrams in the equation for the two-particle Green’s function.
In order to do so, let us follow a diagrammatic path. If we start
from Fig. 7 we see that the derivative δ

δρmn(t) can be applied both
on ρ and ρ. Graphically this corresponds to open the diagram
as schematically shown in Fig. 9.

We clearly see that two kinds of interactions contribute
to the dynamical kernel: an electron-hole pair interaction
[Fig. 9(a)], and a simple e-e [Fig. 9(b)] or hole-hole [Fig. 9(c)]
interaction mediated by a generic boson, shown in the bottom
right of Fig. 9. The electron-hole interaction is, in the
equilibrium language, the well-known dynamical part of the
screened electron-hole interaction. This has been studied in
the framework of the BSE and showed to be connected and
compensated with the dynamical self-energy effects [60,61].

Now, if we apply the LIA before doing the functional
derivative, we notice that the Fig. 9(a) disappears as it
comes from the internal density matrix that, in Eq. (126) is
approximated by its diagonal. Instead, if we apply the LIA
after the functional derivative the two internal density matrices
in Figs. 9(b) and 9(c) are approximated by occupation factors.

If we take the path of applying the LIA before doing the
functional derivative, we get a closed expression for Kdyn:

K
dyn
ji

lk

(t,t) ≈ K
dyn
ji

lk

(t)δ(t − t)

= δ(t − t)
[
δil(γ

(−)
ilk (t) + γ̃

(−)
j lk (t))

+ δjk((γ (+)
lki (t) + γ̃

(+)
lki (t))

]
, (162)

which allows us to simplify the equation of motion for the
longitudinal two-times response function, turning Eq. (140)

into

d

dt
χ̃(t,t ′) + i[hext(t),χ̃(t,t ′)]

+ i[Ks ◦ χ̃ (t,t ′) + 1δ(t − t ′),ρ(t)]

= −Kdyn(t) ◦ χ̃(t,t ′). (163)

Equation (163) allows a simple and immediate physical
interpretation as the γ function simply representing a time-
dependent relaxation of the polarization that appears as a
time-dependent broadening of the corresponding absorption
peaks.

VII. THE FREQUENCY REPRESENTATION
OF THE TRANSIENT ABSORPTION AND

LUMINESCENCE SPECTRA

In the equilibrium limit it is well known that the response
function depends on the time difference and therefore it
can be easily transformed in frequency space by applying
a Fourier transform. This is a natural consequence of the
time-translational invariance of the theory and reflects the fact
the the energy of the system is conserved.

Out of equilibrium the energy of the electronic and nuclear
subsystem is not conserved anymore as it flows back and forth
to the electromagnetic field. As a consequence, both χ̃ and
P are complex two-times functions. The next step is to use
the adiabatic ansatz (see Sec. VI A) to change Eqs. (140) and
(161) in order to have algebraic equations for χ̃ and P I,α , as
is in the state-of-the-art equilibrium case.

In the adiabatic ansatz, ρ(t) and AI,α(t) will change slowly
in time. For times (t,t ′) ≈ τ (with τ the pump-probe time
delay) the response functions can be taken as a function of the
relative time coordinate

χ̃(t,t ′) ≈ χ̃ τ (t − t ′), (164)

PI (t,t ′) ≈ PI,τ (t − t ′). (165)

Since in the adiabatic regime the density changes slowly in
time, as long as the conditions described in Sec. VI A (a more
detailed description can be found in Ref. [39]), the dynamic
kernel of Eq. (140) can also be taken as a function of the relative
time coordinate. Thus, we can finally rewrite Eq. (140) into an
algebraic form for the frequency-dependent response function

−iωχ̃τ (ω) + i[hext(τ ),χ̃ τ (ω)] + i
[
Kτ

s ◦ χ̃ τ (ω) + 1,ρ(τ )
]

= −Kdyn,τ (ω) ◦ χ̃ τ (ω). (166)

The question now is how to bypass the calculation of the one-
particle density matrix ρ(τ ) so that we can have an equation
in which the only unknown quantity is the response function.
In the equilibrium limit, we can always rotate the Hamiltonian
hext and the density into a basis where both would be diagonal,
but this is not possible in nonequilibrium processes. Therefore,
by following Ref. [39], we consider an orthogonal matrix O(τ )
which rotates the Hamiltonian to the equilibrium basis and
brings hext(τ ) to its diagonal form

[O†(τ )hext(τ )O(τ )]ij = δij εi(τ ). (167)
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In this new basis, Eq. (166) reads as

[ω − �ε(τ ) + iKdyn,τ (ω)] ◦ χ̃ τ (ω)

= [
Kτ

s ◦ χ̃(ω) + 1,ρ(τ )
]
. (168)

Here, we have defined the energy tensor �ε(τ ) ij

pq

=
[εi(τ ) − εj (τ )]1 ij

pq

. Following this definition we can write the

NEQ response function χ̃ τ
0 as

χ̃ τ
0 (ω) = −[ω − �ε(τ ) + iKdyn,τ (ω)]−1 ◦ [ρ(τ ),1]. (169)

If we now use the property[
ρ(τ ),Kτ

s ◦ χ̃ τ (ω)
] = [ρ(τ ),1] ◦ Kτ

s ◦ χ̃ τ (ω), (170)

we can finally obtain a Dyson-type equation for χ̃ τ (ω)

χ̃ τ (ω) = χ̃ τ
0 (ω) + χ̃ τ

0 (ω) ◦ Kτ
s ◦ χ̃ τ (ω). (171)

If we apply the same process to the transverse response
function, we see that its differential equation (161) becomes

−iωPI,τ (ω) + i[hext(τ ),PI,τ (ω)]

+ i
[
Kτ

s ◦ PI,τ (ω) + pI,τ ,ρ(τ )
]

= −Kdyn,τ (ω) ◦ PI,τ (ω) (172)

and after reverting to the basis where hext(τ ) is diagonal and
following the same procedure we used to arrive at Eq. (171),
we obtain the desired Dyson-type equation for P I,τ (ω):

PI,τ (ω) = PI,τ
0 (ω) + χ̃ τ

0 (ω) ◦ Kτ
s ◦ PI,τ (ω) (173)

with the NEQ PI,τ
0 (ω) being

PI,τ
0 (ω) = −[ω − �ε(τ ) + iKdyn,τ (ω)]−1 ◦ [ρ(τ ),pI,τ ].

(174)

Equation (174) represents another crucial result of this work. It
provides, indeed, the basis for a fully ab initio implementation
of the transient photoluminescence spectrum. This will allow
to extend what has been already done previously [62] in the
transient absorption case.

VIII. MERGING WITH DENSITY-FUNCTIONAL THEORY

In order to merge the BKE in the general DFT scheme,
we follow the same strategy used in the standard MBPT
approach [13]. This is based on the use of the Kohn-Sham (KS)
Hamiltonian hKS as the reference single-particle Hamiltonian.
This means, in practice, that in Eq. (1) the h operator is replaced
by

hKSφi(r) =
[
−∇2

2
+ vext(r) + vH [ρ](r) + vxc[ρ](r)

]
φi(r)

= εKS
i φi(r), (175)

with vH and vxc the Hartree and the exchange-correlation
potentials which, in DFT, are functional of the electronic
density ρ(r). Then, φi represents the basis of wave functions
used in Eqs. (94) and (95).

DFT is a mean-field theory, where the electronic system
is described by a group of pseudo-noninteracting particles
which move under the influence of the vxc potential that

already contains some of the e-e correlation effects. This initial
correlation already present in the KS Hamiltonian has several
important consequences in the electronic [25] and also in the
phononic dynamics [28].

As far as the electronic dynamics is concerned, vxc can lead
to subtle double-counting problems that are safely removed by
defining, in Eq. (34),

hext = hKS − vxc. (176)

Another important ingredient of the present approach are the
phonon modes. These, within the DFT scheme, are obtained
by considering the total Hamiltonian H as a functional of
the atomic positions {R}. The problem of finding the phonon
modes reduces to the self-consistent calculation of derivatives
of H . Indeed, if DFT is a self-consistent theory, DFPT [22,23]
is its extension to take into account, self-consistently, the effect
of static perturbations (like nuclear displacements). In this
case, DFPT provides an exact description of phonons within
the limits of a static and adiabatic approach.

Thus DFT and DFPT provide all ingredients of the present
theory and allow a full ab initio implementation. Indeed, as
discussed in Sec. V, we have that for each element of the
theory we can define a DFT/DFPT counterpart. (a) As far
as the single-particle electronic basis is concerned, the KS
wave functions φi represent a natural definition. In this basis,
all standard MBPT machinery can be used to calculate the
ingredients of standard Hedin’s equations [13]. (b) In the e-p
case, phonons and e-p interaction matrix elements can be easily
calculated within DFPT. Indeed, in this case, the ionic potential
Vn appearing in Eq. (108) is

Vn(r) ⇒ Vscf (R,r) = vH (r) + vxc(r) −
∑

R

ZR

|r − R| ,

(177)

and the phonon frequencies can be safely calculated within
DFPT.

These simple connections demonstrate that, by simply
implementing the NEGF framework in a KS basis, we can
extend the predictive power of the many-body technique
beyond the standard and well-known equilibrium limit.

IX. CONCLUSIONS

In this work, we have carefully introduced, step by step, all
mathematical and procedural steps needed to derive a simpli-
fied but accurate approach to the theory of out-of-equilibrium
systems. We have started by the conclusions of previous
works to integrate the electron-electron, electron-phonon, and
electron-photon interactions in a consistent scheme based on
the nonequilibrium Green’s function theory.

We first derive a very general set of Hedin’s equations
where phonons and photons appear as the longitudinal and
transverse components of the theory. We introduce, then, the
corresponding longitudinal and transverse response and vertex
functions showing how they are deeply connected.
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However, the complete theory appears clearly to be, by
far, too complex to be implemented in realistic materials like
nanostructures, surfaces, and all kind of systems currently
within the range of applicability of DFT. As a consequence, in
order to provide a workable scheme that can be potentially
implemented in a DFT basis, we adopt the well-known
GW approximation that is extended to the out-of-equilibrium
regime and to the transverse component of the self-energy.

This simplified form allows us to introduce a series of
approximations: the generalized Baym-Kadanoff ansatz, the
completed collision approximation, the low-intensity approx-
imation, and the adiabatic ansatz. We discuss the physical
motivations beyond these approximations and their range
of applicability. By concentrating on the slow and weakly
perturbed components of the dynamics we derive a set of
closed equations for the carrier dynamics, transient absorption,
and transient light emission written solely in terms of the
time-dependent density matrix.

This represents a dramatic simplification of the scheme
that can, now, be applied in a DFT framework to realistic
materials. This is, indeed, the main conclusion of this work.
The advanced and involved NEGF theory can be made simple
enough to be applied in an ab initio framework and provide
the basis for a new set of tools available to the scientific
community that we can group within the scopes a newly
defined ai-NEGF approach.

The ai-NEGF extends the predictive power of the ai-MBPT
approach to describe realistic systems out of equilibrium,
thus opening the path to new applications, basic research,
and numerical and methodological developments. This work
represents, indeed, the formal proposal for such a working
approach opening the path to many future developments and
applications.

ACKNOWLEDGMENTS

We acknowledge financial support by the Futuro in
Ricerca Grant No. RBFR12SW0J of the Italian Ministry
of Education, University and Research, MIUR. A.M. also
acknowledges the funding received from the European Union
project MaX Materials design at the eXascale Project No.
H2020-EINFRA-2015-1, Grant Agreement No. 676598, and
Nanoscience Foundries and Fine Analysis-Europe Project No.
H2020-INFRAIA-2014-2015, Grant Agreement No. 654360.
P.M. thanks the Portuguese Foundation for Science and
Technology (FCT) and the Portuguese Ministry for Education
and Science, for the funding received through the Scholarship
No. SFRH/BD/84032/2012 under the European Social Fund
and the Programa Operacional Capital Humano (POCH).

APPENDIX: CONVENTIONS FOR LINEAR
ALGEBRA OPERATIONS

In the derivation of the equations of Sec. VII we introduced
the following ad hoc notation for the generic products of
matrices:

(M ◦ V )pq ≡ Mpq

mn

Vnm, (A1)

(T ◦ M ◦ V ) ≡ TpqMqp

mn

Vnm, (A2)

(M ◦ N )mn

rs

≡ Mmn

pq

Nqp

rs

, (A3)

[N,V ]mn

pq

= −[V,N ]mn

pq

≡ Nmi

pq

Vin − VmiNin

pq

, (A4)

[N,V ]mn = −[V,N ]mn ≡ NmiVin − VmiNin. (A5)
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