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Abstract

We present finite temperature Dirac-Hartree-Bogoliubov (FTDHB) calculations for the tin iso-

tope chain to study the dependence of pseudospin on the nuclear temperature. In the FTDHB

calculation, the density dependence of the self-consistent relativistic mean fields, the pairing, and

the vapor phase that takes into account the unbound nucleon states are considered self-consistently.

The mean field potentials obtained in the FTDHB calculations are fit by Woods-Saxon (WS) poten-

tials to examine how the WS parameters are related to the energy splitting of the pseudospin pairs

as the temperature increases. We find that the nuclear potential surface diffuseness is the main

driver for the pseudospin splittings and that it increases as the temperature grows. We conclude

that pseudospin symmetry is better realized when the nuclear temperature increases. The results

confirm the findings of previous works using RMF theory at T = 0, namely that the correlation

between the pseudospin splitting and the parameters of the Woods-Saxon potentials implies that

pseudospin symmetry is a dynamical symmetry in nuclei. We show that the dynamical nature of

the pseudospin symmetry remains when the temperature is considered in a realistic calculation of

the tin isotopes, such as that of the Dirac-Hartree-Bogoliubov formalism.

PACS numbers: 21.10.-k, 21.60.CS, 21.60.Jz,25.70.Mn
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I. INTRODUCTION

Since the seminal article published by Ginocchio 20 years ago [1], pseudospin symme-

try has been extensively studied in RMF and Hartree-Fock theories, with the intention of

understanding the origin of pseudospin symmetry and its symmetry-breaking.

The evidence for pseudospin symmetry comes from nuclear energy spectra with quasi

degeneracy between pairs of single-particle states with quantum numbers (n, l, j = l + 1/2)

and (n−1, l+2, j = l+3/2) in a spherical basis where, n, l, and j are the radial, the orbital,

and the total angular momentum quantum numbers, respectively, of the upper component

of the Dirac spinor. Pseudospin symmetry was recognized as a relativistic symmetry when

Ginocchio point out the pseudospin doublets can be written as (ñ = n − 1, l̃ = l + 1, j̃ =

l̃ ± 1/2) where, the quantum numbers ñ, l̃, and j̃ are the quantum numbers of the lower

component of the Dirac spinor [1, 2]. Pseudospin symmetry is exact when the doublets with

j = l̃ ± s̃ are degenerate.

In RMF theory the Dirac equation with attractive scalar, −VS(r), and repulsive vector,

VV (r), potentials displays exact pseudospin symmetry when Σ(r) = VS(r) + VV (r) = 0 or

more generally, when Σ′(r) = dΣ(r)/dr = 0 [3, 4]. Since Σ(r) plays the role of the nuclear

binding potential, bound states cannot exist for Σ(r) = 0. In fact, for realistic nuclei, the

cancellation between scalar and vector potentials gives a relatively small binding potential

of about −60 MeV at the center. Thus pseudospin symmetry cannot be exact. The purpose

the studies performed in most works on pseudospin symmetry is to understand its origin

and its symmetry-breaking [5, 6].

The Dirac equation has been solved for different potentials and systems to study how

the pseudospin doublets become degenerate or almost degenerate. Usually, the pseudospin

splitting depends on the shape of the potentials that are used to solve the Dirac equa-

tion. In previous works [7, 8], the Woods-Saxon potential was used because the conditions

Σ(r) = 0 and Σ′(r) = 0 can be met approximately by varying the parameters of this poten-

tial. The pseudospin splitting depends on the depth of |Σ0|, its surface diffuseness and its

radius. Then, the authors reduced the Dirac equation into two Schrödinger-like equations

for the lower (and upper) spinor component, each being a sum of different terms: kinetic,

pseudospin-orbit (and spin-), a Darwin term, and potential terms with Σ(r) and ∆(r) poten-

tials. By taking the expectation values of these terms, one obtains an energy decomposition
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for each single-particle level, allowing the study of the non-perturbative nature of pseudospin

symmetry. The pseudospin-orbit term has the denominator E −Σ(r) and thus becomes in-

finite when E = Σ(r), but the singularity is canceled by kinetic and Σ terms originating in

the quasi-degeneracy [8]. In fact, a cancellation exists between the large pseudospin-orbit

potential and other terms, showing the dynamic character of the pseudospin symmetry and

its non-perturbative nature [5–8].

Before this understanding of the non-perturbative nature of the pseudospin symmetry,

the condition Σ′(r) = 0, which appears in the pseudospin-orbital term, was interpreted as

favoring the restoration of pseudospin symmetry due its competition with the centrifugal

barrier [9]. For exotic nuclei with highly diffuse potentials, Σ′(r) ≈ 0 may be a good

approximation and then the pseudospin symmetry will be good [10]. In this case, to study

exotic nuclei, it is necessary to use a Relativistic Continuum Hartree Bogoliubov (RCHB)

theory that properly considers the pairing correlations and the coupling to the continuum via

the Bogoliubov transformation in a microscopic and self-consistent way [10]. This approach

is also useful when studying exotic nuclei with unusual N/Z ratios, where the neutron (or

proton) Fermi surface is close to the particle continuum. The contribution of the continuum

and/or resonances is then important [11]. In ref. [12], the pseudospin symmetry of the

resonant states in 208Pb was calculated by solving the Dirac equation with Woods-Saxon-

like vector and scalar potentials using the coupling-constant method. It was found that the

diffusivity of the potentials plays a significant role in the energy splitting and the width of

the resonant pseudospin partners. In ref. [13], the pseudospin symmetry in single particle

resonant states in nuclei was also shown to be exactly conserved under the same condition

as for the pseudospin symmetry in bound states, i.e., Σ(r) = 0 or Σ′(r) = 0.

It is well accepted that RCHB theory can be used to study pairing correlations due to the

short-range part of the nucleon-nucleon interaction in open shell nuclei, as well as to describe

the exotic nuclei. However, the calculations of finite nuclei can be better performed when the

pairing correlations, the nucleon, and mesons mean fields are all calculated self-consistently

and this is not done for the pairing field in RCHB calculations, where the pairing correlation

is introduced in a non-relativistic way as a Skyrme-type δ−force or finite range Gogny

force [10]. In ref. [14] the self-consistent Dirac-Hartree-Bogoliubov (DHB) approach was

introduced to self-consistently include pairing energy and gaps in calculations for spherical

and deformed nuclei. As an extension, we have applied the DHB approach to hot nuclei
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including finite temperature effects, to study spherical and deformed nuclei and to analyze

how the binding energy, the neutron and charge radii, the deformation and, in particular,

the pairing gap change with temperature [15]. We introduce in our finite temperature DHB

(FTDHB) calculation a vapor subtraction procedure to take into account the contribution

of the resonant nucleon states and to remove long range Coulomb repulsion between the hot

nucleus and the gas as well as the contribution of the external nucleon gas [16–18]. Quite

recently, we found that for small temperatures the vapor subtraction procedure is not very

relevant to the change of the pairing fields with increasing temperature because the critical

superfluidity and superconducting phase transititions occur at T ∼ 1 MeV. The effects of

the vapor phase that takes into account the unbound nucleon states become important only

at temperatures T ≥ 4 MeV, allowing the study of nuclear properties of finite nuclei from

zero to high temperatures [19].

As in RCHB theory, the advantage of FTDHB to study pseudospin symmetry is that

the particle levels for the bound states in the canonical basis are the same as those coming

from solving the Dirac equation with scalar and vector potentials from RMF [10]. The

form of the radial equations for the lower and upper components of the Dirac equation

remain the same in the canonical basis even after the pairing interaction has been taken into

account [10]. Furthermore, another advantage of FTDHB calculations lies in the fact that

it considers the proper isospin dependence of the spin-orbit term, as well as the isospin and

energy dependence of the pseudospin symmetry [10]. In non-selfconsistent RMF calculations

the isospin asymmetry of the nuclear pseudospin comes mainly from the vector-isovector Vρ

potential and its effect on different terms of the Schrödinger-like equation contributing to

the pseudospin splittings cancel each other to a certain extent [20]. On the other hand, the

density dependence of the self-consistent relativistic mean fields and pairing fields, as well

as the vapor phase that considers the unbound nucleon states, allows us to analyze in a

realistic way the effect of temperature on the quasi degeneracy of pseudospin partners.

In this work, we use FTDHB calculations to study the temperature dependence of mean

field potentials and its effects on pseudospin symmetry. The attractive scalar VS(r) and

repulsive vector VV (r) potentials obtained in our calculations have a shape very similar to a

Woods-Saxon one. We fit the central potential Σc mean field, as well as the total potential for

neutrons and protons with a Woods-Saxon shape for each tin isotope in order to better assess

how temperature changes the Woods-Saxon parameters: the depth of potential, the radius
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R and the surface diffuseness a. In Relativistic Mean Field (RMF) theory at temperature

zero, there is a correlation between the pseudospin-orbit term and the pseudospin energy

splitting when the radius, diffusivity and the depth of potential are varied [7, 8, 20]. We will

show that the degeneracy of pseudospin doublets decrease with increasing temperature and

the behavior of parameters of Woods-Saxon potential for T 6= 0 obeys the same systematics

as for T = 0.

We use the tin nuclei as a function of the number of nucleons from A = 100 to 170 and

temperatures varying from T = 0 up to T = 8 MeV. These tin isotopes range allow us to

apply our study to the stable and also unstable nuclei from proton drip line to the neutron

drip line. The pseudospin symmetry was investigated before in these exotic nuclei using a

RCHB calculation but at T = 0 [9]. For T 6= 0 these nuclei were also used to study the

evolution of the pairing gaps and critical temperature along isotopic and isotonic chains of

semimagic nuclei in FTDHB [19] and FTRHFB [21] calculations.

The paper is organized as follows. In sec. II we present briefly the formalism of the finite

temperature Dirac-Hartree-Bogoliubov model. In sec. III we present and discuss the results

of the calculations and in sec. IV we draw our conclusions.

II. THE FORMALISM

We use the self-consistent Dirac-Hartree-Bogoliubov (DHB) formalism of ref. [14], but

consider explicitly the self-consistent temperature dependence of the relativistic pairing

fields, as well as the vapor phase, to take into account the unbound nucleon states. This

finite temperature DHB (FTDHB) formalism was developed in an earlier work [19] and in-

cludes the Coulomb and mesons mean fields, as well as pairing correlations, to calculate the

properties of hot nuclei self-consistently. The Fock terms are neglected. The Hamiltonian

form is given by





ε+ µt − ht(~x) ∆̄†
t(~x)

∆̄t(~x) ε− µt + ht(~x)









Ut(~x)

γ0Vt(~x)



 = 0 , t = p, n, (1)

where, in the diagonal terms, ε denotes the quasi-particle energies, µt represents the chemical

potential to be used as a Lagrange multiplier to fix the average number of protons (t = p)

and neutrons (t = n), and ht stands for the single-particle Hamiltonian of the nucleon.
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The non-diagonal terms, ∆t and its conjugate ∆
†

t , are the pairing fields, which account for

correlated pairs of time-reversed single-particle states, i.e, the paired particle-particle states.

The components Ut(~x) and Vt(~x) represents the Dirac spinors corresponding to the normal

and time reversed components, respectively. We write each of the four-component spinors

as

Utα(~x) =





GU ,tα(~x)

i FU ,tα(~x)



 , and γ0Vtα(~x) =





GV ,tα(~x)

i FV ,tα(~x)



 . (2)

The Dirac Hamiltonian is

ht(~x) = −i~α · ~∇+ βM∗(~x) + Vt(~x) , (3)

where the effective mass M∗ contains the scalar part of the nucleon self-energy from the

Dirac field and Vt is the vector potential. These are written as

M∗(~x) = M − gσ σ(~x) (4)

Vt(~x) = gω ω
0(~x) +

gρ
2
2mt ρ

00(~x) + e

(

1

2
+mt

)

A0(~x) . (5)

The constant M is the nucleon mass, while gσ, gω, gρ, and e are the corresponding coupling

constants for the mesons and the photon. The isospin projections are mt = 1/2 for protons

and mt = −1/2 for neutrons. The fields ω0 and A0 are the time-like components of the

four-vector ω and photon fields, while ρ00 is the third component of the time-like component

of the isovector-vector ρ meson,

ω0(~x) = gω

∫

d3z d0ω(~x− ~z)ρB(~z) ,

ρ00(~x) =
gρ
2

∫

d3z d0ρ(~x− ~z)ρ3(~z) ,

A0(~x) = e

∫

d3z d0γ(~x− ~z)ρc(~z) , (6)

σ(~x) = gσ

∫

d3z dσ(~x− ~z)ρs(~z)

=

∫

d3z d0σ(~x− ~z)
(

gσρs(~z)− g3 σ(~x)
2 − g4 σ(~x)

3
)

.
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where the propagators are

d0j(~x− ~z) =
1

4π |~x− ~z| ×







1 , for photon

exp (−mj |~x− ~z|) , for mesons
(7)

The Hartree contributions to the self-energy can be written in terms of the normal densities,

ρs(~x, T ) = 2
∑

εtα<0,t

(

U †
tαγ0Utαn(εtα, T ) + V†

tαγ0Vtαn(−εtα, T )
)

,

ρB(~x, T ) = 2
∑

εtα<0,t

(

U †
tαUtαn(εtα, T ) + V†

tαVtαn(−εtα, T )
)

,

ρ3(~x, T ) = 2
∑

εtα<0,t

2mt

(

U †
tαUtαn(εtα, T ) + V†

tαVtαn(−εtα, T )
)

,

ρc(~x, T ) = 2
∑

εtα<0,t

(mt + 1/2)
(

U †
tαUtαn(εtα, T ) + V†

tαVtαn(−εtα, T )
)

. (8)

The Hamiltonian form of the pairing field is,

∆̄†
t(~x) = γ0∆t(~x)γ0

= cpair

(

g2σ
m2

σ

γ0 κt(~x, T ) γ0

−
(

g2ω
m2

ω

+
(gρ/2)

2

m2
ρ

)

γ0γ
µ κt(~x, T ) γµγ0

)

. (9)

where we neglect its Coulomb and nonlinear σ-meson contributions. We approximate the

contributions of the other mesons using the zero-range limit of the meson propagators.

The zero-range approximation greatly simplifies the numerical calculations, but must be

calibrated phenomenologically. Thus, an overall constant cpair has been introduced in the

expression for the pairing field to compensate for deficiencies of the interaction parameters

and of the numerical calculation [14, 19]. The anomalous density κt(~x, T ) is given by

κt(~x, T ) =
1

2

∑

εtγ<0

(

Utγ(~x)V tγ(~x) + γ0BV∗
tγ(~x)UT

tγ(~x)B
†
)

× (n(εtγ , T )− n(−εtγ , T )) , (10)

where B = γ5C and C is the charge conjugation matrix that provides the time-reversed

Dirac structure of the wave vectors.

For both normal and anomalous densities, one sees that the temperature enters in our
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calculation only through the Fermi occupation factors

n(εγ , T ) =
1

1 + exp (εγ/T )
, (11)

where εγ represent the quasi-particle energy. Thus, the temperature dependence of a solution

of the FTDHB equation comes from the quasi-particle normal and anomalous densities.

When T → 0, the Fermi occupation factors are n(εγ, T ) = 1 and n(−εγ , T ) = 0 and we

recover the usual nuclear densities of a finite nucleus. The quasi-particle energies that enter

each Fermi occupation factor have opposite signs. Thus, as T increases, there is a reduction

of the anomalous density due to the difference between the two contributions to the Fermi

occupation factor, as we see in Eq. (10). As a consequence the pairing energy and gap tend

to zero as the temperture increases [19].

Specifically for axially-symmetric potentials the scalar and vector potential are indepen-

dent of the azimuthal angle such that VS,V = VS,V (r⊥, z). We have that VS,V (r⊥, z) → 0 for

r⊥ → ∞ or z → ±∞, and r⊥VS,V (r⊥, z) → 0 for r⊥ → 0 [22]. Furthermore, the rotational

symmetry is broken when we chose this axial symmetry, but the densities are invariant

with respect to a rotation around the symmetry axis. As a consequence the projection of

the total angular momentum along the symmetry axis Ωα, as well as the parity π and the

isospin projection t, are still good quantum numbers. Due to this fact and the time-reversed

Dirac structure, the two equal and opposite values of angular momentum projection ±Ωα

are degenerate in energy.

The Dirac spinors in Eqs. (2) takes the form

Utα(~x) =
1√
2π















G+
U ,tα(r⊥, z) e

i(Ωα−1/2)ϕ

G−
U ,tα(r⊥, z) e

i(Ωα+1/2)ϕ

i F+
U ,tα(r⊥, z) e

i(Ωα−1/2)ϕ

i F−
U ,tα(r⊥, z) e

i(Ωα+1/2)ϕ















(12)

and

γ0Vtα(~x) =
1√
2π















G+
V ,tα(r⊥, z) e

i(Ωα−1/2)ϕ

G−
V ,tα(r⊥, z) e

i(Ωα+1/2)ϕ

i F+
V ,tα(r⊥, z) e

i(Ωα−1/2)ϕ

i F−
V ,tα(r⊥, z) e

i(Ωα+1/2)ϕ















. (13)
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Thus, the radial wave functions G±
U ,V(r⊥, z) and F±

U ,V(r⊥, z) and the meson fields are

expanded in terms of the eigenfunctions of a deformed axially symmetric harmonic oscillator:

Vosc(z, r⊥) =
1

2
M(ω2

zz
2 + ω2

⊥r
2
⊥) (14)

where the oscillator frequencies ~ωz and ~ω⊥ are written in terms of a deformation parameter

β0, as

~ωz = ~ω0e
−
√

5/(4π)β0 and ~ω⊥ = ~ω0e
+ 1

2

√
5/(4π)β0 . (15)

The (z, r⊥)-dependence of eigenfunctions in large and small components of the Dirac spinors

are divided by oscillator length,

bz =
√

~/Mωz and b⊥ =
√

~/Mω⊥ , (16)

and due of volume conservation it is guaranteed bzb
2
⊥ = b30. The parameter b0 =

√

~/Mω0

stands for the oscillator length corresponding to the oscillator frequency ~ω0 of the spherical

case. In this way the spherical and deformed basis are determined by oscillator frequency

~ω0 and deformation β0. Thus the method can be applied to both spherical and axially

deformed nuclei.

Inserting these expansions of eigenfunctions into the Dirac-Gorkov equation Eq. (1), we

can reduce the equation to the diagonalization problem of a symmetric matrix and calculate

the Hartree densities of Eq. (8) and the components of the anomalous density of Eq. (9).

The fields of the massive mesons are obtained by solving the Klein-Gordon equations using

a similar expansion with the same deformation parameter β0 but a smaller oscillator length

of bB = b0/
√
2. The Coulomb field is calculated directly in configuration space.

This method is a direct generalization of the one described in refs. [14, 19, 23–26] where

more details can be found.

III. RESULTS

In this section we present FTDHB calculations for hot nuclei to investigate the effect of

temperature in the mean field potentials and its consequences for the pseudospin symmetry.

To study the effect of temperature in the mean field potentials we examine the tin isotopes
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from A = 100 to A = 170. We use the nonlinear Walecka model with the NL3 interactions.

In our calculations, the expansion of harmonic oscillator basis is truncated at a finite number

of major shells, with the quantum number of the last included shell set by NF = 14 in the

case of the fermions and by NB = 24 for the bosons. These bases are sufficient to achieve

convergence in our numerical calculation and reproduce experimental and earlier theoretical

results of the literature at both low and high temperatures. In all cases, the oscillator

frequencies ~ω0 = ~ωz = ~ω⊥ = 41A−1/3 MeV, corresponding to an undeformed basis, were

used. A value of the overall constant cpair = 0.55 was introduced in the pairing interaction

for neutrons and protons, Eq. (9), which due to the self-consistency, results in a null pairing

field, as expected for the closed-shell nuclei we are studying. This means we are studying

the spherical tin isotopes from A = 100 to A = 170. Among them, the nuclei 100Sn, 132Sn,

and 176Sn have pairing gap and energy zero, so that pairing has no effect on pseudospin

symmetry over the entire range of temperatures considered. For open-shell and deformed

nuclei, the nuclear pairing energy and gap vanishes above the relatively low temperatures of

T = 0.5− 1.2 MeV [19, 21].

In Fig. 1(a) we show the potentials Vρ(r), Σc(r) = Vσ(r)+Vω(r), and Vn(r) = Σc(r)−Vρ(r),

as a function of the radial distance for 100Sn and 150Sn at T = 0. The full lines represent

the nucleus 100Sn, for which we see that the Vρ(r) potential (empty squares) is very small,

while its sum with Σc(r) (empty circles) produces a shallow potential Vn(r) (full circles) for

neutrons. The same behavior can be seen for 150Sn, represented by the dashed lines, but

now Vρ(r) is large and as a consequence Vn(r) is more affected by it. In Fig. 1(b), the Vρ(r)

potential has the opposite sign, the repulsive Coulomb potential Vcoul(r) has a long range

and their sum shifts the potential Vp(r) = Σc(r) + Vρ(r) + Vcoul(r) for protons. Because of

the small Vρ(r) potential in comparison to Vcoul(r) for 100Sn, the large difference between

Vp(r) and Σc(r) at the nuclear center is due practically to Vcoul(r) alone. For 150Sn, the

contribution of Vρ(r) is significant in comparison to Vcoul(r), and as a consequence there is

a cancellation between the two that produces a difference of the same order of magnitude

between Vp(r) and Σc(r). In the DHB calculation, the nuclear potentials for protons and

neutrons for the case N = Z (100Sn) are not the same. The Coulomb potential changes the

proton energy levels and, because of that, in the self-consistent DHB calculation the neutron

energy levels are also changed in such a way that there is a net Vρ potential [20].

In Fig. 1(c) we show the potential Vn(r) for neutrons and in Fig. 1(d) the potential
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FIG. 1. (Color online) Nuclear potentials as a function of the radial distance for the tin isotope

chain. In the top panels, the meson potentials for (a) neutrons and (b) protons with the Coulomb

potential are displayed for 100Sn (full lines) and 150Sn (dashed lines). In the bottom panels, the

potentials (c) Vn(r) for neutrons and (d) Vp(r) for protons are shown from A = 100 to A = 170 .

Vp(r) for protons as a function of radial distance for the tin isotope chain from A = 100 to

A = 170. These results, obtained in a FTDHB self-consistent calculation, show that the

mean field potentials have the shape of a Woods-Saxon potential. In refs. [7, 8] RMF studies

at T = 0 were performed to investigate the correlation between the pseudospin splitting and

the parameters of the Wood-Saxon potential: its depth (Σ0), surface diffuseness (a), and

radius (R). In ref. [20] this was done for a single isotope chain. The neutron Vn(r) and

proton Vp(r) mean field potentials in a tin isotope chain were parametrized by a Woods-
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Saxon form as functions of A. For the tin isotopes as A increases, the central potential

|Σ0| decreases and the surface diffuseness increases, effects which both favor the pseudospin

symmetry. However, the radius increases with A, which can partially offset those effects

[7]. Since the values |Σ0|R2 are roughly constant for neutrons, the correlation between these

two values, mentioned above, implies that the effects of increasing R and decreasing |Σ0| in
the neutron central potential, when A increases, balance each other. Thus, the dominant

effect comes from the increasing value of a, slightly favoring the pseudospin symmetry [20].

However, for protons, the value |Σ0|R2 is not constant, because both |Σ0| and the radius R

increase as A increases for the tin isotopes Hence, the changes in |Σ0| and R disfavor the

pseudospin symmetry in this case. The isospin asymmetry in pseudospin symmetry is due

to the isovector Vρ potential, which is repulsive for neutrons and attractive for protons and

makes the vector potential VV bigger for neutrons than for protons. As a consequence, |Σ0|
becomes smaller for neutrons than for for protons [7, 20].

In order to study the same effect at finite temperature, we will fit the self-consistent

potentials Σc(r), Vn(r), and Vρ(r) to a Woods-Saxon shape for T 6= 0. In the left column of

Fig. 2 we show our FTDHB calculations of the (a) Σc(r), (c) Vn(r), (e) and Vp(r) potentials

as a function of the radial distance for the nucleus 100Sn, in equilibrium with the external

gas, as the temperature varies from T = 0 to T = 8 MeV. At T = 0 the Σc(r) (in Fig. 2(a))

and Vn(r) (in Fig. 2(c)) potentials vanish at the surface. When the temperature is increased,

these potentials no longer go to zero at large radii because of the contribution of the gas

consisting of nucleons that evaporate for T 6= 0. We show the potential Vp(r) (in Fig. 2(e))

for protons in 100Sn over the same range of the temperatures. The proton potential vanishes

at a larger radius than the neutron one because of the long-range effect of the Coulomb

potential. In our calculations, we use the Bonche, Levit, and Vautherin procedure to take

into account the evaporated nucleons that become important at temperatures above about

3 − 4 MeV [16, 17]. Note that beyond about T ≥ 8 MeV, the nuclear structure is almost

completely dissolved since the stability of a hot nucleus depends on maintaining the balance

between surface and Coulomb contributions, as discussed in refs. [16–19].

To study the effect of temperature on pseudospin symmetry and its possible causes, and

in view of the systematics uncovered in ref. [20] referred to above, we study the change in

shape of the self-consistent mean fields with temperature, which appears as changes with

temperature of the Woods-Saxon parameters of the fitted potentials, namely their depth
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FIG. 2. (Color online) Nuclear potentials of the nucleus 100Sn as a function of the radial distance

with temperatures varying from T = 0 to T = 8 MeV. The left column represents our FTDHB

calculations for (a) Σc(r), (c) Vn(r), and (e) Vp(r). The right column shows our fit with a Woods-

Saxon shape of the (b) Σc(r), (d) Vn(r), and (f) Vp(r), together with the Woods-Saxon parameters

depth V0 (in MeV), radius R (in fm), and surface diffuseness a (in fm).
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(V0), radius (R), and diffusivity (a). We show in the right column of Fig. 2 our fit with a

Woods-Saxon shape of the (b) Σc(r), (d) Vn(r), and (f) Vp(r) potentials of the nucleus
100Sn,

together with the values of the corresponding Wood-Saxon parameters, for temperatures

varying from T = 0 to T = 8 MeV. The fit is good for temperatures T ≤ 8 MeV and the

Bonche, Levit, and Vautherin procedure can be considered adequate for our calculations

in this temperature range. In the right column of Fig. 2 we can read the Woods-Saxon

parameters in the legend of each subfigure. We observe that, as the temperature increases,

the depths of the potentials decrease while their radii and surface diffuseness parameters

increase. The depth of the potentials decreases about ∼ 10% between T = 0 and T = 8

MeV as the radii increase in about the same ratio of ∼ 10%. However, the diffusivities

increase at least 50% or more over the same range of temperatures. The same studies were

performed for 132Sn and 150Sn with similar results.
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FIG. 3. (Color online) The Woods-Saxon potential parameters for the (a) depth |Σ0,c|, (b) radius
Rc, and (c) diffusivity ac, versus temperature for tin isotope chain.
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FIG. 4. (Color online) The Woods-Saxon parameters (a) |Σc|R2
c , and (b) diffusivity ac divided by

their respective values at T = 0, versus temperature for the tin isotope chain.

One can conclude from these figures that when the temperature increases the central

depth Σ0 decreases and the radius and the surface diffuseness increase. To see this more

clearly, in Fig. 3 we show the Woods-Saxon parameters for the tin isotopes as the temper-

ature increases up to the limit T = 8 MeV. In Fig.3(a) the value of |Σ0,c| decreases as the

temperature increases. In Fig. 3(b) we show that the radius Rc also increases with tempera-

ture. However, as we see in Fig. 3(c) the surface diffuseness increases quickly with increasing

temperature. When we fix a value of the temperature, the value of |Σ0,c| decreases as A

increases, while both the radius Rc and surface diffuseness ac increase as A increases. In

fact, these results are expected due to the known A1/3 dependence of the nuclear radius.

Our results agree with calculations of the RMF theory at T = 0 [7, 8].

This opposing tendency of |Σc| and R produces values of |Σc|R2
c that are roughly constant

for each isotope from T = 0 to T = 8 MeV. In Fig. 4 we show the product |Σc|R2
c over

|Σc,0|R2
c,0 at T = 0 for tin isotopes as the temperature increases. The ratio is almost

constant and changes very little below T = 8 MeV. In Fig. 4(b) we show that diffuseness ac

over ac,0 at T = 0 also increases with temperature, but this change is very large up to T = 8

MeV in comparison to that seen in Fig. 4(a).

Summarizing, as T increases, the central depth |Σ0| decreases and the radius R increases,

but both effects balance each other, since the values of |Σ0|R2 are roughly constant. Thus,

when T increases, the dominant effect comes from the increasing diffuseness a, which favors

the pseudospin symmetry as found in ref. [20].
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In Table I we show the pseudospin partners of the neutrons and protons of 100Sn. The

magnitude of the neutron pseudospin energy splitting (∆n in MeV) decreases with increasing

temperature. We also see that the pseudospin splitting also decreases for protons (∆p in

MeV). However, for protons, the pseudospin splitting is larger than for neutrons, at least

for the deep doublet [2s1/2 − 1d3/2] of the symmetric nucleus 100Sn.

TABLE I. Pseudospin energy splitting in MeV of the pseudospin partners of 100Sn for neutrons

(∆n) and protons (∆p) at several values of the temperature T in MeV.

T 2s1/2 1d3/2 ∆n 2p3/2 1f5/2 ∆n 2s1/2 1d3/2 ∆p 2p3/2 1f5/2 ∆p

0 34.38 38.74 4.36 20.94 24.23 3.29 19.25 23.74 4.49 6.44 9.64 3.20
1.0 34.38 38.60 4.22 20.97 24.18 3.21 19.28 23.63 4.36 6.49 9.62 3.13
2.0 34.24 37.80 3.56 21.01 23.81 2.79 19.32 23.03 3.71 6.69 9.45 2.75
3.0 33.87 37.06 3.19 20.93 23.46 2.52 19.17 22.50 3.33 6.82 9.30 2.48
4.0 33.45 36.38 2.93 20.87 23.14 2.27 18.95 22.01 3.06 6.96 9.18 2.22
5.0 33.00 35.62 2.62 20.88 22.81 1.93 18.73 21.47 2.74 7.19 9.07 1.88
6.0 32.43 34.70 2.27 20.90 22.45 1.55 18.47 20.83 2.37 7.50 9.00 1.50
7.0 31.69 33.56 1.87 20.87 22.03 1.15 18.12 20.07 1.95 7.85 8.95 1.10
8.0 30.74 32.10 1.36 20.76 21.42 0.67 17.68 19.10 1.42 8.25 8.85 0.60

In Table II we show the neutron pseudospin partners of 150Sn. The magnitude of the

pseudospin splitting increases up to T = 2 MeV and then begins to decrease with the

temperature for the deeper doublets. The splitting of the doublet [2f7/2 − 1h9/2] has the

opposite sign and its magnitude decreases up to T = 3 MeV and then starts to increase with

temperature. In Table III we show the proton pseudospin partners of 150Sn. The magnitude

of the pseudospin splitting of the doublets [2p3/2 − 1f5/2] and [2d5/2 − 1g7/2] increases up to

T = 2 MeV and then starts to decrease. The splitting of the doublets [2s1/2 − 1d3/2] and

TABLE II. Pseudospin energy splitting for neutrons (∆n) in MeV for pseudospin partners of 150Sn

for several values of T in MeV.

T 2s1/2 1d3/2 ∆n 2p3/2 1f5/2 ∆n 2d5/2 1g7/2 ∆n 2f7/2 1h9/2 ∆n

0 32.91 35.78 2.87 21.93 24.66 2.73 11.79 13.29 1.50 3.11 2.52 -0.59
1.0 32.83 35.73 2.90 21.87 24.67 2.79 11.77 13.34 1.57 3.12 2.59 -0.53
2.0 32.62 35.57 2.94 21.79 24.71 2.91 11.85 13.54 1.69 3.32 2.90 -0.42
3.0 32.31 35.20 2.89 21.74 24.57 2.83 12.06 13.66 1.59 3.73 3.27 -0.46
4.0 31.87 34.63 2.75 21.69 24.31 2.62 12.37 13.77 1.40 4.31 3.77 -0.55
5.0 31.29 33.81 2.52 21.60 23.91 2.31 12.73 13.87 1.14 5.04 4.37 -0.67
6.0 30.53 32.73 2.20 21.45 23.37 1.92 13.13 13.95 0.82 5.91 5.07 -0.83
7.0 29.51 31.32 1.81 21.17 22.64 1.47 13.54 14.00 0.47 6.93 5.91 -1.02
8.0 28.17 29.48 1.31 20.72 21.66 0.94 13.95 13.97 0.03 8.16 6.87 -1.30
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[2f7/2 − 1h9/2] decreases with temperature already from T = 0. The doublet [2d5/2 − 1g7/2]

is not populated at temperature T = 0 and [2f7/2 − 1h9/2] is populated only when T ≥ 2

MeV. The non-occupied states at T = 0 are due to the temperature effect when we consider

the Fermi occupation factor. If we analyze each pseudospin partner of Tables II and II, we

see that the energy splitting is smaller for neutrons in comparison to protons, as expected

from the isospin asymmetry of the pseudospin symmetry [7, 20].

TABLE III. Pseudospin energy splitting for protons (∆p) for the pseudospin partners of 150Sn for

several values of T .

T 2s1/2 1d3/2 ∆p 2p3/2 1f5/2 ∆p 2d5/2 1g7/2 ∆p 2f7/2 1h9/2 ∆p

0 33.10 36.57 3.47 22.29 25.61 3.31 - - - - - -
1.0 33.13 36.60 3.47 22.32 25.69 3.37 11.87 14.35 2.48 - - -
2.0 33.14 36.51 3.37 22.39 25.85 3.46 12.02 14.70 2.69 2.25 3.69 1.43
3.0 33.00 36.25 3.24 22.46 25.81 3.35 12.32 14.92 2.60 2.80 4.16 1.37
4.0 32.77 35.84 3.07 22.57 25.71 3.14 12.77 15.18 2.41 3.59 4.79 1.20
5.0 32.45 35.29 2.83 22.71 25.55 2.84 13.35 15.49 2.13 4.61 5.58 0.97
6.0 32.01 34.52 2.51 22.82 25.29 2.47 14.02 15.80 1.79 5.82 6.49 0.67
7.0 31.32 33.44 2.12 22.82 24.84 2.03 14.70 16.07 1.37 7.20 7.50 0.30
8.0 30.29 31.92 1.62 22.62 24.09 1.47 15.36 16.19 0.83 8.78 8.55 -0.23

In Figure 5(a) we show several neutron pseudospin doublets of the nucleus 150Sn. The

energy splitting increases with temperature up to T = 2 MeV and then begins to decrease,

except for the doublet [3s1/2 − 2d3/2], which decreases monotonically. In Figure 5(b) we

show several proton pseudospin doublets of the nucleus 150Sn. As we see there, the energy

splitting also increases for the deeper levels up to T = 2 MeV and unoccupied states ex-

ist below this temperature for the upper levels. This behavior below T = 2 MeV is not

consistently observed for other isotopes. This may be due to other effects, such as thermal

or pairing effects, which might interfere with the direct competition between the surface

diffusivity and |Σ|R2. For temperatures below T = 2 MeV, the surface diffuseness ac is

almost constant while the product |Σc,0|R2
c,0, increases slightly more for 150Sn, as we see in

the zoom inside Figures 4(a) and 4(b), respectively. These effects could furnish an increase

in the pseudospin splitting up to T = 2 MeV. However, this behavior does not apply to

other isotopes. However, for T > 2 MeV the energy splitting of the pseudospin doublets

decreases as temperature increases. The exceptions are the two doublets [2f7/2 − 1h9/2] and

[3p3/2−2f5/2] for neutrons that become more degenerate above T ∼ 3 MeV. The increase of

diffusivity with temperature determines the growth of the ratio ac/ac,0 larger in comparison
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to the changes in |Σc|R2
c/|Σc,0|R2

c,0 induced by the temperature, favoring the pseudospin

symmetry.
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FIG. 5. (Color online) Energy splitting for several pseudospin doublets of 150Sn for (a) neutrons

and (b) protons for temperatures varying from T = 0 up to T = 8 MeV.

IV. CONCLUSION

In this work we have studied the effects of temperature on the energy splitting of several

pseudospin doublets of the spherical tin isotopes. We used the finite temperature Dirac-

Hartree-Bogoliubov (FTDHB) formalism to obtain the mean field and Coulomb potentials

in a self-consistently calculation [19]. This formalism allows us to take into account the

pairing and deformation beyond the mean field and Coulomb potentials. In our calculations,

we observe that the mean field potentials have the shape of Woods-Saxon potentials for the

temperature range from T = 0 MeV to T = 8 MeV. By fitting the potentials to Wood-Saxon

potentials, we were able to investigate the correlation between the pseudospin splittings and

the parameters of the Wood-Saxon potential: the depth (Σ0), surface diffuseness (a), and

radius (R). We studied the tin nuclei from A = 100 to A = 170 as a function of temperature

between T = 0 and T = 8 MeV. For each nuclei we obtained the values of the parameters

of the Wood-Saxon potential and analyzed their variation with increasing temperature.

We found that for 100Sn the depth of the potential decreases while the radius and surface
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diffuseness increase with temperature. The depth of the potential decreases on the order of

∼ 10% while the radius increases in the same ratio between T = 0 and T = 8 MeV. However,

the diffusivity increases by at least ∼ 50% in the same temperature range. The other tin

isotopes show similar results. From the calculation of the energy splittings for the neutron

and proton pseudospin partners of the tin isotopes at several values of the temperature, we

see that in general the pseudospin energy splittings decrease with temperature. This confirms

the systematics already found in ref. [20] for the tin isotopes at T = 0, in which the change in

diffusivity was the main driver for the variation in pseudospin energy splittings, which favors

pseudospin symmetry. The decrease of the energy difference between pseudopsin doublets

with the increase of the temperature seems also to be valid for deformed nuclei at large

temperatures. In ref. [19] we show that 168Er becomes spherical and the splitting decreases

for temperature T ≥ 4 MeV.

We can thus restate, now including the effects of temperature that, in general, there is

a correlation between the shape of the nuclear mean-fields, described here by Wood-Saxon

parameters, and the onset of pseudospin symmetry on nuclei.
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