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Abstract

The aim of this work is to present a nonstandard linear finite element method for a planar elasticity problem.
The error for the solution computed with this method is estimated with respect toH 1 ×H 1-norm and second-order
convergence is shown. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.

1. Introduction

In most physical applications quantities are governed by systems of partial differential equations, not
just by one equation. For instance, the deformations and stresses of elastic and inelastic bodies subject to
load, studied in solid mechanics, are governed by systems of partial differential equations.

For the computation of a numerical approximation of the solution of a system of partial differential
equations, finite element methods and finite difference methods are the numerical methods usually used.

In this paper we study a new linear finite element method for a planar elasticity problem which was, for
the scalar case, presented by one of the authors in [7]. This method enables us to compute the numerical
approximation to the displacement with an improved accuracy when compared with standard linear finite
element methods described in the literature as for instance in [1,3,12]. This new method has two main
features: on the one hand, it is based on a family of triangulations of the domain which does not need
to be quasi-uniform and regular, and on the other hand, the finite element solution computed presents
second order convergence with respect toH 1 × H 1-norm. This last property of the linear finite element
method implies that the gradient of each component of the displacement is superconvergent.

About two decades ago, Zlámal [23] has already found superconvergence of the gradient for certain
quadrature finite element solutions on nearly rectangular grids. Furthermore, Brandts [2] has found
superconvergence of the gradient but there the grids were assumed regular and quasi-uniform.

Noting that the nonstandard finite element method studied in this work is equivalent to a carefully
defined finite difference method, we conclude that this last method is supraconvergent. Supraconvergent
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finite difference schemes have been largely studied in the literature and without being exhaustive we
mention [4,6–11,13,15,16,22].

The paper is organized as follows. In Section 2 we present the problem that we intend to solve. The
nonstandard linear finite element method is described in Section 3. In Section 4 we present a finite
difference method equivalent to the linear finite element method described in Section 3. The study of the
H 1 × H 1-norm of the error is considered in Section 5. An example illustrating the performance of the
method is considered in Section 6.

2. The boundary value problem

We begin with some notation. Letv = (v1, v2) be a function of two variables. We define div(v) and
grad(v) by

div(v) = ∂v1

∂x
+ ∂v2

∂y
, grad(v) =




∂v1

∂x

∂v1

∂y
∂v2

∂x

∂v2

∂y


 .

Let A = [aij ]i,j=1,2 be a matrix withaij , i, j = 1,2, functions of two variables. By div(A) we denote
the following function:

div(A) =




∂a11

∂x
+ ∂a12

∂y
∂a21

∂x
+ ∂a22

∂y


 (1)

and we consider in the space of real two-by-two matrices the following inner product:

A : B =
2∑

i,j=1

aij bij , (2)

whereA = [aij ],B = [bij ]. By tr(A) we denote the trace of the matrixA.
Let us define now the boundary value problem that we consider in this work. ByΩ ⊂ R

2 we denote
an union of rectangles and by∂Ω we represent its boundary. We consider an isotropic material in the
configuration spaceΩ and a body forcef . By the static theory of linear elasticity, the displacementu is
the solution of the following system of partial differential equations

−div
(
σ (u)

) = f in Ω, (3)

with the displacement boundary condition

u = g on ∂Ω. (4)

In (3), σ (u) denotes the stress tensor defined by

σ (u) = 2µε(u) + λtr
(
ε(u)

)
I2,

whereI2 is the identity two-by-two matrix, and

ε(u) = 1
2

(
grad(u) + grad(u)t

)
.

By µ,λ we represent the Lamé constants.
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We define in what follows a variational problem for the pure displacement problem (3) and (4). In
H = H 1(Ω) × H 1(Ω) andL2 = L2(Ω) × L2(Ω) we consider the inner products

(u, v)H×H = (u1, v1)H1(Ω) + (u2, v2)H1(Ω),

for u, v ∈ H , and

(u, v)L2 = (u1, v1)L2(Ω) + (u2, v2)L2(Ω)

for u, v ∈ L2.
Let a(· , ·) be the sesquilinear form

a(u, v) =
∫
Ω

(
2µε(u) : ε(v) + λdiv(u)div(v)

)
dx dy

for (u, v) ∈ H × H . Consideringa(· , ·) we introduce the variational problem:

Findu ∈ H such that

u = g on∂Ω and a(u, v) = (f, v)L2(Ω), ∀v ∈ H 0,
(5)

whereH 0 = H 1
0 (Ω) × H 1

0 (Ω).
It is known that ifw ∈ H is such thatw|∂Ω = g, and ifu∗ ∈ H 0 is solution of the variational problem

a(u∗, v) = (f, v)L2(Ω) − a(w, v), ∀v ∈ H 0,

thenu = u∗ − w is solution of (5).
Attending to this that we consider in what follows homogeneous Dirichlet boundary conditions

(g = 0).
The first Korn inequality enables us to conclude the ellipticity ofa(· , ·) in H 0 × H 0 and so the next

result:

Theorem 1. If f ∈ H−1 then exists a uniqueu ∈ H 0 satisfying(5).

3. The finite element method

In this section we define the discrete variational problem (9) which enables us to compute an
approximation to the solution of the variational problem (5) withg = 0.

The finite element method that we consider is based on two specials triangulations which are induced
by a nonuniform rectangular grid

RH = R1 × R2 ⊂ R
2,

whereh = (hj )Z andk = (k�)Z are sequences of positive numbers,

R1 = {xj ∈ R: xj+1 = xj + hj , j ∈ Z}
with x0 ∈ R given, andR2 is defined analogously toR1 with the meshsize vectork in place ofh.

Let ΩH , ∂ΩH andΩH be the intersection ofRH with Ω, ∂Ω andΩ , respectively, that is,

ΩH = Ω ∩ RH , ∂ΩH = ∂Ω ∩ RH , ΩH = Ω ∩ RH .
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The gridΩH is assumed to satisfy the following condition with respect to the regionΩ .
(Reg) Let� be any rectangle(xj , xj+1) × (y�, y�+1) formed by the gridRH . Then� ∩ ∂Ω is empty.
The triangulations that we consider are related to the gridΩH, which we callT (1)

H andT (2)
H . They are

obtained from the disjoint decomposition

RH = R
(1)
H ∪̇ R

(2)
H ,

where the sumsj + � of the indices of the points(xj , y�) in R
(1)
H and inR

(2)
H is even or odd, respectively.

To simplify the following definition we introduceR(3)
H = R

(1)
H . With each point(xj , y�) ∈ RH we associate

the triangles∆(i)
j,�, i = 1,2,3,4, that have a right angle at(xj , y�) and two of the four closest neighbor

grid points of(xj , y�) as further vertices. We then define the triangulations

T (s)
H = {

∆
(i)
j,� ⊂ Ω, (xj , y�) ∈ R

(s)
H , i ∈ {1,2,3,4}}, s = 1,2, (6)

of Ω (
◦
∆ denotes the interior of∆). Fig. 1 shows an example of one of these triangulations.

By WH we denote the space of grid functions defined onΩH and by
◦
WH we represent the subspace

of WH of grid functions vanishing on the boundary grid points∂ΩH . Let
◦

WH be the set
◦
WH× ◦

WH .
Let TH be any triangulation ofΩ such that the nodes ofTH coincide with ΩH . By PHvH we

denote(PHvH,1,PHvH,2) wherevH = (vH,1, vH,2) ∈ ◦
WH andPHvH,i is the continuous piecewise linear

interpolation ofvH,i (i = 1,2) with respect toTH .
In what follows we define a discrete variational problem which enables us to compute the numerical

approximation to the solution of (5) withg = 0. LetaH(· , ·) be the sesquilinear form defined by

aH (wH, vH ) = 1
2

(
a
(1)
H (wH, vH ) + a

(2)
H (wH, vH )

)
(7)

Fig. 1. TriangulationT (s)
H .
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for wH,vH ∈ ◦
WH × ◦

WH , with a
(s)
H (wH, vH ), defined by

a
(s)
H (wH, vH ) = ∑

∆∈T (s)
H

∫
∆

(
2µε

(
P

(s)
H wH

) : ε(P (s)
H vH

) + λdiv
(
P

(s)
H wH

)
div

(
P

(s)
H vH

))
dx dy, (8)

for s = 1,2.
Then our discrete variational problem is:

FinduH ∈ ◦
WH such that

aH (uH , vH ) = (RHf, vH )H , ∀vH ∈ ◦
WH ,

(9)

whereRH denotes the pointwise restriction operator.
In (9), (· , ·)H represents the inner product

(wH , vH )H = ∑
(xi,yj )∈ΩH

ωij (w1,ij v1,ij + w2,ij v2,ij )

with

ωij = hi + hi+1

2

kj + kj+1

2
.

In what follows we rewritea(s)
H (· , ·) in an equivalent form. In order to do that we consider the

sesquilinear forms

a(s)
xx (wH , vH ) = ∑

∆∈T (s)
H

∫
∆

(
P

(s)
H wH

)
x

(
P

(s)
H vH

)
x

dx dy, (10)

a(s)
yy (wH , vH ) = ∑

∆∈T (s)

H

∫
∆

(
P

(s)
H wH

)
y

(
P

(s)
H vH

)
y

dx dy (11)

and

a(s)
xy (wH , vH ) = ∑

∆∈T (s)
H

∫
∆

(
P

(s)
H wH

)
x

(
P

(s)
H vH

)
y

dx dy (12)

for wH,vH ∈ ◦
WH . We definea(s)

yx (· , ·) asa(s)
xy (· , ·) changing the position of the variablesx andy.

Using the sesquilinear formsa(s)
xx (· , ·), a(s)

yy (· , ·), a(s)
xy (· , ·) anda(s)

yx (· , ·), is easy to show that

a
(s)
H (wH, vH ) = (2µ + λ)

(
a(s)
xx (wH,1, vH,1) + a(s)

yy (wH,2, vH,2)
)

+ µ
(
a(s)
xx (wH,2, vH,2) + a(s)

yy (wH,1, vH,1)
)

+ µ
(
a(s)
xy (wH,2, vH,1) + a(s)

yx (wH,1, vH,2)
)

+ λ
(
a(s)
yx (wH,2, vH,1) + a(s)

xy (wH,1, vH,2)
)

for wH,vH ∈ ◦
WH .
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The following stability result is consequence of the definition ofaH (· , ·).
Theorem 2. Exists a positive constantC such that

‖PHvH‖1 � C sup
0�=wH ∈

◦
WH

|aH (vH ,wH)|
‖PHwH‖1

(13)

for all vH ∈ ◦
WH .

The proof of this theorem follows the steps of the proof of Theorem 2 of [7].

4. An equivalent finite difference method

In this section we define a finite difference method “equivalent” to the discrete variational problem (9)
that is useful to implement the described finite element method.

For each grid point(xj , y�) ∈ RH we define the central finite difference quotients

δ(1/2)
x wj,� = wj+1/2,� − wj−1/2,�

xj+1/2 − xj−1/2
, δ(1/2)

x wj+1/2,� = wj+1,� − wj,�

xj+1 − xj

,

δxwj,� = wj+1,� − wj−1,�

xj+1 − xj−1
,

wherexj+1/2 = xj +hj/2, xj−1/2 = xj −hj−1/2. Correspondingly, the central finite difference quotients
with respect to the variabley are defined.

We introduce now the following finite difference problem:

FinduH ∈ ◦
WH such that AHuH = f inΩH, (14)

with

AHuH =

 (2µ + λ)δ(1/2)

x δ(1/2)
x uH,1 + µδxδyuH,2 + λδyδxuH,2 + µδ(1/2)

y δ(1/2)
y uH,1

(2µ + λ)δ(1/2)
y δ(1/2)

y uH,2 + λδyδxuH,1 + µδxδyuH,1 + µδ(1/2)
x δ(1/2)

x uH,2


 . (15)

Attending to the definitions ofaH (· , ·) andAH is easy to show the next result:

Proposition 1. Let the sesquilinear formaH(· , ·) be defined by(7). WithAH defined by(15), the equality

aH (vH ,wH) = (AHvH ,wH)H

holds forwH,vH ∈ ◦
WH .

Paying attention to the last proposition and to the stability inequality (13) we conclude thatAH has
inverse and is stable in the following sense: exists a positive constantC independent ofH such that

‖PHvH‖1 � C sup
0�=wH ∈

◦
WH

|(AHvH ,wH)H |
‖PHwH‖1

, (16)

for vH ∈ ◦
WH .
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5. Bounding the error

We consider in what follows a sequence of gridsRH defined using a sequenceΛ of H = (h, k) such
that the maximal mesh-sizeHmax tends to zero. By‖.‖r,∞,∆ we represent the standard norm inWr,∞(Ω)

if the underlying region is the triangle∆.
The truncation error for the finite difference operatorAH is on nonuniform grids pointwise of

order one. Nevertheless, in what follows, we show that (14) is second order convergent, that is,
‖PHRHu − PHuH‖1 = O(H 2

max) whereuH and u are respectively the finite difference solution (also
finite element solution) and the solution of the elasticity problem.

Let us estimate now‖PHRHu − PHuH‖1. Looking back at (13) we have

‖PHRHu − PHuH‖1 � C sup
vH ∈ ◦

WH

|aH (RHu, vH ) − (f, vH )H |
‖PHvH‖1

(17)

and an estimate to the error‖PHRHu − PHuH‖1 is obtained estimating

aH (RHu, vH ) − (RHf, vH )H (18)

for vH ∈ ◦
WH .

We observe that from [7] we have

a(s)
xx (RHui, vH,i) = −

(
RH

∂2ui

∂x2
, vH,i

)
H

+ Rxxi, for i = 1,2, (19)

a(s)
yy (RHui, vH,i) = −

(
RH

∂2ui

∂y2
, vH,i

)
H

+ Ryyi, for i = 1,2, (20)

and

a(s)
xy (RHui, vH,j ) = −

(
RH

∂2ui

∂y∂x
, vH,i

)
H

+ Rxyi, (21)

for i = 1, j = 2 andi = 2, j = 1, where

|Rxxi| � C

( ∑
∆∈T (s)

H

|∆|h4
∆

∥∥∥∥∂3ui

∂x3

∥∥∥∥
2

1,∞,∆

)1/2

‖PHvH,i‖1, (22)

where we have represented the area of the triangle∆ by |∆|. The bound for remainder termRyyi is
obtained by takingk∆ and∂/∂y in place ofh∆ and∂/∂x respectively in (22), and

|Rxyi| � C

( ∑
∆∈T (s)

H

|∆|(h4
∆ + k4

∆

)(∥∥∥∥ ∂3ui

∂2y∂x

∥∥∥∥
2

1,∞,∆

+
∥∥∥∥ ∂3ui

∂y∂2x

∥∥∥∥
2

1,∞,∆

))1/2

‖PHvH,j‖1. (23)

The bound for the remainder termRyxi is obtained by taking∂/∂y in place of∂/∂x in (23).
Altogether we have proved the following result:

Proposition 2. Letu be inC4(Ω) × C4(Ω). Then

aH (RHu, vH ) = −(
RH

[
div

(
σ (u)

)]
, vH

)
H

+ τ(u, vH )
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with

τ(u, vH ) � C

( ∑
∆∈TH

|∆|(diam∆)4‖u‖2
4,∞,∆

)1/2

‖PHvH‖1,

whereC is independent of the triangulationTH and ofu.

Finally, combining the last proposition and inequality (17) we conclude the main result of this work:

Theorem 3. If the solution of(3) and(4) is in C4(Ω)×C4(Ω) with g = 0, then the variational problem

(9) and the finite difference problem(14) have a unique solutionuH in
◦

WH satisfying the error estimate

‖PHRHu − PHuH‖1 � C

( ∑
∆∈TH

|∆|(diam∆)4‖u‖2
4,∞,∆

)1/2

. (24)

6. Numerical example

In the following example we show the performance of the method defined by (9) or equivalently the
performance of the finite difference scheme (14).

Example 1. Let us consider the boundary value problem (3) defined on the rectangleΩ = (0,1)× (0,1),
with λ = 1,µ = 0.5,

f1(x, y) = f2(x, y) = π2[−0.4cos
(
π(x + y)

) + 0.1cos
(
π(x − y)

)]
andg = 0. This planar elasticity problem has the following solution:

u1(x, y) = u2(x, y) = 0.2sin(πx)sin(πy).

We define the gridΩH,1 takingx0 = y0 = 0 and

hj = 0.125, j = 1,2,13,14, hj = 0.05, j = 3, . . . ,12,

k� = 0.125, � = 1,2,13,14, k� = 0.05, � = 3, . . . ,12.

Introducing a new grid line between each grid line ofΩH,1 we obtain the gridΩH,3. Following the last
procedure we define the gridsΩH,i for i = 5,7. Analogously we define the gridsΩH,i for i = 4,6,8,
using the same procedure whereΩh,2 is defined takingx0 = y0 = 0 and

hj = 0.1, j = 1,2,15,16, hj = 0.05, j = 3, . . . ,14,

k� = 0.1, � = 1,2,15,16, k� = 0.005, � = 3, . . . ,14.

In Table 1 we present the number of points in thex andy directions which are denoted respectively by
N andM , the maximum step-sizeHmax and the norm‖ · ‖1 of the error. In Fig. 2 we plot the logarithm
of theH -norm of the error against the logarithm of the square of the maximum step-size that illustrates
the convergence result.

From the values presented in last table we easily conclude that the average convergence rate is 1.95
which confirm the second order of convergence of the method stated in Theorem 3.
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Table 1

Grid Number of points Hmax ‖PHRHu − PHuH‖1

ΩH,1 N = M = 14 0.125 0.0167266

ΩH,2 N = M = 16 0.1 0.00886546

ΩH,3 N = M = 28 0.0625 0.00451434

ΩH,4 N = M = 32 0.05 0.0023329

ΩH,5 N = M = 56 0.03125 0.00116346

ΩH,6 N = M = 64 0.025 0.00059468

ΩH,7 N = M = 112 0.015625 0.000293906

ΩH,8 N = M = 128 0.0125 0.000149632

Fig. 2. The logarithm of the norm‖ · ‖1 of the error.
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