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We address the subject of chiral anomalies in two- and four-dimensional theories. Ambiguities
associated with the γ5 algebra within divergent integrals are identified, even though the physical dimension
is not altered in the process of regularization. We present a minimal prescription that leads to unique results
and apply it to a series of examples. For the particular case of Abelian theories with effective chiral vertices,
we show (i) its implication on the way to display the anomalies democratically in the Ward identities,
(ii) the possibility to fix an arbitrary surface term in such a way that a momentum routing independent result
emerges—this leads to a reinterpretation of the role of momentum routing in the process of choosing the
Ward identity to be satisfied in an anomalous process—and (iii) momentum routing invariance is a
necessary and sufficient condition to assure vectorial gauge invariance of effective chiral Abelian gauge
theories. We also briefly discuss the case of complete chiral theories, using the chiral Schwinger model as
an example.
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I. INTRODUCTION

The regularization and renormalization program of
quantum field theory must comply with the regularization
scheme independence of theories with anomalously broken
symmetries. Anomalies manifest themselves by the impos-
sibility to maintain in the quantum extension of a theory
all its classical symmetries intact. As the Ward identity
associated with gauge invariance is often required on
physical grounds to be the one which is left unbroken,
dimensional regularization [1,2] seemed to be an appro-
priate method for this case, since it preserves gauge
invariance. However, some inconsistencies soon appeared
regarding the manipulation of dimension-specific objects
such as γ5 and the Levi-Civita tensor [3,4]. To circumvent
this problem, some rules had to be added to the method,
postulating how the dimensional continuation of such
objects should be performed [5].
The situation is aggravated by the fact, as we are going to

present in this contribution, that even staying in the
physical dimension specific to the theory, identities regard-
ing the γ5 algebra are not always satisfied under divergent
integrals. In other words, the framework to deal with such
identities is regularization dependent and, as such, also
requires the adoption of some prescription.

Recently, the interest on the subject has been renewed in
the literature with new proposals for a gauge-invariant
prescription for the γ5 algebra. In particular, the author of
[6,7] presents the so-called rightmost ordering in which all
γ5 should be moved to the rightmost position of the
amplitude before its dimensionality is altered. Another
proposal focuses on an integral representation for the trace
involving gamma matrices [8–10]. Nevertheless, in both
cases the authors intend to obtain a prescription which
allows dimensional regularization to be applied to dimen-
sion-specific objects as the γ5 matrix. Another proposal, in
the case of four-dimensional regularization, was envisaged
by the authors of [11].
In this contribution we would like to show how anoma-

lies should be consistently dealt with in the implicit
regularization (IREG) formalism [12–14]. In IREG no
dimensional continuation on space-time is performed
and this method possesses the useful property of displaying
democratically the Ward identities to be conserved or
broken in an anomalous process. This property results
from the technique’s general treatment of differences of
divergent quantities that have the same degree of diver-
gence and are prone to occur in the diagrammatic evalu-
ation of an amplitude. These differences correspond to
finite but otherwise arbitrary surface terms. Democracy
becomes manifest by keeping these surface terms as
arbitrary parameters until the very end of the calculation
of an anomalous amplitude. Only then should they be fixed
according to the symmetry constraints of the particular
physical process one is dealing with.
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Now due to the complications inherent to the γ5 algebra
inside divergent quantities, ambiguities that may stem from
it will be carried over to the arbitrary parameters. With
these being arbitrary, it may seem impossible to tell
whether the γ5 algebra has been performed adequately or
not. One of the purposes of the present study is to show that
this is not so if one takes advantage of the properties that
amplitudes are expected to fulfill under a change in the
routing of momenta in the propagators of a loop integral.
Momentum routing invariance (MRI) is known to be
fulfilled in the cases that a symmetry is not broken at all
orders of a theory, such as the gauge symmetries of the
Standard Model, upon use of dimensional regularization
[1]. It is legitimate to expect that in the presence of an
anomaly, gauge invariance continues to evidence MRI.
Indeed that is what we verify by applying a minimal
prescription based on the symmetrization of the trace over
the γ matrices involving γ5. This prescription does not make
use of the property fγ5; γμg ¼ 0, since we show in several
examples that the vanishing of the anticommutator is at the
origin of the ambiguities.
Moreover, adopting this symmetrization prescription

leads to the unforeseen conclusion that independently of
the sector which remains unbroken, the vectorial or the
chiral, MRI is always verified; i.e. one does not need to fix
a particular value of a routing momentum in the process of
choosing which Ward identity is to be satisfied. We will
show explicitly for the Adler-Bell-Jackiw (ABJ) anomaly
that at no instance MRI is broken in the evaluation of the
Ward identities. Instead we note that the routing momenta
come always accompanied by arbitrary surface terms. It is
these that need finally be fixed and this operation can be
effected without touching MRI. In other words MRI is
protected by the occurrence of the arbitrary surface
parameters. The connection between MRI and these arbi-
trary surface terms has been observed in different contexts
[15–17], the most recent one regarding the study of gauge
invariance in extended QED in which case the use of the
symmetrization prescription presented in this contribution
was essential to obtain an unambiguous γ5 algebra [18].
This work is divided as follows: we present a brief review

of the IREG scheme in the next section, and we then apply it
to calculate the Ward identities of the Schwinger model
and of the Adler-Bardeen-Bell-Jackiw anomaly in Secs. III
and IV, respectively. In Sec. Vwe show that gauge symmetry
in chiral Abelian gauge theories is fulfilled if we requireMRI
andviceversa. Finally,wepresent our conclusions inSec.VI.

II. IMPLICIT REGULARIZATION IN A NUTSHELL

We apply the IREG framework [12] to treat the integrals
which appear in the amplitudes of the next sections. Let us
make a brief review of the method in four dimensions. In
this scheme, we assume that the integrals are regularized by
an implicit regulator Λ just to justify algebraic operations
within the integrands. We then use the following identity:

Z
k

1

ðkþ pÞ2 −m2
¼

Z
k

1

k2 −m2

−
Z
k

ðp2 þ 2p · kÞ
ðk2 −m2Þ½ðkþ pÞ2 −m2� ; ð1Þ

where
R
k ≡

R
Λ d4k
ð2πÞ4, to separate basic divergent integrals

(BDIs) from the finite part. These BDIs are defined as
follows:

Iμ1…μ2n
log ðm2Þ≡

Z
k

kμ1…kμ2n

ðk2 −m2Þ2þn ð2Þ

and

Iμ1…μ2n
quad ðm2Þ≡

Z
k

kμ1…kμ2n

ðk2 −m2Þ1þn : ð3Þ

The basic divergences with Lorentz indexes can be
judiciously combined as differences between integrals with
the same superficial degree of divergence, according to the
equations below, which define surface terms1:

ϒμν
2w ¼ gμνI2wðm2Þ − 2ð2 − wÞIμν2wðm2Þ≡ υ2wgμν; ð4Þ

Ξμναβ
2w ¼ gfμνgαβgI2wðm2Þ − 4ð3 − wÞð2 − wÞIμναβ2w ðm2Þ

≡ ξ2wðgμνgαβ þ gμαgνβ þ gμβgναÞ: ð5Þ

In the expressions above, 2w is the degree of divergence
of the integrals and for the sake of brevity, we substitute the
subscripts log and quad by 0 and 2, respectively. Surface
terms can be conveniently written as integrals of total
derivatives, namely

υ2wgμν ¼
Z
k

∂
∂kν

kμ

ðk2 −m2Þ2−w ; ð6Þ

ðξ2w − v2wÞðgμνgαβ þ gμαgνβ þ gμβgναÞ

¼
Z
k

∂
∂kν

2ð2 − wÞkμkαkβ
ðk2 −m2Þ3−w : ð7Þ

We see that Eqs. (4) and (5) are undetermined because
they are differences between divergent quantities with the
same degree of divergence. Each regularization scheme
gives a different value for these terms. However, as physics
should not depend on the scheme applied, we leave these
terms to be arbitrary until the end of the calculation, fixing
them by symmetry constraints or phenomenology, when it
applies [19]. Similar considerations were also envisaged by
the author of [20].

1The Lorentz indexes between brackets stand for permutations,
i.e. Afα1…αngBfβ1…βng ¼ Aα1…αnBβ1…βn þ sum over permutations
between the two sets of indexes α1…αn and β1…βn.
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Of course the same idea can be used at any dimension of
space-time. In (1þ 1) dimensions, for instance, a basic
logarithmic divergent integral would be like

R
d2k
ð2πÞ2

1
k2−m2

and a logarithmic surface term would be like gμνυ0 ¼
gμν

R
d2k
ð2πÞ2

1
ðk2−m2Þ − 2

R
d2k
ð2πÞ2

kμkν

ðk2−m2Þ2.

III. CHIRAL SCHWINGER MODEL

In this section we focus on the chiral Schwinger model
in order to have a simple example on regularization-
dependent identities regarding γ5. We also discuss the
anomaly appearing in this model in our framework,
showing how it can be democratically displayed between
the axial and vectorial Ward identities.
The chiral Schwinger model was first considered in [21].

It was shown that although the theory is unitary, it is not
gauge invariant at the quantum level. We are going to
recover this result at the end of this section (when we
consider the complete one-loop two-point function for the
gauge boson). However, in order to make contact to the
ABJ anomaly case, which will be addressed in the next
section, we consider first an effective case in which the two-
point function contains a definite axial and vectorial vertex.
We show then that it is only possible to preserve one of
the Ward identities at a time, either the vectorial or the
axial one.
The model we are going to study is given by the

following induced action [19]:

ΓCSðAÞ ¼ −i ln detði∂ − eð1þ γ5ÞAÞ: ð8Þ

We focus on the two-point function of the photon with a
vectorial and a chiral vertex. Its amplitude is given by

Πμν ¼ −ie2Tr
Z
q
γμ

1

q − p
γνγ5

1

q
; ð9Þ

where
R
q stands for

R d2q
ð2πÞ2.

At this point some regularization must be adopted in
order to deal properly with this integral. We will choose the
IREG framework which, as stated in the introduction,
preserves the space-time dimension of the underlying
theory at all times. At first view, one could make the
following statement: since the algebra of the γ5 is unam-
biguous only in integer dimensions, any identity involving
such an object should remain true in a dimension-
preserving method such as IREG. Surprisingly enough,
this statement reveals to be false, as we are going to
exemplify. In fact, even though identities involving γ5, in
particular fγμ; γ5g ¼ 0, are true in integer dimensions, they
may be false when inside a divergent integral.
We return to our example. The first prescription for

dealing with the γ5 will be

γνγ5 ¼ ϵνθγ
θ: ð10Þ

After this step, the evaluation of the integral using the IREG
rules is straightforward furnishing

Πμν ¼ −2ie2ϵνθ
�ðδθμp2 − pμpθÞð−2bÞ

p2
− δθμυ0

�
; ð11Þ

where b ¼ i=4π and υ0 is a surface term which is
ambiguous. We list all integrals found in this amplitude
in the Appendix.
It is instructive to compute the two Ward identities, the

vectorial and axial one, respectively:

pμΠμν ¼ 2ie2ϵνθpθυ0;

pνΠμν ¼ −2ie2ϵμθpθð2bþ υ0Þ: ð12Þ

We notice the appearance of an arbitrariness parame-
trized as a surface term which allows a democratic view of
the anomaly. In fact, in the IREG framework, symmetries
or phenomenology should be the guide to fix ambiguities
instead of the regularization method by itself. In this sense,
by suitable choices for the υ0 one can preserve one of
the identities (υ0 ¼ 0 preserves the vectorial one while
υ0 ¼ −2b preserves the axial one) or even distribute the
anomaly between both identities (choosing υ0 ¼ −b).
We use now the identity

fγμ; γ5g ¼ 0; ð13Þ

which is expected to yield the same result. Thus

Πμν ¼ ie2Tr
Z
q
γμ

1

q − p
γ5γν

1

q
: ð14Þ

As before, some prescription is still needed to deal with
the γ5, which we choose to be

1

q − p
γ5 ¼

ðq − pÞα
ðq − pÞ2 γαγ5 ¼

ðq − pÞα
ðq − pÞ2 ϵαθγ

θ: ð15Þ

The evaluation of Πμν is straightforward:

Πμν ¼ 2ie2
b
p2

ðpαϵανpμ þ pαϵαμpνÞ; ð16Þ

which differs from the result in Eq. (11). For the Ward
identities one has

pμΠμν ¼ −2ie2ϵνθpθb;

pνΠμν ¼ −2ie2ϵμθpθb: ð17Þ

The first point to be noticed is the disappearance of the
surface term. This allows us to conjecture that, by using the
prescriptions stated in Eqs. (13) and (15), one is implicitly
evaluating some of the divergent integrals. For instance, by
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choosing υ0 ¼ −b in the Ward identities of the first case
one obtains the equations above.
Therefore, it seems that the way one chooses to deal with

dimension-specific objects (such as γ5) inside divergent
integrals is ambiguous. The question now is which pre-
scription should one rely on. From our point of view, the
computation should be performed in the most democratic
possible way which means traces involving γ5 must contain
all possible Lorentz structures available. Therefore, one
should adopt the following symmetric trace:

Trðγσγμγαγνγ5Þ ¼ 2ð−ϵσνgαμ þ ϵμνgασ − ϵανgσμ

þ ϵσαgμν − ϵμαgσν − ϵσμgανÞ; ð18Þ

which is obtained replacing γ5 by its definition on a two-
dimensional space (γ5 ¼ ϵμργ

μγρ=2).
Replacing this identity in the amplitude and using the

prescription γaγ5 ¼ ϵaθγ
θ one finally obtains

Πμν ¼ −2ie2ϵνθ
�ðδθμp2 − pμpθÞð−2bÞ

p2
− δθμυ0

�
: ð19Þ

It should be noticed that this is the result of Eq. (11) and
the explanation is the following. As can be seen from the
equation above, even though the trace contains all possible
structures for the Levi-Civita tensor, in the end only ϵνθ
appears. In the first case considered, this was our choice
from the beginning through the prescription γνγ5 ¼ ϵνθγ

θ.
Therefore, it is no surprise that the two results coincide.
Another interesting point is the connection between

surface terms and shifts in the internal momenta. This
aspect is more evident in the Ward identities which we
quote below:

pμΠμν ¼ 2ie2ϵνθpθυ0;

pνΠμν ¼ −2ie2ϵμθpθð2bþ υ0Þ: ð20Þ

As has been shown, this identities were obtained by
computing Πμν and afterward contracting with the external
momentum pμ. One might wonder whether performing the
contraction before would pose any problem. As can be
easily seen, one obtains for the vectorial Ward identity

pμΠμν ¼ −ie2
�
Tr

Z
q

1

q − p
γνγ5 − Tr

Z
q

1

q
γνγ5

�
;

ð21Þ

which means that, if shifts in the internal momentum were
naively allowed, one would automatically obtain the con-
servation of the vectorial Ward identity. This is the result of

dimensional regularization since in this method shifts are
always allowed. From our perspective, this aspect should
be taken with care. As presented in [15], MRI (which from
a mathematical point of view reveals itself to be equivalent
as performing shifts in the internal momentum) is always
connected with the appearance of surface terms and can
only be satisfied if the latter are always set to zero.
Therefore, using the results of [15] one obtains

pμΠμν ¼ 2ie2ϵνθpθυ0; ð22Þ

in agreement with our previous result. Therefore, for the
vectorial Ward identity, contracting with the external
momentum p before or after evaluating the amplitude is
innocuous.
This is however not anymore the case for the axial Ward

identity, as can be easily seen, after contracting the
amplitude with the external momentum pν and using that
p ¼ p − qþ q. One obtains

pνΠμν ¼ −ie2
�
Tr

Z
q
γμ

1

q − p
qγ5

1

q
− Tr

Z
q
γμγ5

1

q

�
:

ð23Þ

Naively one could use fγμ; γ5g ¼ 0 which would furnish

pνΠμν ¼ −ie2
�
Tr

Z
q
γμγ5

1

q − p
− Tr

Z
q
γμγ5

1

q

�

¼ 2ie2ϵμθpθυ0; ð24Þ

in contrast with our previous result for the axial Ward
identity, Eq. (12). It is, however, compatible with the result
we obtained when using fγμ; γ5g ¼ 0, computing the
amplitude and then contracting with pν, if one chooses
υ0 ¼ −b. Therefore, once again we show that allowing
fγμ; γ5g ¼ 0 to be applied inside divergent integrals is an
ambiguous operation. In the latter example this feature is
even more dramatic since it does not define the value of the
anomaly; all one can infer is that the arbitrariness is equally
distributed in the two Ward identities.
We discuss now how the last calculation should be

performed, in order to define the value of the anomaly and
still respect democracy. As before the problem resides in
the naive application of fγμ; γ5g ¼ 0. To avoid this, one can
just use the symmetric formula for the trace [Eq. (18)] as we
did before. An equivalent approach, more closely related to
the previous analysis, is to first use the identity fγμ; γνg ¼
2gμν to rewrite the amplitude and then use the definition of
γ5 to evaluate the integrals. Explicitly,
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pνΠμν ¼ −ie2
�
−Tr

Z
q

1

q − p
γμγ5 − Tr

Z
q
γμγ5

1

q

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

−2ie2ϵμθpθυ0

þ −ie2
�
2Tr

Z
q

ðq − pÞμ
ðq − pÞ2 qγ5

1

q
− 2Tr

Z
q

qμ
q − p

γ5
1

q
þ 2Tr

Z
q

qσðq − pÞσ
ðq − pÞ2 γμγ5

1

q

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

−4ie2ϵμθpθb

¼ −2ie2ϵμθpθð2bþ υ0Þ; ð25Þ

which is the result obtained before, respecting the democ-
racy the calculation should retain and defining the precise
value of the anomaly.
In summary, although fγμ; γ5g ¼ 0 is well defined in

integer dimensions, this furnishes ambiguous results inside
divergent integrals independently if one uses dimensional
extensions (as in dimensional regularization) or stays in the
physical dimension of the theory (as we did). Although the
usual procedure is to extend the algebra of γ5 matrices
[6–10,22–25] to D dimensions, from our perspective, this
operation should be avoided and, whenever dimension-
specific objects such as γ5 appear, one should use the most
democratic expression available. In our case, we had to
adopt a democratic expression for the trace of four γ
matrices and γ5 in the sense that all possible Lorentz
structures available were present.
To conclude this section, we would like to comment on

the computation of the complete two-point function in the
chiral Schwinger model. In this case, both vertices will
contain a factor γμð1þ γ5Þ and one needs to compute the
trace not only with one but two γ5 matrices. Relying on the
findings of the present section, we propose that the most
general form for the trace should be used which amounts to
replacing both γ5 by their definition on a two-dimensional
space (γ5 ¼ ϵμργ

μγρ=2). The net result will be

Πfull
μν ¼ −ie2Tr

Z
q
γμð1þ γ5Þ

1

q − p
γνð1þ γ5Þ

1

q
;

¼ −
e2

π

�
2

�
gμν −

pμpν

p2

�
−
pμϵνθpθ

p2
−
pνϵμθpθ

p2

�

þ 4ie2gμνυ0; ð26Þ
where the contributions containing just one γ5 are given by
Eq. (11) while the ones proportional to none (diagram VV)
or two γ5 (diagram AA) give the same result, namely

ΠVV
μν ¼ ΠAA

μν ¼ −2ie2
�ðgμνp2 − pμpνÞð−2bÞ

p2
− gμνυ0

�
:

ð27Þ
A characteristic of the model (already commented

by some of us in [13]) is the impossibility to obtain a
gauge-invariant result for any value of the arbitrariness

υ0. Nevertheless, the appearance of the surface term is vital
since only for positive values of λ≡ −4iπυ0 one obtains a
sensible (unitary) theory [21] which contains a radiatively
induced massive gauge boson with mass

m2 ¼ e2

π

ðλþ 1Þ2
λ

; ð28Þ

in agreement with [21].

IV. REVISITING THE ADLER-BARDEEN-BELL-
JACKIW ANOMALY

Since its discovery [26,27], the ABJ anomaly has been
calculated by several approaches [6,9,11,28–30]. Including
the recent rightmost position approach [6], prescriptions to
deal with γ5 matrices of this amplitude are sought after,
which allow dimensional regularization to preserve gauge
symmetry. An overview on the various regularization
schemes applied in the diagrammatic anomaly computation
can be found in [31]. There are also derivations obtained by
the path integral measure transformation [32] and by
differential geometry [33]. The usual view on the dia-
grammatic anomaly derivation is that this anomaly occurs
due to the momentum routing breaking in the internal lines.
The momenta of those internal lines must assume specific
values to fulfill the Ward identity we want to preserve.
In this section we derive the ABJ anomaly by means of

IREG. This approach relies on the democratic display of the
Ward identities. All the symmetry-breaking information is
contained in the surface term whose value is determined by
the Ward identity we want to preserve. That is what has
been done in Sec. III as seen in Eq. (12). In the neutral pion
decay in two photons, the vector Ward identities must be
preserved and, consequently, the axial one is violated
[26,27]. On the other hand, in the Standard Model the
chiral coupling with gauge fields refers to fermion-number
conservation and the axial identity must be enforced [34].
A further advantage of this approach is that it leads to a

momentum routing independent result. As we are going to
show, we perform this calculation with arbitrary routings of
the internal momenta. Those arbitrary routings multiply the
arbitrary surface term in the final result. From the physical
point of view, it is more appealing to choose a value for the
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surface term instead of choosing the routing, since the
former is a difference of divergent integrals whose result is
unknown, while the routing of momenta should be kept
unconstrained as long as momentum conservation at the
vertices is fulfilled.
Before we proceed, let us comment on objects like

Tr½γμγβγνγξγαγλγ5� that are found in this amplitude. It is
possible to use the following identity to reduce the number
of Dirac γ matrices:

γμγβγν ¼ gμβγν þ gνβγμ − gμνγβ − iϵμβνργργ5: ð29Þ

Using Eq. (29), Tr½γμγβγνγξγ5� ¼ 4iϵμβνξ and γ5γ
ργ5 ¼

−γρ leads to the following result:

Tr½γμγβγνγξγαγλγ5� ¼ 4iðgβμϵνξαλ þ gβνϵμξαλ − gμνϵβξαλ

− gλαϵμβνξ þ gξλϵμβνα − gξαϵμβνλÞ:
ð30Þ

However, it is completely arbitrary which three γ
matrices are taken to apply Eq. (29). A different choice
would give the result of Eq. (30) with Lorentz indexes
permuted. Furthermore, Eq. (13) should be avoided inside a
divergent integral as we could see in Sec. III, since this
operation seems to fix a value for the surface term. This
point of view is also shared by [11]. Therefore, we adopt a
four-dimensional version of Eq. (18), which contains all
possible Lorentz structures available. This equation reads

−i
4
Tr½γμγνγαγβγγγδγ5�

¼ −gαβϵγδμν þ gαγϵβδμν − gαδϵβγμν − gαμϵβγδν þ gανϵβγδμ

− gβγϵαδμν þ gβδϵαγμν þ gβμϵαγδν − gβνϵαγδμ − gγδϵαβμν

− gγμϵαβδν þ gγνϵαβδμ þ gδμϵαβγν − gδνϵαβγμ − gμνϵαβγδ;

ð31Þ

which can be obtained replacing γ5 by its definition at four
dimensions: γ5 ¼ i

4!
ϵμναβγμγνγαγβ.

We have to use this unambiguous result in the Feynman
amplitude for the triangle diagram whenever we find a trace
of six γ matrices with a γ5 matrix. Equation (31) has already
been used previously in other works [11,30,35]. The
amplitude of the Feynman diagrams of Fig. 1 is given by

Tμνα ¼ −i
Z
k
Tr

�
γμ

i
kþ k1 −m

γν
i

kþ k2 −m

× γαγ5
i

kþ k3 −m

�
þ ðμ ↔ ν; p ↔ qÞ; ð32Þ

where the arbitrary routing ki obeys the following relations
due to energy-momentum conservation at each vertex:

k2 − k3 ¼ pþ q;

k1 − k3 ¼ p;

k2 − k1 ¼ q: ð33Þ

Equation (33) allow us to parametrize the routing
ki as

k1 ¼ αpþ ðβ − 1Þq;
k2 ¼ αpþ βq;

k3 ¼ ðα − 1Þpþ ðβ − 1Þq; ð34Þ

where α and β are arbitrary real numbers which map the
freedom we have in choosing the routing of internal lines;
i.e. we may add any combination of q and p in each internal
line as long we respect the momentum conservation given
by Eq. (33). Equations (33) and (34) for the other diagram
are obtained by changing p ↔ q.
After taking the trace using Eq. (31), we apply the IREG

scheme in order to regularize the integrals coming from
Eq. (32). The result is

Tμνα ¼ 4iυ0ðα − β − 1Þϵμναβðq − pÞβ þ Tfinite
μνα ; ð35Þ

where υ0 is a surface term defined in Sec. II and Tfinite
μνα is the

finite part of the amplitude whose evaluation we perform in
the Appendix.
We then apply the respective external momentum in

Eq. (35) in order to obtain the Ward identities:

pμTμνα ¼ −4iυ0ðα − β − 1Þϵανβλpβqλ;

qνTμνα ¼ 4iυ0ðα − β − 1Þϵαμβλpβqλ;

ðpþ qÞαTμνα ¼ 2mTμν
5 þ 8iυ0ðα − β − 1Þϵμνβλpβqλ

−
1

2π2
ϵμνβλpβqλ; ð36Þ

where Tμν
5 is the usual vector-vector-pseudoscalar triangle.

The number υ0ðα − β − 1Þ is arbitrary since υ0 is a
difference of two infinities and α and β are any real
numbers that we have freedom in choosing as long as
Eq. (33) representing the energy-momentum conservation
hold. We can parametrize this arbitrariness in a single
parameter a redefining 4iυ0ðα − β − 1Þ≡ 1

4π2
ð1þ aÞ.

Equation (36) read

pμTμνα ¼ −
1

4π2
ð1þ aÞϵανβλpβqλ;

qνTμνα ¼ 1

4π2
ð1þ aÞϵαμβλpβqλ;

ðpþ qÞαTμνα ¼ 2mTμν
5 þ 1

2π2
aϵμνβλpβqλ: ð37Þ
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From now on, we will focus only in the massless theory
since we would like to discuss just the quantum symmetry-
breaking term, namely the ABJ anomaly.
As in the Schwinger model, we can see a democracy

displayed in the Ward identities (37). If gauge invariance is
to be preserved, one takes a ¼ −1 and automatically the
axial identity is violated by a quantity equal to
− 1

2π2
ϵμνβλpβqλ. On the other hand, if chiral symmetry is

maintained at the quantum level, we choose a ¼ 0, and the
vectorial identities are violated. The choice a ¼ −1 sets the
surface term to zero. This has already been observed by
some of us in [15]. It was proved that setting surface terms
to zero assures gauge invariance and momentum routing
invariance of Abelian gauge theories. However, the results
(37) of the chiral anomaly are the opposite of those
obtained by some of us in a previous work [36]. This is
because traces like Tr½γμγνγαγβγγγδγ5� were derived con-
sidering the anticommutation relation (13), i.e. the result of
Eq. (30), which as in the previous example may fix a finite
value for the surface term υ0.
Furthermore, in [36] the vectorial Ward identities were

satisfied when the surface term assumed a non-null value
such that it canceled with the finite part in order to preserve
gauge symmetry. Therefore, it was thought that the
anomaly was due to the breaking of the MRI. That
conclusion was supported by [15] where it was shown
that making surface terms null is a necessary and sufficient
condition to assure gauge and momentum routing invari-
ance of Abelian theories. The former invariance is a
consequence of the latter and conversely.
In the literature about diagrammatic computation of

anomalies it is consensus that the breaking of the MRI,
i.e. the necessity to choose an internal routing, is required to
implement the conservation of the vector Ward identities.
However we have shown that taking advantage of IREG
supplemented by symmetrization of the trace, arbitrary
routing conforms with gauge invariance, and so the result is
momentum routing invariant. The reason is that any such
arbitrariness is always accompanied with a surface term,
which is set to zero on gauge invariance grounds. Once this
is accepted, and following the same line of reasoning, one
can infer that MRI is also preserved for the case that the
axial Ward identity is verified, since arbitrary routing will
finally also be absorbed in the choice of the surface term.

Although these affirmations may be taken to be just
semantics, it is our opinion that they shed light on the
interpretation of MRI in diagrammatic calculations and the
role of surface terms. As will be discussed in the next
section, some processes involve only surface terms and no
arbitrary routing dependence, and thus they are manifestly
MRI, which will allow us to understand the role of the
surface term alone.

V. GAUGE AND MOMENTUM ROUTING
INVARIANCE IN CHIRAL ABELIAN

GAUGE THEORIES

In this section we study the connection between MRI and
vectorial gauge symmetry in the case of effective chiral
Abelian gauge theories to arbitrary order in perturbation
theory.Wewill adopt a diagrammatic point of view and show
how the proof of gauge invariance in Abelian gauge theories
already done in [15] can be extended to the present case.
Before we proceed, it should be emphasized that what we
intend to prove is that MRI is still connected with vectorial
gauge symmetry even in the case in which an axial coupling
between fermions is allowed. Therefore, for simplicity, we
just consider that one of the vertices of the diagrams used in
the diagrammatic proof is an axial one, instead of considering
the general case with more axial vertices.
As explained in [15], the starting point for the dia-

grammatic proof of gauge invariance is the diagrams
depicted in Fig. 2 in which the external momenta p is
inserted in all possible ways furnishing a pictorial repre-
sentation for Ward identities [37] as depicted in Fig. 3.

FIG. 1. Triangle diagrams which contribute to the ABJ anomaly. We label the internal lines with arbitrary momentum routing.

FIG. 2. Diagrams upon which the diagrammatic proof of gauge
invariance is constructed.
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Explicitly one obtains

pλAλα ¼
Z
k
Tr

�
1

kþ k1 −m
p

1

kþ k1 þ p −m
γαγ5

�
; ð38Þ

pλBλμα ¼
Z
k
Tr

�
1

kþ k2 −m
p

1

kþ k2 þ p −m
γμ

1

kþ k2 þ pþ q −m
γαγ5

�

þ
Z
k
Tr

�
1

kþ k2 −m
γμ

1

kþ k2 þ q −m
p

1

kþ k2 þ pþ q −m
γαγ5

�
; ð39Þ

pλCλμνα ¼
Z
k
Tr

�
1

kþ k3 −m
p

1

kþ k3 þ p −m
γμ

1

kþ k3 þ pþ r −m
γν

1

kþ k3 þ pþQ −m
γαγ5

�

þ
Z
k
Tr

�
1

kþ k3 −m
γμ

1

kþ k3 þ r −m
p

1

kþ k3 þ pþ r −m
γν

1

kþ k3 þ pþQ −m
γαγ5

�

þ
Z
k
Tr

�
1

kþ k3 −m
γμ

1

kþ k3 þ r −m
γν

1

kþ k3 þQ −m
p

1

kþ k3 þ pþQ −m
γαγ5

�
; ð40Þ

where ki are arbitrary momentum routings and Q ¼ sþ r.
Diagrams with more than four external legs are finite and do not need to be considered. To proceed we apply the sum and

subtraction of internal momenta, p ¼ ðkþ k1 þ p −mÞ − ðkþ k1 −mÞ, for example, which allows us to write

pλAλα ¼
Z
k
Tr

�
1

kþ k1 −m
γαγ5

�
−
Z
k
Tr

�
1

kþ k1 þ p −m
γαγ5

�
; ð41Þ

pλBλμα ¼
Z
k
Tr

�
1

kþ k2 −m
γμ

1

kþ k2 þ q −m
γαγ5

�

−
Z
k
Tr

�
1

kþ k2 þ p −m
γμ

1

kþ k2 þ qþ p −m
γαγ5

�
; ð42Þ

FIG. 3. Pictorial representation of the Ward identities.
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pλCλμνα ¼
Z
k
Tr

�
1

kþ k3 −m
γμ

1

kþ k3 þ r −m

× γν
1

kþ k3 þQ −m
γαγ5

�

−
Z
k
Tr

�
1

kþ k3 þ p −m
γμ

1

kþ k3 þ rþ p −m

× γν
1

kþ k3 þ pþQ −m
γαγ5

�
; ð43Þ

whose pictorial representation can be found in Fig. 4.
Noticing that a Feynman diagram, in general, respects

MRI if the difference of the same diagram with two different
momentum routings vanishes, one can easily see that the
right-hand side of the equation above is just the condition to
implement MRI for the diagrams upon which the diagram-
matic proof of gauge invariance is constructed. Therefore, it
is clear from the pictorial representation above that MRI is
intrinsically connected with vectorial gauge symmetry even
in the case of effective chiral Abelian gauge theories,
meaning that the requirement ofMRI is a sufficient condition
to implement gauge symmetry and vice versa.
It should be emphasized that until now no regularization

framework was assumed, showing that the connection
between MRI and vectorial gauge symmetry holds in
general. Therefore, any regularization that preserves (breaks)
one symmetry will automatically preserve (break) the other.
This connection is more clear in our framework since, as
demonstrated in [15], the breakingofMRI (and consequently
of gauge symmetry) is parametrized by surface terms
which are regularization dependent and arbitrary by nature.

This general feature can also be seen in our previous
examples, in which the vectorial Ward identity was always
proportional to surface terms only. For completeness we
evaluate Eqs. (38)–(40) in IREG which furnish

pλAλα ¼ 0; ð44Þ

pλBλμα ¼ 4iυ0ϵμαλβqβpλ; ð45Þ

pλCλμνα ¼ 4iυ0pλϵ
ανμλ; ð46Þ

showing that surface terms appear as expected.
To conclude this section we discuss how the above proof

can be extended to arbitrary loop order. We sketch first the
diagrammatic proof for the two-loop case in some detail.
As explained in [37], the idea behind the diagrammatic
proof of gauge invariance is the following: consider we
have an arbitrary amplitude M0 with a closed fermionic
loop. TheWard identity is then just obtained by inserting an
external photon in all possible ways in the basic amplitude

FIG. 4. Pictorial representation of the Ward identities, showing its connection to momentum routing invariance.

FIG. 5. One- and two-point functions needed for the two-loop
diagrammatic proof of gauge invariance.
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M0. This was our approach in the one-loop case in which
the basic diagrams of Fig. 2 gave rise to the pictorial
representation of the Ward identities of Fig. 3. For the two-
loop case the procedure is similar, and one needs first to
depict all genuine two-loop corrections.2 For simplicity, we
just depict the one- and two-point contributions in Fig. 5.

Our next task is to insert the external photon in all
possible ways, giving rise to a pictorial representation of
Ward identities as we did for the one-loop case. This is
shown explicitly in Fig. 6 for the one-point function.
The corresponding amplitude of the first contribution of

Fig. 6 can be rewritten as below:

Z
k1

Z
k2

Tr

�
1

k1 −m
p

1

k1 þ p −m
γσ

1

k2 þ p −m
γρ

1

k1 þ p −m
γαγ5

�
gσρ

ðk1 − k2Þ2 −m2

¼
Z
k1

Z
k2

Tr

�
1

k1 −m
γσ

1

k2 þ p −m
γρ

1

k1 þ p −m
γαγ5

�
gσρ

ðk1 − k2Þ2 −m2

−
Z
k1

Z
k2

Tr

�
1

k1 þ p −m
γσ

1

k2 þ p −m
γρ

1

k1 þ p −m
γαγ5

�
gσρ

ðk1 − k2Þ2 −m2
; ð47Þ

where we replace p ¼ ðpþ k1 −mÞ − ðk1 −mÞ to get in the second line.

FIG. 6. Pictorial representation of two-loop Ward identity for the one-point function.

k1 k2

k1

k1

k1 p

k2

k1 p

k1

k2

k1

k1 p

k1

p

p

k1 p

k2 p

k2p

k2 p

k1 p

k1
k2 p

k1 p

k1 p

k1 p

k1 k2

k2 p k1 p

k1

k1 p

k2 p

k1

FIG. 7. Pictorial representation of the result of each tadpole insertion.

2By genuine we mean diagrams without one-loop closed fermion loops as subdiagrams, since this case is the one we just
studied.
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In a similar fashion, we calculate the result of the other
two insertions. We present the diagrammatic result of those
insertions in Fig. 7.
Thus, by summing all contributions we obtain the result

presented in Fig. 8(a). This picture shows, for the two-loop
case as well, that vectorial gauge symmetry is connected
with MRI. Moreover, since MRI breaking is always para-
metrized by surface terms (as shown in [15]), one can see
that these ambiguities will also be connected with vectorial
gauge breakings, in the sense that only by setting these
terms to zero one obtains a momentum routing (and gauge)
invariant result.
To complete the proof, one has to compute the other two

Ward identities (pλBλμα, pλCλμνα) which have, respectively,
the two-loop two- and three-point functions as building
blocks. The calculation is straightforward; however, due to
the lack of space, we just present the computation for one of
the two-point functions depicted in Fig. 5. At first, one
might expect that only the computation of the full sum is
meaningful; however, as we are going to show, diagrams
for M0 respect gauge invariance individually (if one sets
surface terms equal to zero) and not only their sum.
Adopting the same strategy for the one-point function,
one obtains the result depicted in Fig. 8(b), which shows,
once again, that MRI is connected with the vectorial gauge
symmetry. In a similar way, all other diagrams can be
shown to present the same behavior found in Fig. 8: gauge
invariance is implemented if, and only if, MRI is

guaranteed. This proof can be extended in a straightforward
way to an arbitrary number of loops.

VI. CONCLUDING REMARKS

In this contribution we intended to shed some light on
chiral anomalies, their connection to momentum routing
invariance and how a democratic framework for Ward
identities (vectorial and axial, respectively) can be con-
structed. Particularly, we studied two- and four-
dimensional theories and have shown that, relying on
the symmetrization of traces containing dimension-specific
objects such as γ5, the Ward identities can be displayed in a
democratic way. In our view this is the most natural
approach to be followed since the Ward identity to be
(or not) preserved should result from the physics and/or
phenomenology requirements and not be an outcome
conditioned by the regularization method applied.
In this context, we have also studied momentum routing

dependence for effective Abelian chiral theories. We have
shown that, as in the case of nonchiral theories, MRI is
achieved if we set surface terms (which represent ambi-
guities and allow a democratic display for Ward identities)
to zero. We also have shown that, even for effective chiral
theories, the vectorial gauge invariance is guaranteed if, and
only if, we set surface terms to zero. Since this is the same
condition to implement MRI, we can conclude that both
symmetries are intrinsically connected.

k2

k1

k1 p

p

k2 p

k1

k1 p

(a)

p

k1 q k2 q

k1 k2

k1 q p k2 q p

k1 p k2 p

(b)

FIG. 8. Pictorial representation of the relation between gauge and MRI for two- and three-point two-loop diagrams (a) and (b),
respectively. The external momentum p acts as an arbitrary routing and making the right-hand side zero is the MRI condition while
making the left-hand side zero is the gauge invariance condition.
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As perspectives, we remark the application of the minimal
prescription here presented to deal with dimension-specific
objects such as γ5 to other contexts as well, for instance,
supersymmetric theories. Some investigations in this direc-
tion, connecting regularization ambiguities with supersym-
metry breaking, have already been done by some of us in
[15,38–40]. Amore complete investigation is under progress
[41]. We also remark that the prescription here presented,
connecting regularization ambiguities with the breaking of
vectorial gauge invariance in general, allows a systematic
application of IREG to effective chiral theories in general.
Therefore, one avoids tedious checks and addition of
symmetry-restoring counterterms as requested by other
methods.
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APPENDIX: EXPLICIT RESULTS

We perform the computation of the finite part of the
triangle diagram, Tfinite

μνα . Since it does not depend on the
routing, we can choose k1 ¼ 0, k2 ¼ q e k3 ¼ −p and we
have

Tμνα ¼ −i
Z
k
Tr

�
γμ

i
k −m

γν
i

kþ q −m
γαγ5

i
k − p −m

�

þ ðμ ↔ ν; p ↔ qÞ
¼ −8iυ0ϵμναβðq − pÞβ þ Tfinite

μνα : ðA1Þ

After taking the trace and regularizing we find out the
finite part of the amplitude. We list the results of the
integrals in the final part of this section. The result is

Tfinite
μνα ¼ 4ibfϵαμνλqλðp2ξ01ðp; qÞ − q2ξ10ðp; qÞÞ

þ ϵαμνλqλð1þ 2m2ξ00ðp; qÞÞ
þ 4ϵανλτpλqτ½ðξ01ðp; qÞ − ξ02ðp; qÞÞpμ

þ ξ11ðp; qÞqμ� þ ðμ ↔ ν; p ↔ qÞg; ðA2Þ

where the functions ξnmðp; qÞ are defined as

ξnmðp; qÞ ¼
Z

1

0

dz
Z

1−z

0

dy
znym

Qðy; zÞ ; ðA3Þ

with

Qðy; zÞ ¼ ½p2yð1 − yÞ þ q2zð1 − zÞ þ 2ðp · qÞyz −m2�;
ðA4Þ

and those functions have the property ξnmðp; qÞ ¼
ξmnðq; pÞ.
Those integrals obey the following relations which we

have already used in the derivation of Eq. (A2):

q2ξ11ðp;qÞ− ðp ·qÞξ02ðp;qÞ

¼ 1

2

�
−
1

2
Z0ððpþqÞ2;m2Þþ1

2
Z0ðp2;m2Þþq2ξ01ðp;qÞ

�
;

ðA5Þ

p2ξ11ðp;qÞ− ðp ·qÞξ20ðp;qÞ

¼ 1

2

�
−
1

2
Z0ððpþqÞ2;m2Þþ1

2
Z0ðq2;m2Þþp2ξ10ðp;qÞ

�
;

ðA6Þ

q2ξ10ðp; qÞ − ðp · qÞξ01ðp; qÞ

¼ 1

2
½−Z0ððpþ qÞ2; m2Þ þ Z0ðp2; m2Þ þ q2ξ00ðp; qÞ�;

ðA7Þ

p2ξ01ðp; qÞ − ðp · qÞξ10ðp; qÞ

¼ 1

2
½−Z0ððpþ qÞ2; m2Þ þ Z0ðq2; m2Þ þ p2ξ00ðp; qÞ�;

ðA8Þ

q2ξ20ðp; qÞ − ðp · qÞξ11ðp; qÞ

¼ 1

2

�
−
�
1

2
þm2ξ00ðp; qÞ

�
þ 1

2
p2ξ01ðp; qÞ

þ 3

2
q2ξ10ðp; qÞ

�
; ðA9Þ

p2ξ02ðp; qÞ − ðp · qÞξ11ðp; qÞ

¼ 1

2

�
−
�
1

2
þm2ξ00ðp; qÞ

�
þ 1

2
q2ξ10ðp; qÞ

þ 3

2
p2ξ01ðp; qÞ

�
; ðA10Þ

where Zkðp2; m2Þ is defined as

Zkðp2; m2Þ ¼
Z

1

0

dzzk ln
m2 − p2zð1 − zÞ

m2
: ðA11Þ

The derivation of the relations (A5)–(A10) can be simply
achieved by integration by parts. There is a whole review
[42] about those four-dimensional integrals where these
details can be obtained.
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1. Result of the integrals of Sec. III
Z
q

1

ðq2 − μ2Þððq − pÞ2 − μ2Þ ¼ −
2

p2
b ln

�
−p2

μ2

�
; ðA12Þ

Z
q

qα

ðq2 − μ2Þððq − pÞ2 − μ2Þ ¼ −
pα

p2
b ln

�
−p2

μ2

�
; ðA13Þ

Z
q

qαqβ

ðq2 − μ2Þððq − pÞ2 − μ2Þ
¼ 1

2
gαβðIlogðμ2Þ − υ0Þ −

b
p2

ðgαβp2 − pαpβÞ

×

�
1 −

1

2
ln

�
−p2

μ2

��
−
pαpβ

2p2
b ln

�
−p2

μ2

�
; ðA14Þ

where
R
q ≡

R
Λ d2q
ð2πÞ2, b ¼ i

4π and μ is an infrared
regulator.

2. Result of the integrals of Sec. IVZ
k

1

ðk2 −m2Þ½ðk − pÞ2 −m2�½ðkþ qÞ2 −m2� ¼ bξ00ðp; qÞ;

ðA15Þ

Z
k

kα

ðk2 −m2Þ½ðk − pÞ2 −m2�½ðkþ qÞ2 −m2�
¼ bðpαξ01ðp; qÞ − qαξ10ðp; qÞÞ; ðA16Þ

Z
k

k2

ðk2 −m2Þ½ðk − pÞ2 −m2�½ðkþ qÞ2 −m2�
¼ Ilogðm2Þ − bZ0ðq2; m2Þ þ bðm2 − p2Þξ00ðp; qÞ
þ 2bðp2ξ01ðp; qÞ − ðp · qÞξ10ðp; qÞÞ; ðA17Þ

Z
k

kαkβ

ðk2 −m2Þ½ðk − pÞ2 −m2�½ðkþ qÞ2 −m2�
¼ 1

4
gαβðIlogðm2Þ − υ0Þ −

1

4
bgαβZ0ðq2; m2Þ

− b

�
1

2
gαβp2ðξ00ðp; qÞ − 3ξ01ðp; qÞ − ξ10ðp; qÞ

þ 2ξ02ðp; qÞ þ 2ξ11ðp; qÞÞ − ξ02ðp; qÞpαpβ

þ ξ11ðp; qÞqαpβ þ ξ11ðp; qÞpαqβ − ξ20ðp; qÞqαqβ

þ ðξ10ðp; qÞ − ξ11ðp; qÞ − ξ20ðp; qÞÞgαβðp · qÞ
�
;

ðA18Þ

Z
k

kαk2

ðk2 −m2Þ½ðk − pÞ2 −m2�½ðkþ qÞ2 −m2� ¼
1

2
ðpα − qαÞðIlogðm2Þ − υ0Þ þ

1

2
bðqαZ0ðq2; m2Þ − pαZ0ðp2; m2ÞÞ

þ bðm2 − q2Þðpαξ01ðp; qÞ − qαξ10ðp; qÞÞ þ b½qαp2ðξ00ðp; qÞ − 3ξ01ðp; qÞ − ξ10ðp; qÞ þ 2ξ02ðp; qÞ þ 2ξ11ðp; qÞÞ
− 2ðp · qÞpαξ02ðp; qÞ þ 2q2pαξ11ðp; qÞ þ 2ðp · qÞqαðξ10ðp; qÞ − ξ20ðp; qÞÞ − 2q2qαξ20ðp; qÞÞ�; ðA19Þ

where
R
k ≡

R
Λ d4k
ð2πÞ4 and b ¼ i

ð4πÞ2.
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