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Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions
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We study F coupled q-state Potts models in a two-dimensional square lattice. The interaction between the
different layers is attractive to favor a simultaneous alignment in all of them, and its strength is fixed. The nature
of the phase transition for zero field is numerically determined for F = 2,3. Using the Lee-Kosterlitz method,
we find that it is continuous for F = 2 and q = 2, whereas it is abrupt for higher values of q and/or F . When a
continuous or a weakly first-order phase transition takes place, we also analyze the properties of the geometrical
clusters. This allows us to determine the fractal dimension D of the incipient infinite cluster and to examine the
finite-size scaling of the cluster number density via data collapse. A mean-field approximation of the model,
from which some general trends can be determined, is presented too. Finally, since this lattice model has been
recently considered as a thermodynamic counterpart of the Axelrod model of social dynamics, we discuss our
results in connection with this one.
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I. INTRODUCTION

Given a model of statistical mechanics whose thermody-
namic behavior and phase diagram are known, one can ask
oneself what is the macroscopic behavior that sets in when
two or more such models are coupled together. For example,
one motivation for this question could be to understand the
effect of randomness, or, simply, the composed model could
be interesting by itself. In general, when two or more models
are coupled, the symmetry of a system and, consequently, its
critical behavior [1–4] are altered. Even the phase transition
nature may change. However, a priori it is not possible to say
how dramatic these changes will be or how sensitive they are
to the choice of the intermodel coupling.

The q-state Potts model [5,6] is a very popular lattice model
which has been extensively studied within many different
theoretical approaches. On the experimental side, systems
from condensed matter obeying the same symmetry have been
identified. For a two-dimensional square lattice geometry, it
is known that a single q-state Potts model, in the absence of
external fields, undergoes a temperature-driven phase transi-
tion whose nature changes with q: it is continuous for q � 4
and abrupt for q > 4. Concerning the critical behavior, explicit
forms have been conjectured for the thermal [7] and magnetic
[8] exponents for q � 4, from which all the thermodynamic
critical exponents can be derived. These conjectured values
seem to be generally confirmed by numerical and perturbative
approaches [6]. Besides the thermal behavior, one can analyze
the geometric one. The basic geometric object to consider in a
lattice model is a cluster, a connected set of nearest neighbors in
the same state. Varying the temperature, one typically observes
that a geometrical phase transition, analogous to percolation,
takes place [9,10]. There are critical exponents associated with
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this transition too, and, in principle, they are independent of
the thermal ones. In this line, for the Potts model, closed forms
for the various fractal dimensions (bulk, surface, etc.) of the
infinite cluster at criticality have been obtained in Ref. [11].

In this work we study how the phase transition type
and the critical behavior of the q-state Potts model in a
two-dimensional square lattice change when F similar models
(layers) are coupled. In particular, we adopt a four-point
coupling of fixed strength between the layers. Our aim is to
see how the known behavior and the critical properties of the
single-layer model are altered by the coupling.

Coupled Potts models have been discussed in the literature,
mainly to get insight on a single model with random couplings
[12]. Matsuda [13] considered two Potts models coupled with
a four-body interaction; in particular, he located the transition
temperature in the two-dimensional case using self-duality
arguments. Later, he generalized the study to many coupled
layers for a Hamiltonian containing up to 2F -point terms [14].
More recently, Dotsenko et al. [12] considered the fixed-point
structure and stability for a similar Hamiltonian to identify the
corresponding conformal field theory. For the case q = 2, our
model is equivalent to the F -color Ashkin-Teller (AT) model
[15–17], which in two dimensions has been studied for a weak
four-body coupling and generic F in Ref. [17] and in the limit
F → ∞ in Ref. [18]. Throughout the article, we will make
comparisons with previous results whenever possible.

Beyond its relevance for the field of critical phenomena, the
study developed in this article is also motivated by a possible
connection to a model of social dynamics. At the end of the
1990s, Axelrod introduced an agent-based vectorial model for
the spread of social influence [19]. In this nonequilibrium
model the agents live on a lattice and are characterized by a
dynamical culture, a set of F features each assuming values
out of a finite set of q traits. The interactions are local and act to
increase the similarity between agents. Systematic quantitative
studies of the Axelrod model have been performed, exploring
different aspects: nonequilibrium phase transitions [20] and
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the effects of noise [21,22], dimensionality [23], and size
finiteness [24]. Keeping in mind the delicacy of the connection
between social and physical phenomena, thermodynamic
(equilibrium) counterparts of the Axelrod model have been
proposed [25,26]. In particular, the Hamiltonian we analyze in
this work coincides with that of Ref. [25], in which the authors
focused on the one-dimensional case.

This article is organized as follows. In Sec. II we present the
model and relate it to similar ones from statistical mechanics.
Its possible connection to the Axelrod nonequilibrium model
of social dynamics is briefly recalled too. In Sec. III a mean-
field approximation is carried out, and the findings for phase
transitions at this level are summarized. In the subsequent
sections, we present the results of a numerical Monte Carlo
study on a two-dimensional square lattice for different choices
of F and q. In particular, in Sec. IV we analyze the phase
transition type. For the cases F = 2,q = 2 and F = 3,q =
2, where continuous and weakly first-order phase transitions
take place, respectively, we analyze in Sec. V the geometrical
critical (or pseudocritical) behavior and determine the fractal
dimension of the incipient infinite cluster. Finally, Sec. VI is
devoted to our conclusions.

II. THE MODEL: F COUPLED q-STATE POTTS MODELS,
OR THERMODYNAMIC AXELROD

Our model, as in Ref. [25], is constituted by F coupled
layers of q-state Potts models [5,6]. The variable at the ith site
of the lattice is an F -vector �σi = (σi1,σi2, . . . ,σiF ), and each
of its components has q possible values (we choose 0,1, . . . ,

q − 1). The Hamiltonian for N sites in the presence of an
external field reads

H = −
F∑

k=1

∑
〈ij〉

Jij δ(σik,σjk) − H

F∑
k=1

N∑
i=1

δ(σik,Hk), (1)

where

Jij =
F∑

l=1

Jδ(σil,σjl) ,

J > 0 and H � 0 are constants, and δ(· ,·) is Kronecker’s
delta. The symbol 〈·〉 indicates nearest neighbor sites, and the
sum is over distinct pairs. The quantities Hk are the favored
directions selected by the external field. Rephrased in the
language of the social Axelrod model, each agent, which
may be seen as representing a person or a small village, is
characterized by a dynamical culture, a set of (F ) features
each assuming values out of a finite set of (q) traits. The
interaction in Eq. (1) is built to reproduce the Axelrod rules:
the energy of a link decreases with the interaction strength
(as it is common in Hamiltonian systems), and the interaction
strength increases when the agents are aligned in the same
direction. Besides similarities, there is an important difference
between the original Axelrod model and this thermodynamic
version: in the Axelrod model, the interactions between two
agents stop when they are identical or completely different,
and the dynamics leads to absorbing configurations. That is
not the case in the thermodynamic version, where thermal
fluctuations are present. In this sense, our model, which never

gets frozen, should rather be compared with the Axelrod model
in the presence of noise [21,22].

For the case of one layer (F = 1), Eq. (1) reduces to the
standard q-state Potts model. When more layers are present,
our model is constituted by F layers of q-state Potts models
coupled via their energies (i.e., with a four-body term) [12,13].
When comparing with similar models, notice that ours contains
only one coupling constant (J ) and the ratio between the
strengths of the two-body and four-body terms is fixed. This
is clearly seen by rewriting Eq. (1) as follows:

H = −J

F∑
k=1

∑
〈ij〉

δ(σik,σjk)

−J

F∑
k,l = 1
k �= l

∑
〈ij〉

δ(σik,σjk)δ(σil,σjl)−H

F∑
k=1

N∑
i=1

δ(σik,Hk).

(2)

For the case q = 2, our model is equivalent to the F -color
Ashkin-Teller model [15–17] with (in Grest’s notation) a
two-body coupling K2 = βJF/2, and the constraint K4/K2 =
1/F between the two- and four-body couplings, as can easily
be checked by rewriting Eq. (1) in terms of a spin- 1

2 variable,
assuming values ±1.

III. MEAN-FIELD APPROXIMATION

In a mean-field (MF) approximation, an interacting system
is replaced by independent constituents embedded in a modi-
fied environment. In our case, each agent, instead of interacting
with its nearest neighbors, feels a uniform field, originated by
the average orientation of the others. Many different recipes
can be used to build such an approximation. In this section we
present an approach constructed at the level of the probabilities
for the various states [27,28].

A. Probabilities and variational method

In statistical mechanics, equilibrium averages of a generic
quantity A are obtained by taking into account all the possible
microstates μs , each with an appropriate weight p(μs):

〈A〉 =
∑
μs

p(μs)A(μs), (3)

where the normalization condition
∑

μs
p(μs) = 1 is satis-

fied. The specific form of the probabilities depends on the
macroscopic constraints imposed on the system. We work
in the canonical ensemble, where the weights are computed
from the microscopic Hamiltonian H as p(μs) = e−βH(μs )/Z,
and the normalization factor is the partition function Z =∑

μs
e−βH(μs ). As usual, β = 1/kBT is the inverse tempera-

ture, and kB is Boltzmann’s constant. All the thermodynamics
can be extracted from the partition function Z, through its
relation to the Gibbs free energy G, namely, G = −kBT ln Z.

Consider now a generic probability p0; the following
inequality can be easily shown:

G � G0 = 〈H〉0 + kBT 〈ln p0〉0 = E0 − T S0, (4)
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where 〈· · · 〉0 denotes the averages computed using the prob-
ability p0. The average energy E0 = 〈H〉0 and the statistical
entropy S0 = −kB〈ln p0〉0, both obtained using p0, have been
introduced too. Equation (4) shows that any free energy G0

computed in this way will be larger than the exact Gibbs free
energy. In the spirit of variational methods, a form is proposed
for p0, which will depend upon a number of parameters; the
best approximation to the exact free energy is then obtained
minimizing G0 with respect to these parameters.

In a MF approximation, the system is treated at a single-
particle level. Therefore, the probability function factorizes
into N terms, one for each site,

p( �σ1, . . . , �σN ) �
N∏

i=1

pi( �σi) (MF approximation). (5)

We underline that in this approach the full Hamiltonian is
used; there are other MF approaches in which, instead, the
simplifications are done at the level of the Hamiltonian [28].
In general, the physical results are the same.

B. Mean-field approximation for the thermodynamic
Axelrod model

We present in this section the MF approximation of our
model, Eq. (1). The calculations are done for a lattice of
generic dimensionality and geometry and coordination number
z since it is the only lattice property affecting the MF results.
In Appendix A we give a more detailed derivation for the case
of one layer (F = 1).

For symmetry reasons all the features behave in the same
way; then the average occupation of the trait α for the feature
(layer) k is

〈δ(σik,α)〉 =
{
μ if α = 0,∀ k,

ν if α �= 0,∀ k.
(6)

In the latter we have used translational invariance and, without
loss of generality, imagined that the external field favors the
trait 0 in any feature (Hk = 0,∀ k). Of course, μ and ν are
related by the constraint μ + (q − 1)ν = 1. It is convenient to
define as an order parameter

m = μ − ν (MF order parameter). (7)

As T → 0, we expect μ = 1 and ν = 0, and then m = 1; as
T → ∞, we expect μ = ν = 1/q, and then m = 0.

In the MF approximation, we assume that the full probabil-
ity factorizes into N × F terms

pMF( �σ1, . . . , �σN ) =
N∏

i=1

pi( �σi) =
N∏

i=1

F∏
k=1

pik(σik). (8)

Notice that, with this choice, the different components at a site
are not correlated. Throughout this study, both at the MF level
and in the numerical simulations, we only distinguish between
a (completely) ordered phase, in which all the components
are ordered, and a disordered phase, in which they are all
disordered. Phases in which the orientation is random within

any layer but at a single site the variables are correlated are
known to appear in the AT model when the four-body coupling
is considerably larger than the one considered here [16,17]. For
any layer we assume the following structure of the probability:

pik(σik) = 1 + m[q δ(σik,0) − 1]

q
, σik = 0,1, . . . ,q − 1,

(9)
which is derived in detail for the q-state Potts model in
Appendix A (see also Ref. [27]).

Defining �ij = [
∑F

k=1 δ(σik,σjk)]
2
, one can rewrite the

interaction term in Eq. (1) as −J
∑

〈ij〉 �ij . In view of the MF,
is convenient to elaborate �ij so that it becomes a product of
terms, each depending on a single component at a site: using
Eq. (A5) it becomes

�ij =
F∑

k,l = 1
k �= l

q−1∑
α,β=0

δ(σik,α)δ(σjk,α)δ(σil,β)δ(σjl,β)

+
F∑

k=1

q−1∑
α=0

δ(σik,α)δ(σjk,α). (10)

Taking the averages we get

〈�ij 〉MF

=
F∑

k,l = 1
k �= l

[μ2 + (q − 1)ν2]2 +
F∑

k=1

[μ2 + (q − 1)ν2]

= F (F −1)

[
1 + m2(q − 1)

q

]2

+F

[
1 + m2(q − 1)

q

]
. (11)

The external field term at one site is simply 〈∑F
k=1

δ(σik,Hk)〉MF = Fμ = F [1 + m(q − 1)]/q. For the statistical
entropy, we must recall that now at any site we have F

variables, each of which can be in state 0 or not. For symmetry
reasons, we are only interested to know how many components
are not in state 0: all the others will be in state 0. The
number of ways to have k of the F components different
from state 0 is

(
F

k

)
(q − 1)k; the weight of each of them is

computed as the product νkμF−k . As a check, notice that∑F
k=0

(
F

k

)
(q − 1)k = qF , the total number of states for a site,

as it should. One can directly write

〈ln pMF〉MF

= N

F∑
k=0

(
F

k

)
(q − 1)kνkμF−k ln (νkμF−k)

= N
1

qF

F∑
k=0

(
F

k

)
(q − 1)k(1 − m)k[1 + m(q − 1)]F−k

× ln

{
(1 − m)k[1 + m(q − 1)]F−k

qF

}
. (12)
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Combining all the contributions together, we obtain the free energy per particle of the Axelrod model in the MF approximation,

gAxelrod
MF (m,T ) ≡ GMF

N
= 〈H〉MF + kBT 〈ln pMF〉MF

N

= −Jz

2

{
F (F − 1)

[
1 + m2(q − 1)

q

]2

+ F

[
1 + m2(q − 1)

q

]}
− HF

1 + m(q − 1)

q

+kBT

qF

F∑
k=0

(
F

k

)
(q − 1)k(1 − m)k[1 + m(q − 1)]F−k ln

{
(1 − m)k[1 + m(q − 1)]F−k

qF

}
. (13)

Notice that, as it should, Eq. (13) reduces to Eq. (A6) in the
case F = 1.

C. Phase transitions at the mean-field level

Following the evolution of the global minimum of
gAxelrod

MF (m,T ) with the temperature, we can locate possible
phase transitions and determine their type. In all the cases
we analyzed, there is a transition from a low-temperature
ordered phase (m �= 0) to a high-temperature disordered one
(m = 0). For F = 1 we reproduce the known result that the
phase transition, at the mean-field level, is continuous for
q = 2 and abrupt for q > 2 (see also Appendix A). For
F > 1, we find that the transition, at the mean-field level,
is abrupt for any value of q � 2. Concerning the transition
temperatures, we find the following systematics: for a given
F , the transition temperature decreases as q increases; for a
given q, the transition temperature increases as F increases.
This can be understood as follows: increasing q favors the
entropic term, while increasing F strengthens the interaction
term [see Eq. (1)].

As representative examples, in Fig. 1 we show the mean-
field free energy for the cases F = 1,q = 2 [Fig. 1(a)] and
F = 2,q = 2 [Fig. 1(b)]. In the first one, a continuous phase
transition takes place, whereas in the second one it is abrupt.
This can be better seen in Fig. 2, where the global minimum
m0 is shown as a function of the temperature and for the same
two choices of F and q.

Since at the MF level the fluctuations, whose strength is
responsible for the singularities characterizing second-order
phase transitions, are suppressed, it is natural to expect that
some of the transitions appear abrupt at the MF level as an
effect of the approximation.

IV. PHASE TRANSITION TYPE

In this section we present our results for the phase transition
type, obtained analyzing Monte Carlo simulations via the
Lee-Kosterlitz method [29,30]. Before discussing the results
obtained for different choices of F and q, we briefly recall the
method used.

The Lee-Kosterlitz method allows to predict, from rela-
tively small lattices, the nature of the phase transition taking
place in the system in the thermodynamic limit. The central
idea of this numerical approach is to monitor the evolution
of the quantity �f (L), the height of the free energy barrier
between two degenerate minima, as the system linear size
L increases. If �f (L) increases with L, the transition is
abrupt; if �f (L) is constant, the transition is continuous, and if

�f (L) decreases, there is no transition in the thermodynamic
limit. The energy barrier is computed on a function f (X,L),
which is a restricted free energy, including only configurations
which share the same value of the observable X, whose
choice depends on the nature of the transition. For field-driven
transitions, it is the order parameter (X = M), while for
temperature-driven ones it is the energy (X = E). As usual,
to reduce the computational costs, we use this method in
combination with the histogram method by Ferrenberg and
Swendsen [31]. The latter allows one to use a single Monte
Carlo simulation at a given temperature to obtain estimates on
the system thermodynamic quantities at temperatures nearby.
Before going on, a warning is in order on the Lee-Kosterlitz
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FIG. 1. Free energy per particle of the thermodynamic Axelrod
model in the MF approximation, Eq. (13), for H = 0, as a function
of the order parameter m. (a) F = 1,q = 2; (b) F = 2,q = 2. In both
cases, the function is shown for four values of the temperature in a
range which encompasses the phase transition.
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FIG. 2. Physical value of the order parameter m in the MF
approximation [obtained as the global minimum of the free energy,
Eq. (13)], for H = 0, as a function of the temperature for the same
two choices of F and q used in Fig. 1.

method. While an increasing �f (L) is a (quite) safe proof
of an abrupt phase transition, other cases are more tricky. In
fact, the method relies on the behavior of the energy barrier
between two minima, but it can happen that this peak structure
is not visible: in such a case, the transition may be continuous,
or it may be that the considered values of L are too small to
detect the barrier numerically because the transition is weakly
abrupt [32].

Next, we briefly summarize the numerical recipe used
for a generic magnetic model. One starts with a long
simulation at a given temperature (kBT0 = 1/β0) close to
the expected transition temperature and builds the double
histogram H0(E,M; L), counting the realizations with energy
E and (scalar) magnetization M . With this, the two restricted
free energies are obtained as

f (E,β; L) = − ln

[∑
M

H0(E,M; L)e−(β−β0)E

]
(14)

and

f (M,β; L) = − ln

[∑
E

H0(E,M; L)e−(β−β0)E

]
. (15)

In the latter, we have included β explicitly and written f as
a function of three variables. For the sake of clarity in the
text and in the plots, when there is no ambiguity, we use the
compact notation f (E) and f (M) to indicate these quantities.

For field-driven transitions, one fixes the temperature and
lattice size and measures the barrier height between degenerate
minima in the function f (M,β; L) (corresponding to ordering
along different directions). The procedure is repeated for
lattices of different sizes and a set of temperatures. Instead,
for temperature-driven transitions, for any size L, one looks
for the temperature at which f (E,β; L) has two degenerate
minima (corresponding to ordered and disordered phases). The
barrier height between these minima is computed for different
sizes.

We now come to our results. We have performed a
numerical Monte Carlo study of the Hamiltonian (1) in a two-
dimensional square lattice with periodic boundary conditions,

using the Metropolis algorithm. The lattices are L × L, with
N = L2 sites. A common definition of the order parameter to
be used in simulations for the q-state Potts model is [33]

mMC,F=1 = qxmaj − 1

q − 1
, (16)

where xmaj is the average fractional occupation of the majority
state.1 For a generic F , we use a similar definition,

mMC = qF xmaj − 1

qF − 1
, (17)

where the number of states is now qF since a state is a
vectorial quantity. In this case, the MF definition and the Monte
Carlo one are slightly different: in fact, here we compare the
occupations of vectorial states, whereas in MF we compare the
occupations of two traits in a feature. In the following we will
denote with Mmaj the random variable whose thermal average
per particle gives mMC.

The values of β0 we use to build the histograms are fixed
according to Matsuda’s analytical predictions [13] for F = 2
(see also Appendix B): βcJ = 0.333136 for q = 2 and βcJ =
0.401812 for q = 3, restricting to six decimal digits.

In Fig. 3, we show typical shapes of f : in Fig. 3(a), we give
f (Mmaj,β; L) for the case F = 2,q = 2 for five values of L

and a given temperature, and in Fig. 3(b), we show f (E,β; L)
for the case F = 2,q = 3 for a given L and temperature.

Let us focus on Fig. 3(a), F = 2,q = 2. Since at low
temperature and in the absence of an external field there are qF

degenerate states, in this case we expect four degenerate states.
In this plot, obtained using the majority magnetization, the
information about the direction of alignment is lost: the global
minimum we see corresponds to ordering, in any direction.
To distinguish between orientations in different directions, we
could use a bidimensional order parameter: this variable would
show indeed four degenerate minima, but the calculation of the
free energy barrier between them would be very complicated.
Instead, we identify the barrier in this case as the difference
between the global minimum and the inflection point. At the
same time, we take care that the run parameters and its length
are such that all the degenerate minima are approximately
equally visited during the simulation. As a test, we applied
this recipe to case of a three-state Potts model, and we could
reproduce, apart from an irrelevant constant, the results of
Ref. [32].

From these and similar figures we extract �f in a range of
temperature and sizes: the results for F = 2 are summarized in
Fig. 4; it only remains to interpret them as explained above. For
F = 2,q = 2, from Fig. 4(a) we see that a field-driven phase
transition is abrupt for βJ > 0.333 and seems continuous
for βJ � 0.333. Therefore, the temperature-driven phase
transition at βJ � 0.333 appears continuous. For F = 2,q =
3, from Fig. 4(b) we deduce that the temperature-driven phase
transition taking place at βJ � 0.4 is abrupt. Since we are
interested in temperature-driven transitions, the reader may

1Notice that this definition coincides with that given in MF, Eqs. (6)
and (7), if all the minority states are equally occupied. In a numerical
simulation, this is true only on average.
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FIG. 3. Example of the curves from which �f is extracted.
(a) f (Mmaj,β; L) for F = 2,q = 2, βJ = 0.331, and five values of L.
The curves have been shifted vertically so that the inflection point is
on the horizontal axis. (b) f (E,β; L) for F = 2,q = 3, βJ = 0.3978,
and L = 16. In all the cases, L × L lattices are used, and N = L2 is
the total number of sites.

wonder why we do not use the approach of Fig. 4(b) also
for F = 2,q = 2. The reason is simple: for F = 2,q = 2 we
find a single minimum in the restricted free energy f (E).
While this is already an indication that no jump is present
and that, if a transition occurs, it is probably continuous, we
prefer to resort to another point of view, that of f (M), and
apply the Lee-Kosterlitz method to it. As already discussed
above, it is hard to distinguish, numerically, between a weakly
first-order phase transition and a continuous one. What we
can safely state is that the results of Fig. 4(a) are consistent
with the presence of a continuous phase transition, and doing
tests with L up to 120 we never saw the emergence of a peak
in f (E).

We repeat a similar analysis for the case of three coupled
layers (F = 3) and q = 2,3. Unfortunately, for F = 3 we do
not have an analytical prediction for the transition temperature
for the model, Eq. (1). In fact, analytical calculations based
on duality arguments require the inclusion of six-point terms
in the Hamiltonian in the case of three layers (see Ref. [14]).
We then need to estimate the transition temperature: using a
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FIG. 4. Free energy barrier �f as a function of the inverse of the
lattice size L. (a) Case with F = 2,q = 2, analysis of field-driven
phase transitions. The barrier �f is obtained from f (Mmaj,β; L)
for a set of temperature values. The symbol shape denotes a given
value of the temperature. (b) Case with F = 2,q = 3, analysis of
temperature-driven phase transitions. The barrier �f is obtained from
f (E,β; L). For each L the barrier is computed at the temperature at
which the two minima become (roughly) degenerate. In both panels,
L × L lattices are used, with L = 10,16,20,24,30.

standard finite-size scaling study [30,34], we obtain kBTc/J =
4.9096(7) for F = 3,q = 2; for F = 3,q = 3, using the results
on a 40 × 40 lattice, we estimate kBTc/J � 4.06. The results
for F = 3 are summarized in Fig. 5: the case with q = 2
in Figs. 5(a) and 5(b) and the case with q = 3 in Fig. 5(c).
Again, we find that for q = 3 an abrupt temperature-driven
phase transition takes place [see Fig. 5(c)]. For q = 2 and
lattices of linear size L up to 30, we observe the same
behavior found for F = 2,q = 2 [compare Figs. 4(a) and
5(a)]. However, increasing the lattice size, we find that a
two-minima structure develops in f (E,β; L) for L � 80: in
Fig. 5(b) we show the values of the energy barrier as a
function of 1/L. A comparison between Figs. 5(b) and 5(c)
shows clearly that the phase transitions for F = 3,q = 2 and
F = 3,q = 3, even if qualitatively similar, are quantitatively
distinct: for F = 3,q = 2, where the phase transition is
weakly abrupt, it is necessary to increase the lattice size by
one order of magnitude to be able to see energy barriers
which are two orders of magnitude smaller than in the case
F = 3,q = 3.
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FIG. 5. Free energy barrier �f as a function of the inverse of
the lattice size L. (a) Case with F = 3,q = 2, analysis of field-driven
phase transitions. The barrier �f is obtained from f (Mmaj,β; L) for a
set of temperature values. The symbol shape denotes a given value of
the temperature. Analysis of temperature-driven phase transitions for
(b) F = 3,q = 2 and (c) F = 3,q = 3. The barrier �f is obtained
from f (E,β; L), as explained in Fig. 4. In all the panels, L × L

lattices are used: in (a), L = 10,16,20,24,30, in (b), L = 80,100,120,
and in (c), L = 10,16,20.

Coming to the discussion of the results presented in this
section, first of all, our findings for the phase transition type
should be contrasted with the known result [6] that the q-state
Potts model in a two-dimensional square lattice undergoes
a continuous temperature-driven phase transition for q � 4
and an abrupt one for q > 4. We find that the coupling of
a layer with other ones (at least for the coupling considered
here) results in a lowering of the value of q for which the
transition type changes from continuous to abrupt. Also, a
comparison with the MF results shows that this approximation
fails to catch the correct transition type only for F = 2,q = 2.
Concerning the transition temperatures, they are, as usual,
overestimated at the MF level, but the relative error gets smaller
and smaller as the total number of states qF increases. We
mention that for the q-state Potts model it was conjectured
that the MF approximation describes accurately the phase
transition in two or more spatial dimensions when q is
large [35].

Second, we make a comparison with previous results
available in the literature for coupled Potts models or similar

ones. A summary of the expected nature of the temperature-
driven phase transition in F coupled q-state Potts models in
a two-dimensional square lattice can be found in Ref. [36]
(and references therein). For an attractive coupling between
the layers, as in our case, the transition type has been studied
for different choices of F and q: for F = 2 and q = 2,
it is continuous [16] (notice that, in this case, our model
coincides with the Ashkin-Teller isotropic model, with a
relative strength of the four-body term fixed to K4/K = 1/2,
in Baxter notation); for F = 2 and q > 2, there are indications
that it is abrupt [36]; for F > 2 and q = 2, there are indications
that it is abrupt (from Ref. [17], which studies the F -color
AT model for weak four-body coupling); and in the limit
of F → ∞ and q = 2, it has been shown exactly that it
is abrupt (from Ref. [18], which studies the F -color AT
model with a four-body coupling ∝1/F ). We recall here, as
already discussed in Sec. III, that in the AT model new phases
appear when the four-body interaction is larger than the one
considered in this work [16,17]. The existence of a single
phase transition is also a necessary ingredient for Matsuda’s
predictions based on self-duality: the agreement between our
numerical results for the transition temperature and his pre-
diction for F = 2 confirms this point. More recently, Genzor
et al. [26] showed results obtained using the corner transfer
matrix renormalization group method for our model for F = 2,
q = 2,3 (see Fig. 2 of that reference). While for q = 2 their
results for the transition temperature (kBTc/J = 3.0012) and
phase transition type are in agreement with ours and Matsuda’s,
for q = 3 they differ: in fact, in this case they find kBTc/J =
2.5676 (Matsuda’s prediction, shown up to four decimal
digits, is 2.4887) and a continuous temperature-driven phase
transition.

Finally, keeping in mind the differences between equilib-
rium and nonequilibrium models, we would like to recall at
this point that for the nonequilibrium Axelrod model, in the
absence of noise, an order-disorder phase transition is also
found. In this case, it takes place as the number of traits q is
varied, at a value qc(F ), and the type of the phase transition
changes with F : it is continuous for F = 2 and abrupt for
larger F [20]. When noise (the temperature counterpart in
this kind of model) is added to the original Axelrod model,
continuous order-disorder transitions controlled by the noise
rate are found in finite systems [21]. A pseudocritical noise
rate rc at which the system behavior changes can be identified
[24]: for r > rc the system is disordered, while for r < rc it
tends to a monocultural state. The quantity rc depends on the
system size N in a way that depends on the lattice properties;
for a regular two-dimensional network, it is rc ≈ 1/N ln N .
Therefore, in the limit of infinite size (N → ∞) the system
is disordered as soon as r �= 0. On the other side, in our
thermodynamical version, which refers to infinite systems,
we always find phase transitions. Therefore, in contrast with
the one-dimensional case [25], in two spatial dimensions
the thermodynamical version of the Axelrod model and the
out-of-equilibrium original model with noise show different
qualitative behaviors when N → ∞.

In the following section, we will address the geometrical
properties of the system, showing that data collapse can be
obtained in the continuous phase transition (F = 2,q = 2) and
also in the weakly first-order one (F = 3, q = 2).
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V. PERCOLATION CRITICAL BEHAVIOR

At the critical point, as a consequence of the divergence of
the correlation length, important simplifications take place in
the thermodynamic properties and lead to a universal (in the
sense of the renormalization group) thermodynamic behavior
[1–3]. Moreover, remarkably, in lattice spin models also
some geometrical properties are characterized by interesting
simplifications [9,37]. The divergence of the correlation length
causes a power-law dominance, in terms of the relevant scale,
in the cluster’s statistics functional form in the vicinity of the
critical point [9,10,37].

In this section we study the finite-size scaling of the cluster
distribution in our model to give a geometrical point of view
on the phase transitions analyzed in the previous section. Since
for the geometrical properties one faces the same difficulties
discussed above in discriminating between a continuous phase
transition and a weakly first-order one [38], we consider here
both the F = 2,q = 2 and F = 3,q = 2 cases. For the latter,
in which an abrupt phase transition takes place, it is intended
that the behavior is only pseudocritical, and the related
exponents are pseudocritical as well. We focus on geometrical
clusters, that is, sets of nearest neighbor sites in the same state,
and indicate with s the number of sites belonging to the cluster,
also called the cluster mass. The cluster number density
n(s,T ; L) gives the average number of clusters of size s that is

found at a temperature T in a lattice L × L, divided by the total
number of sites. The finite-size scaling ansatz for the cluster
number density at the critical point n(s,Tc; L) states that [37]

n(s,Tc; L) ∝ s−τ φ(s/LD), L  1,s  1, (18)

where the function φ contains the information about the
decay of the cluster number density for sizes bigger than
the correlation length. The constants τ and D are the Fisher
critical exponent and the fractal dimension of the incipient
infinite cluster (i.e., the largest cluster at T = Tc, also called
the percolating cluster at T = Tc), respectively, and are related
by the hyperscaling law

τ = d

D
+ 1, (19)

where d is the spatial dimensionality. Equation (18) implies
that we can collapse the curves for the cluster number density
corresponding to lattices of different sizes if we plot the
transformed cluster number density sτ n(s,Tc; L) against the
rescaled cluster size s/LD [37].

Since τ can be obtained from D using Eq. (19), to perform
the collapse we only need to determine the fractal dimension
D of the percolating cluster at the critical temperature. For this,
we measure how the percolating cluster fills the space when the
correlation length diverges in terms of the lattice linear size,
S∞ ∝ LD [37]. In our calculations, we measure the mass of the

101 102 103 104

s

10-8

10-7

10-6

10-5

10-4

n 
(s

)

raw L = 40
raw L = 60
raw L = 80

102 103 104

s

10-1

100

sτ  n
(s

)

100

s / LD
10-3

10-2

10-1

100

sτ
 n

(s
)

Binned L=40
Binned L=60
Binned L=80

Binned L=40
Binned L=60
Binned L=80

101 102 103

s

10-8

10-7

10-6

10-5

10-4

n 
(s

)

102 103 104

s

10-1

100

sτ
 n

(s
)

100

s / LD
10-3

10-2

10-1

100

sτ
 n

(s
)

(a) (b) (c)

(d) (e) (f)

F=2, q=2

F=3, q=2

FIG. 6. Data collapse for the cluster number density, at T = Tc, for sizes L = 40, 60, and 80. (a)–(c) The critical case F = 2,q = 2 and
(d)–(f) the pseudocritical case F = 3,q = 2. We show (a) and (d) the raw data for the cluster number density n(s) against s, (b) and (e) the raw
data for the transformed cluster number density sτ n(s,Tc; L) against s, and (c) and (f) the binned version of the transformed cluster number
density sτ n(s,Tc; L) against the rescaled argument s/LD .
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percolating cluster by means of the size of the biggest cluster at
Tc. One early signal related to the kind of phase transition is the
error in the linear fit for the log-log plot in the determination
of D. The cases F = 2,3 and q > 2 as well as q > 5 in the
Potts model give high values for the asymptotic standard error.
On the contrary, we get a very low standard error (<0.2%)
when q = 2 for F = 2 and 3. Again, for the considered lattice
sizes, the phenomenology of F = 2,q = 2 and F = 3,q = 2
is similar. Using lattices of size up to L = 100, we obtain
for the fractal dimension the values D = 1.885(2) for F = 2
and D = 1.882(2) for F = 3. The corresponding values of the
Fisher exponent are τ = 2.061(2) and τ = 2.063(2) for F = 2
and 3, respectively.

In Fig. 6 we show the construction of the data collapse for
the cluster number density as a function of the cluster size
for two values of F and q = 2. The critical case F = 2 is
shown in the top panels, and the pseudocritical case F = 3 is
given in the bottom panels. Figures 6(a) and 6(d) show the raw
data for the cluster number density, i.e., the normalized cluster
size distribution against s, for L = 40,60, and 80. The scale
invariance over more than five orders of magnitude is evident,
and one can notice, at the same time, the appearance of the
incipient infinite clusters (at larger sizes). Figures 6(b) and 6(e)
display the transformed cluster number density sτ n(s,Tc; L)
against the cluster size s. Then, the onset of the rapid decay is
in the same vertical position. To achieve the data collapse, the
clusters size should be rescaled by the characteristic cluster
size sξ , which goes as ∝ξD in infinite systems [37]. However,
when systems are finite, the lattice sizes are always less than
the correlation length and hence limit the characteristic cluster
size: as a consequence sξ ∝ LD . Figures 6(c) and 6(f) depict
the binned data for the collapse of the curves once the rescaling
of the horizontal axis s → s/LD has also been performed,
illustrating the perfect collapse. Moreover, our data collapse
also confirms the values of the critical exponent τ and of D.

Finally, we recall that for the case F = 1,q = 2 (two-state
Potts model), the value of D predicted by Vanderzande [11] is
187/96 = 1.9479 . . . : we find therefore that, when coupling
two or three layers, the fractal dimension D is altered. The
results for F = 2 and F = 3, however, are compatible within
their error bars. As a test, we also compute D for the case
F = 1, and in our simulations we get D = 1.9458(8), which
agrees with the prediction by Vanderzande up to the second
decimal. This indicates that the errors from the fits, which
we have given in parentheses, underestimate the real error,
which is most likely in the second decimal digit. However,
even with a conservative estimate of the error, our findings
on the variation of D are confirmed: D = 1.89 for F = 2,
while D = 1.95 for F = 1. For L up to 100, F = 3 has a
pseudocritical behavior with D = 1.88.

VI. CONCLUSIONS

We have presented in this work a study of F coupled q-state
Potts models in a two-dimensional square lattice, with an
attractive four-body interlayer coupling of fixed strength. We
have analyzed the nature of phase transitions as the number
of internal degrees of freedom q and the number of layers F

are varied. Using the Lee-Kosterlitz method, we have found
that the temperature-driven phase transition in zero field is

continuous for F = 2,q = 2 and abrupt for higher values
of q and/or F . At mean-field level, we have found that for
F � 2,q � 2 all the zero-field phase transitions are abrupt.
This effect is a typical consequence of the suppression of
fluctuations, whose strength is responsible for the singularities
that characterize second-order phase transitions. However, the
mean-field approximation has indicated the general depen-
dence of the transition temperature upon F and q, confirmed
by MC results. The accuracy of the MF predictions for
these temperatures improves as the total number of states qF

increases.
For F = 2,q = 2 and F = 3,q = 2, we have studied the

properties of the geometrical clusters at the critical point via
finite-size scaling and data collapse. This has allowed us to
determine the fractal dimension of the percolating cluster,
showing that, when two layers are coupled, this fractal dimen-
sion is reduced from D � 1.95 to D � 1.89. When three layers
are coupled, a pseudocritical behavior is found, with D � 1.88.

We have made comparisons with previous results from the
field of statistical mechanics and also with the results obtained
for the Axelrod model of social dynamics, a nonequilibrium
model with some similar characteristics. In contrast with the
one-dimensional case, in two spatial dimensions we have
found that the thermodynamical version of the Axelrod model
and the out-of-equilibrium original model with noise show
a different qualitative behavior in the limit of infinite size.
This comparison is an example of the possible interesting
connections that can be drawn between statistical mechanics
and complex systems.
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APPENDIX A: MEAN-FIELD APPROXIMATION FOR
F = 1—THE q-STATE POTTS MODEL

We present here, closely following Ref. [27], the MF
approximation for the simple case of one layer, on which the
case of generic F is based. The calculations are done for a
generic lattice, with coordination number z. The Hamiltonian
(1) reduces in this case to the q-state Potts model

HPotts = −J
∑
〈ij〉

δ(ni,nj ) − H
∑

i

δ(ni,0), (A1)

where ni = 0,1, . . . ,q − 1. Without loss of generality, we have
assumed that the state 0 is the favored one. We need to define
two quantities: the probability p(ni) that a given site is in the
state ni and the order parameter variable s(ni), whose average
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will describe the phase transition. The averages at one site i

are computed as 〈A〉i = ∑q−1
ni=0 p(ni)A(ni).

In a MF approximation, the whole probability factorizes as

pMF(n1,n2, . . . ,nN ) =
N∏

i=1

pi(ni). (A2)

We make the following ansatz: the single-site probability
is p(ni) = a + b δ(ni,0) and s(ni) = c + d δ(ni,0), where
a,b,c,d are constants. The parameters a and b are fixed
normalizing the probabilities [

∑q−1
ni=0 p(ni) = 1] and imposing

that the average of the order parameter is m. Parameters c and
d are found imposing that 〈s〉i = 1 for T = 0 and 〈s〉i = 0 for
high temperatures.

One finds

p(ni) = 1 + m[q δ(ni,0) − 1]

q
, ni = 0,1, . . . ,q − 1,

(A3)
and

s(ni) = q δ(ni,0) − 1

q − 1
, ni = 0,1, . . . ,q − 1. (A4)

To better understand the meaning of the quantity m, notice
that it is the difference between the average occupation of
state 0 and of a state different from state 0. In fact, the
average occupation of state 0 is μ ≡ 〈δ(ni,0)〉i = 1+m(q−1)

q
=

m + 1−m
q

, and for state 1 (and any state other than 0) it is

ν ≡ 〈δ(ni,1)〉i = 1−m
q

. Clearly, μ − ν = m.
Using the exact relation

δ(ni,nj ) =
q−1∑
α=0

δ(ni,α)δ(nj ,α), (A5)

we rewrite the Hamiltonian in a form which allows us to
evaluate directly the averages over single sites

〈HPotts〉MF

= −J
∑
〈ij〉

q−1∑
α=0

〈δ(ni,α)〉i〈δ(nj ,α)〉j − H
∑

i

〈δ(ni,0)〉i

= −J
Nz

2
[μ2 + (q − 1)ν2] − NHμ

= −J
Nz

2q
[1 + (q − 1)m2] − NH

q
[1 + m(q − 1)].

In the above equality we have used the relation μ2 + (q −
1)ν2 = [1 + m2(q − 1)]/q that one obtains rewriting μ and ν

in terms of m.
For the statistical entropy term we have

〈ln pMF〉MF =
N∑

i=1

〈ln pi〉i =
N∑

i=1

q−1∑
ni=0

p(ni) ln p(ni)

= N [μ ln μ + (q − 1)ν ln ν]

= N

{
1 + m(q − 1)

q
ln

1 + m(q − 1)

q

+ (q − 1)
1 − m

q
ln

1 − m

q

}
.

Finally, the Gibbs free energy per particle of the q-state
Potts model in the MF approximation is

gPotts
MF (m,T ) ≡ GMF

N
= 〈HPotts〉MF + kBT 〈ln pMF〉MF

N

= −J
z

2q
[1 + (q − 1)m2] − H

q
[1 + m(q − 1)]

+ kBT

{
1 + m(q − 1)

q
ln

1 + m(q − 1)

q

+ (q − 1)
1 − m

q
ln

1 − m

q

}
.

(A6)

Analytical results for the MF approximation

For this F = 1 case, analytical results for the transition
temperature and type can be obtained at the MF level [6]. The
inverse transition temperature Kc = J/kBTc is

Kcz = 2
q − 1

q − 2
ln (q − 1), (A7)

and the jump in the order parameter at the transition is

mc = q − 2

q − 1
. (A8)

The latter equation shows that at the MF level the phase
transition is continuous for q = 2 and abrupt for q > 2.

APPENDIX B: PREVIOUS EXACT RESULTS FOR THE
TWO-DIMENSIONAL SQUARE LATTICE

Using self-duality arguments, the transition temperature of
our model on a square lattice has been previously located for
F = 1 (Potts model; see, e.g., [6]) and for F = 2 [13].

For F = 1 and generic q, our model is a standard q-state
Potts model whose transition in a square lattice is located
solving

eKc = 1 + √
q ⇔ Kc = ln(

√
q + 1), F = 1. (B1)

For F = 2, generic q, and no external field, our model is
equivalent to Matsuda’s model [13] with an appropriate choice
of couplings. In more detail, our J is related to Ji , i = 1,2,3, of
Ref. [13] as follows: J1 = J2 = J and J3 = 2J . The transition
temperature is found [13] by solving

e4Kc − 2eKc − (q − 1) = 0, F = 2. (B2)
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