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Abstract

Creation and annihilation operators are used in quantum physics as the building blocks of
linear operators acting on Hilbert spaces of many body systems. In quantum physics, pairing
operators are defined in terms of those operators. In this paper, spectral properties of pair-
ing operators are studied. The numerical ranges of pairing operators are investigated. In the
context of matrix theory, the results give the numerical ranges of certain infinite tridiagonal
matrices.
© 2004 Published by Elsevier Inc.
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1. Creation and annihilation operators

In quantum mechanics, states of a particle are described by vectors belonging to
a Hilbert space, the so called state space. For physical systems composed of many
identical particles, it is useful to define operators that create or annihilate a particle
in a specified individual state. Operators of physical interest can be expressed in
terms of these creation and annihilation operators [1,2]. Only totally symmetric and
anti-symmetric states are observed in nature and particles occurring in these states
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are called bosons and fermions, respectively. If V is the state space of one boson
and m ∈ N, the mth completely symmetric space over V , denoted by V(m), is the
appropriate state space to describe a system with m bosons. By convention, V(0) = C.

Let V be an n-dimensional vector space with inner product (·, ·), and let
{e1, . . . , en} be an orthonormal basis of V . The creation operator associated with
ei , i = 1, . . . , n, is the linear operator fi : V(m−1) → V(m) defined by

fi(x1 ∗ · · · ∗ xm−1) = ei ∗ x1 ∗ · · · ∗ xm−1, (1)

for x1 ∗ · · · ∗ xm−1 a decomposable tensor in V(m−1). The annihilation operator is
the adjoint operator of the creation operator fi , explicitly, it is the linear operator
gi : V(m) → V(m−1) defined by

gi(x1 ∗ · · · ∗ xm) =
m∑

k=1

(ei, xk)x1 ∗ · · · ∗ xk−1 ∗ xk+1 ∗ · · · ∗ xm, (2)

for x1 ∗ · · · ∗ xm in V(m). Denote by ek
i the symmetric tensor product ei ∗ · · · ∗ ei

with k factors. Clearly, fi(e
m−1
i ) = em

i and gi(e
m
i ) = mem−1

i . These operators can
also be defined on the symmetric algebra over V : �∗ = ⊕+∞

m=0 V(m). We consider �∗
endowed with the norm induced by the standard inner product defined by (x1 ∗ · · · ∗
xm, y1 ∗ · · · ∗ ym) = per[(xi, yj )], for x1 ∗ · · · ∗ xm and y1 ∗ · · · ∗ ym decomposable
tensors in V(m). Here, perX denotes the permanent of the matrix X.

The creation and annihilation operators satisfy the following canonical commuta-
tion relations: [fi, fj ] = [gi, gj ] = 0, [gi, fj ] = δij , i, j = 1, . . . , n, where [f, g] =
fg − gf denotes, as usual, the commutator of the operators f and g.

The bosonic number operator in state i is the linear operator Ni : �∗ → �∗
defined by Ni = figi , for i = 1, . . . , n. It will be shown that the non-negative inte-
gers are the eigenvalues of this operator. This is related to the physical fact that an
arbitrary number of bosons can occupy the same quantum state.

Let V be C2. For the symmetric algebra �∗ over C2, the pairing operator B :
�∗ → �∗ is the linear operator defined in terms of the creation and annihilation
operators by

B = cf1g1 + df2g2 + kf1f2 + lg1g2, c, d, k, l ∈ C. (3)

These operators are unbounded. Moreover, B commutes with f1g1 − f2g2 and
so, adding a multiple of this operator to B, we can take the coefficients of f1g1 and
f2g2 equal. We can also substitute f1 (f2) by eiαf1 (eiαf2), α ∈ R, and choose α

such that the arguments of k and l are equal.
The numerical range or field of values of a linear operator T on a complex Hilbert

space H with inner product (·, ·), is defined by

W(T ) = {(T x, x) : x ∈ H, (x, x) = 1}.
One of the most fundamental properties of the numerical range is its convexity,

stated by the famous Toeplitz–Hausdorff Theorem (see e.g., [3,4]). In the finite
dimensional case, W(T ) contains the spectrum of T , and it is a connected and
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compact subset of C. In the infinite dimensional case, W(T ) does not have to be
either bounded or closed.

We recall that a tridiagonal matrix is a matrix A = (aij ) such that aij = 0
whenever |i − j | > 1. The numerical ranges of tridiagonal matrices deserved the
attention of some authors (e.g., [5–8]). One of the main aims of this paper is the
investigation of the numerical range of pairing operators B defined on the subspace
�(q) of the symmetric algebra over C2. These operators admit well-structured infinite
tridiagonal matrix representations. The numerical ranges of the pairing operators
under consideration have an interesting relation with the numerical ranges of certain
linear operators on an indefinite inner product space.

Let Mn be the algebra of n × n complex matrices, and let S ∈ Mn be a selfadjoint
matrix. The positive S-numerical range of A ∈ Mn is denoted and defined by

V +
S (A) = {x∗Ax : x ∈ Cn, x∗Sx = 1}.

This set is always a convex set [9]. If S is the n × n identity matrix In, then V +
S (A)

reduces to the classical numerical range of A ∈ Mn. If S is a non-singular indefinite
selfadjoint matrix, some authors use W+

S (A) = V +
S (SA) as the definition of a numer-

ical range of a matrix A associated with the indefinite inner product 〈x, y〉S = y∗Sx.
In this case, if A is not a S-scalar matrix, that is, A /= λS where λ ∈ C, V +

S (A) is
unbounded and may not be closed [9,10].

This paper is organized as follows. In Section 2, some preliminary results con-
cerning the Bogoliubov linear transformation are presented. In Section 3, spectral
properties of certain pairing operators are investigated. In Section 4, the numeri-
cal ranges of the previously considered pairing operators are studied. In particular,
the numerical ranges of the infinite tridiagonal matrix representations of the pairing
operators are characterized.

2. The Bogoliubov transformation

For convenience, consider the annihilation and creation operators defined on the
symmetric algebra over V arranged in a vector α with components

αi = gi, αn+i = fi, i = 1, . . . , n. (4)

The invertible linear operator that maps the vector α into the vector β with com-
ponents

βi = g̃i , βn+i = f̃i , i = 1, . . . , n, (5)

is called a canonical transformation if it preserves the canonical commutation rela-
tions and it is usually called a Bogoliubov transformation.

We recall a useful characterization of a Bogoliubov transformation.

Proposition 2.1 [2]. Let α and β be the column vectors with entries (4) and (5),

respectively. The following conditions are equivalent:
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(i) The linear operator that maps the vector α into the vector β is a Bogoliubov
transformation;

(ii) The matrix T such that β = T α, satisfies T LT T = L and T TLT = L, where

L =
[

0 In

−In 0

]
.

The linear operators g̃i are the adjoint operators of f̃i if the matrix T associated
with the Bogoliubov transformation in Proposition 2.1 (ii) is a block matrix of the
form

T =
[
X Y

Y X

]
, X, Y ∈ Mn. (6)

Let the linear operator Ñi : �∗ → �∗ be defined by Ñi = f̃i g̃i , i = 1, . . . , n. The
following proposition is an easy consequence of the canonical commutation relations
for the operators f̃i and g̃i , i = 1, . . . , n.

Proposition 2.2. If the operators f̃i and g̃i satisfy the canonical commutation rela-
tions, then

[Ñi , f̃
r
j ] = rδij f̃

r
i and [Ñi , g̃

r
j ] = −rδij g̃

r
i , i, j = 1, . . . , n, r ∈ N0.

Proof. Let r ∈ N0. By induction on k, we prove that

Ñi f̃
r
j = kδij f̃

r
i + f̃ k

j Ñi f̃
r−k
j , i, j = 1, . . . , n, k = 0, . . . , r. (7)

In fact, if k = 0, (7) is trivial. Suppose that (7) is true for k − 1. Then we succes-
sively have:

Ñi f̃
r
j = (k − 1)δij f̃ r

i + f̃ k−1
j Ñi f̃

r−k+1
j

= (k − 1)δij f̃
r
i + f̃ k−1

j f̃i(δij + f̃j g̃i )f̃
r−k
j (8)

= (k − 1)δij f̃
r
i + f̃ k

j (δij + f̃i g̃i )f̃
r−k
j (9)

= kδij f̃
r
i + f̃ k

j Ñi f̃
r−k
j ,

where (8) is a consequence of [g̃i , f̃j ] = δij , and (9) follows from [f̃i , f̃j ] = 0 and
f̃iδij = f̃j δij . Hence, (7) holds for k = 0, . . . , r. The case k = r gives the asserted
set of relations on the left-hand side. By transconjugation of these relations, the result
follows. �

3. Spectral properties of pairing operators

The symmetric space C2
(m) is spanned by the vectors ek

1 ∗ em−k
2 , k = 0, . . . , m.

For q � 0, denote by �(q) the subspace of the symmetric algebra over C2 spanned by
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the vectors en
1 ∗ e

n+q

2 , n ∈ N0, and, for q < 0, the subspace spanned by the vectors
e
n−q

1 ∗ en
2 , n ∈ N0. It is clear that any two subspaces �(q) are disjoint. It can be

easily seen that the symmetric algebra �∗ over C2 is given by �∗ = ⊕+∞
q=−∞ �(q).

The subspaces �(q), q ∈ Z, satisfy the following property.

Proposition 3.1. For q ∈ Z, the subspace �(q) is invariant under the pairing oper-
ator B.

Proof. For q � 0 and n ∈ N0, we have

B(en
1 ∗ e

n+q

2 ) = (cn + d(n + q))en
1 ∗ e

n+q

2

+ ken+1
1 ∗ e

n+1+q

2 + ln(n + q)en−1
1 ∗ e

n−1+q

2 ∈ �(q).

Analogously, for q < 0 and n ∈ N0, we find

B(e
n−q

1 ∗ en
2) = (c(n − q) + dn)e

n−q

1 ∗ en
2

+ ke
n+1−q

1 ∗ en+1
2 + ln(n − q)e

n−1−q

1 ∗ en−1
2 ∈ �(q).

Since B is a linear operator, it satisfies B(�(q)) ⊆ �(q), for any integer q. �

Remark 3.1. The matrix representation, in the standard basis, of the pairing oper-
ator B = cf1g1 + df2g2 + kf1f2 + lg1g2 restricted to �(q), q � 0, is the infinite
tridiagonal matrix T

q
c,d given by

dq l
√

1 + q 0 0 · · ·
k
√

1 + q c + d + dq l
√

2(2 + q) 0 · · ·
0 k

√
2(2 + q) 2(c + d) + dq l

√
3(3 + q) · · ·

0 0 k
√

3(3 + q) 3(c + d) + dq · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

 , c, d, k, l ∈ C.

For q < 0, the matrix representation, in the standard basis, of the pairing operator
B = cf1g1 + df2g2 + kf1f2 + lg1g2 restricted to �(q) is the tridiagonal matrix T

−q
d,c .

In the sequel, we adopt the following notation: D = {z ∈ C : |z| < 1}.
For z ∈ D, let f̃1 and f̃2 be the linear operators on �∗ defined by

f̃1 = 1√
1 − |z|2 (f1 − z̄g2), f̃2 = 1√

1 − |z|2 (f2 − z̄g1). (10)

Their adjoint operators are

g̃1 = 1√
1 − |z|2 (g1 − zf2), g̃2 = 1√

1 − |z|2 (g2 − zf1), (11)
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respectively. The linear operator that maps the vector αT = (g1, g2, f1, f2) into the
vector βT = (g̃1, g̃2, f̃1, f̃2) is a Bogoliubov transformation.

Proposition 3.2. The Bogoliubov transformation defined by (10) and (11) maps
the pairing operator B : �∗ → �∗ defined by B = cf1g1 + df2g2 + kf1f2 + lg1g2,

c, d, k, l ∈ C, into B = λ0ι + c̃f̃1g̃1 + d̃f̃2g̃2 + k̃f̃1f̃2 + l̃g̃1g̃2, where ι denotes the
identity map, z ∈ D, and

λ0 = 1

1 − |z|2 ((c + d)|z|2 + kz̄ + lz), (12)

c̃ = 1

1 − |z|2 (c + d|z|2 + kz̄ + lz), (13)

d̃ = 1

1 − |z|2 (c|z|2 + d + kz̄ + lz), (14)

k̃ = 1

1 − |z|2 ((c + d)z + k + lz2), (15)

l̃ = 1

1 − |z|2 ((c + d)z̄ + kz̄2 + l). (16)

Moreover,

c̃ = c + λ0 and d̃ = d + λ0. (17)

Proof. The Bogoliubov transformation defined by (10) and (11) is associated with
a matrix T of the form (6), where the submatrices X and Y are

X = 1√
1 − |z|2 I2, Y = 1√

1 − |z|2
[

0 −z

−z 0

]
.

Since α = T −1β and

T −1 = 1√
1 − |z|2


1 0 0 z

0 1 z 0
0 z̄ 1 0
z̄ 0 0 1

 ,

the following inverse relations hold:

f1 = 1√
1 − |z|2 (f̃1 + z̄g̃2), f2 = 1√

1 − |z|2 (f̃2 + z̄g̃1) (18)

and

g1 = 1√
1 − |z|2 (g̃1 + zf̃2), g2 = 1√

1 − |z|2 (g̃2 + zf̃1). (19)

Taking into account (18) and (19) in B = cf1g1 + df2g2 + kf1f2 + lg1g2, the result
easily follows. �
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The pairing operator B in (3) is a selfadjoint operator if and only if c, d ∈ R and
l = k̄.

Proposition 3.3. The pairing operator B = λ0ι + c̃ f̃1g̃1 + d̃f̃2g̃2 + k̃f̃1f̃2 + l̃g̃1g̃2

is a selfadjoint operator if and only if λ0, c̃ and d̃ are real numbers and l̃ = k̃.

Proof. Trivial. �

Throughout this section, let � = (c + d)2 − 4|k|2, for c, d ∈ R and k ∈ C.

Proposition 3.4. If B = cf1g1 + df2g2 + kf1f2 + k̄g1g2, with c, d ∈ R and k ∈
C, is a selfadjoint pairing operator and � > 0, then B can be reduced by a Bogo-
liubov transformation to the form B = λ0ι + c̃ f̃1g̃1 + d̃f̃2g̃2, where ι denotes the
identity map and λ0, c̃, d̃ are given by (12)–(14), respectively. Moreover,

(i) If c + d > 0, then c̃ + d̃ = √
� and λ0 = − 1

2 (c + d) + 1
2

√
�;

(ii) If c + d < 0, then c̃ + d̃ = −√
� and λ0 = − 1

2 (c + d) − 1
2

√
�.

Proof. By Proposition 3.2, under a Bogoliubov transformation, we can take the
selfadjoint pairing operator B = c f1g1 + df2g2 + kf1f2 + k̄g1g2, where c, d ∈ R

and k ∈ C, into the form B = λ0 ι + c̃f̃1g̃1 + d̃f̃2g̃2 + k̃f̃1g̃2 + ¯̃
k f̃2g̃1, where λ0,

c̃, d̃ and k̃ are given by (12), (13), (14) and (15), respectively. If � > 0, it is possible
to find z ∈ D such that k̃ = 0. In fact, we can choose a solution z of the quadratic
equation

k̄z2 + (c + d)z + k = 0, (20)

for which k̃ vanishes. The choice can be made as follows. For k = 0 and c + d /= 0,
we take z = 0. For k /= 0, we have

z = −(c + d) ± √
(c + d)2 − 4|k|2
2k̄

. (21)

The product of the roots of the quadratic equation in (20) is k/k̄, a complex num-
ber of modulus 1. Therefore, one of these roots has modulus less than 1 and for this
root k̃ = 0. Thus, we may concentrate on B = λ0ι + c̃f̃1g̃1 + d̃f̃2g̃2. From (13) and
(14), we find

c̃ + d̃ = (c + d)(1 + |z|2) + 2kz̄ + 2k̄z

1 − |z|2 . (22)

From (21) and (22), we get c̃ + d̃ = ∓√
�. From (17), we have c̃ + d̃ = c + d +

2λ0. Hence, λ0 = − 1
2 (c + d) ± 1

2

√
�. If c + d > 0, we consider the plus sign for

the ± sign in (21), so that z belongs to D. Thus, (i) holds. If c + d < 0, we take
the minus sign for the ± sign in (21), otherwise z does not belong to D. Hence, (ii)
follows. �
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Remark 3.2. If � = k = 0, then k̃ = 0 for any z ∈ D. If � � 0 and k /= 0, it can
be easily seen that both roots of the quadratic equation in (20) have modulus 1 and
so we cannot choose z ∈ D such that k̃ = 0. As observed in the proof of Proposition
3.4, if � > 0 one of the roots of (20) has modulus less than 1, while the other one
has modulus greater than 1.

Proposition 3.5. Let B = cf1g1 + df2g2 + kf1f2 + k̄g1g2, with c, d ∈ R and k ∈
C, be a selfadjoint pairing operator defined on the symmetric algebra �∗ over C2.

A complex number z satisfies [B, g1 − zf2] = 1
2 (d − c ± √

�)(g1 − zf2) and [B,

g2 − zf1] = 1
2 (c − d ± √

�)(g2 − zf1) if and only if z is a root of (20).

Proof. (⇒) We have

[B, g1 − zf2] = −(c + k̄z)g1 − (k + dz)f2. (23)

It is not difficult to see that there exists w ∈ C such that

[B, g1 − zf2] = w(g1 − zf2). (24)

In fact, from (23) and (24), we obtain[
c k̄

k d

] [
1
z

]
= w

[−1 0
0 1

] [
1
z

]
. (25)

The solutions w of (25) are such that

det

[−c − w −k̄

k d − w

]
= 0,

that is, w = 1
2 (d − c) ± 1

2

√
�. From (25), we get z = −(c + w)/k̄.

(⇐) It is a straightforward computation. �

Proposition 3.6. For z ∈ C, there exists a non-zero vector u in the Hilbert space
�∗ such that (g1 − zf2)u = 0 and (g2 − zf1)u = 0 if and only if |z| < 1, and the
respective vector u is given by the formula

u =
+∞∑
n=0

c0
zn

n! f
n
1 f n

2 (1), c0 ∈ C \ {0}.

Proof. (⇒) Consider an arbitrary element u = ∑+∞
n,m=0 cnmf n

1 f m
2 (1) ∈ �∗, cnm ∈

C \ {0}. Since we are assuming (g1 − zf2)u = 0, it follows that

+∞∑
n,m=0

(cn+1m+1(n + 1) − cnmz)f n
1 f m+1

2 (1) = 0.

Hence,

cn+1m+1(n + 1) − cnmz = 0. (26)
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By the hypothesis (f2 − zg1)u = 0, and so we also have

cn+1m+1(m + 1) − cnmz = 0. (27)

From (26) and (27) we get (n − m)cn+1m+1 = 0, that is, cnm = cnδnm. Thus, u =∑+∞
n=0 cnf

n
1 f n

2 (1) ∈ �(0). From (27) it follows that cn+1(n + 1) − cnz = 0, n ∈ N0.
By induction on n, it can easily be proved that cn = c0z

n/n!, n ∈ N0, c0 ∈ C \ {0}.
The vector u belongs to the Hilbert space �∗ if and only if |z| < 1.

(⇐) Clear. �

Corollary 3.1. Let g̃1, g̃2 : �∗ → �∗ be defined by (11), with z ∈ D satisfying (20).
If � > 0 and c0 ∈ C, the vector u = ∑+∞

n=0 c0
zn

n! f
n
1 f n

2 (1) ∈ �(0) satisfies g̃1u =
g̃2u = 0.

Proof. The corollary is an obvious consequence of Proposition 3.6. �

Proposition 3.7. Let B = cf1g1 + df2g2 + kf1f2 + k̄g1g2, with c, d ∈ R and k ∈
C, be a selfadjoint pairing operator defined on �∗. If � < 0, then B does not have
eigenvectors in the Hilbert space �∗.

Proof. (By contradiction) Suppose that there exists in �∗ an eigenvector u of B

associated with the eigenvalue λ ∈ R, that is, Bu = λu. By Proposition 3.5, there
exists z ∈ C such that [B, g1 − zf2] = 1

2 (d − c + i
√−�)(g1 − zf2) and [B, g2 −

zf1] = 1
2 (c − d + i

√−�)(g2 − zf1) if and only if z is a root of (20). Easy computa-
tions yield

B(g1 − zf2)u = [B, g1 − zf2]u + (g1 − zf2)Bu

=
(

λ + 1

2
(c − d + i

√−�)

)
(g1 − zf2)u

and

B(g2 − zf1)u =
(

λ + 1

2
(c − d + i

√−�)

)
(g2 − zf1)u.

Then, either (g1 − zf2)u vanishes or it is an eigenvector of B corresponding to the
eigenvalue λ + 1

2 (d − c + i
√−�). Since a selfadjoint operator does not have com-

plex eigenvalues, this hypothesis does not hold and so (g1 − zf2)u = 0. In an anal-
ogous way, we conclude that (g2 − zf1)u = 0. By Proposition 3.6, the conditions
(g1 − zf2)u = 0 and (g2 − zf1)u = 0 hold if and only if |z| < 1. The assumption
� < 0 implies that |z| = 1, a contradiction. �

Proposition 3.8. The eigenvalues of the operators Ñ1 = f̃1g̃1 and Ñ2 = f̃2g̃2
defined on �∗ are the non-negative integers and the common eigenvectors corre-
sponding to the eigenvalues n1 and n2 are of the form c0f̃

n1
1 f̃

n2
2 ezf1f2(1), where

c0 ∈ C \ {0} and z is the root of (20) in D.
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Proof. Since the operators Ñ1 and Ñ2 commute, they have common eigenvectors.
Let u be a non-zero vector in �∗ such that Ñ1u = λ1u and Ñ2u = λ2u. Replacing u

by g̃1u in Ñ1u and u by g̃2u in Ñ2u, we obtain

Ñ1g̃1u = (λ1 − 1)g̃1u and Ñ2g̃2u = (λ2 − 1)g̃2u. (28)

From the left-hand side equation in (28), we conclude that either g̃1u = 0 or g̃1u is
an eigenvector of Ñ1 associated with (λ1 − 1). From the right-hand side equation in
(28), we conclude that either g̃2u = 0 or g̃2u is an eigenvector of Ñ2 associated with
(λ2 − 1). If g̃1u = 0 and g̃2u = 0, by Proposition 3.6, u is of the asserted form and
λ1 = λ2 = 0. In this case, the result follows. If g̃1u /= 0 or g̃2u /= 0, we repeat the
previous procedure. Indeed, there exist integers k1, k2 such that v = g̃

k1
1 g̃

k2
2 u /= 0 and

g̃
k1+1
1 g̃

k2
2 u = g̃

k1
1 g̃

k2+1
2 u = 0. Since Ñ1 and Ñ2 are positive semidefinite operators,

the eigenvalues λ1 − k1 and λ2 − k2 associated with the eigenvector v are non-nega-
tive. The process stops when λ1 − k1 = λ2 − k2 = 0, and so λ1 and λ2 are non-neg-
ative integers. Since g̃1v = g̃2v = 0, we find that (g1 − zf2)v = (g2 − zf1)v = 0.

By Proposition 3.6, v = c0
∑+∞

n=0
zn

n! f
n
1 f n

2 (1) ∈ �(0), c0 ∈ C \ {0}. It can be easily

verified that v = g̃
k1
1 g̃

k2
2 u implies k1!k2!u = f̃

k1
1 f̃

k2
2 v and the result follows. �

In the following theorem, the eigenvalues and the eigenvectors of the selfadjoint
pairing operator B restricted to the subspace �(0) are obtained.

Theorem 3.1. Let the selfadjoint pairing operator B = cf1g1 + df2g2 + kf1f2 +
k̄g1g2, with c, d ∈ R and k ∈ C, be restricted to the subspace �(0), and let � > 0.

The eigenvalues of B are

λn =
{

− 1
2 (c + d) + 2n+1

2

√
�, if c + d > 0

− 1
2 (c + d) − 2n+1

2

√
�, if c + d < 0

, n ∈ N0.

The eigenvectors of B associated with the eigenvalue λn are the vectors vn =
c0f̃

n
1 f̃ n

2 ezf1f2(1), where c0 is a non-zero complex number and z is the root of (20)
in D.

Proof. Consider the Bogoliubov transformation that maps the annihilation opera-
tors gi and the creation operators fi into their adjoint operators g̃i and f̃i , i = 1, 2,
respectively. By Proposition 3.4, under this Bogoliubov transformation, B can be
taken in the form B = λ0ι + c̃f̃1g̃1 + d̃f̃1g̃1, where λ0, c̃ and d̃ are given by (12),
(13) and (14), respectively. It can be easily seen that the operators Ñ1 − Ñ2 and
N1 − N2 coincide in �∗, and so the operators Ñ1 and Ñ2 are equal in �(0). Therefore,
their eigenvalues are the non-negative integers. Since B − λ0ι is a linear combina-
tion of the commuting operators Ñ1 and Ñ2, by Proposition 3.8, the eigenvalues of
the selfadjoint pairing operator B are λn = λ0 + (c̃ + d̃)n, n ∈ N0. If c + d > 0,
then c̃ + d̃ and λ0 are given by Proposition 3.4 (i). Thus, λn = − c+d

2 + 2n+1
2

√
�,

n ∈ N0. If c + d < 0, then c̃ + d̃ and λ0 are given by Proposition 3.4 (ii). Thus,
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λn = − c+d
2 − 2n+1

2

√
�, n ∈ N0. The common eigenvectors of Ñ1 and Ñ2 are the

eigenvectors of B and, by Proposition 3.8, the theorem follows. �

Theorem 3.1 can be easily generalized as follows.

Theorem 3.2. Let the selfadjoint pairing operator B = cf1g1 + df2g2 + kf1f2 +
k̄g1g2, with c, d ∈ R and k ∈ C, be defined on �∗, and let � > 0. The eigenvalues
of B are

λn1n2 =
{

1
2 (c − d)(n1 − n2) − 1

2 (c + d) + n1+n2+1
2

√
�, if c + d > 0

1
2 (c − d)(n1 − n2) − 1

2 (c + d) − n1+n2+1
2

√
�, if c + d < 0

,

n1, n2 ∈ N0. The eigenvectors of B associated with the eigenvalue λn1n2 are vn1n2 =
c0f̃

n1
1 f̃

n2
2 ezf1f2(1), where c0 is a non-zero complex number and z is the root of (20)

in D.

Proof. The selfadjoint pairing operator B can be taken in the form B = λ0ι +
c̃f̃1g̃1 + d̃f̃1g̃1, where c̃ = c + λ0 and d̃ = d + λ0, according to (17) in Proposition
3.2. By Proposition 3.8, the eigenvalues of the operator B are λn1n2 = λ0 + c̃n1 +
d̃n2, n1, n2 ∈ N0. For n1, n2 ∈ N0 and c + d > 0, λ0 is given by Proposition 3.4 (i),
and so

λn1n2 = 1

2
(c − d)(n1 − n2) − 1

2
(c + d) + n1 + n2 + 1

2

√
�.

For n1, n2 ∈ N0 and c + d < 0, λ0 is given by Proposition 3.4 (ii). Thus,

λn1n2 = 1

2
(c − d)(n1 − n2) − 1

2
(c + d) − n1 + n2 + 1

2

√
�.

The common eigenvectors of Ñ1 and Ñ2 corresponding to the eigenvalues n1 and
n2 are eigenvectors of B and, by Proposition 3.8, the theorem follows. �

4. The numerical range of pairing operators

The aim of this section is the characterization of the numerical range of the pairing
operator B restricted to �(q), q ∈ Z. An inclusion relation for W(B|�(q) ) is presented
in Lemma 4.1. This lemma will be used in the proofs of Theorems 4.2, 4.3 and 4.6.

Lemma 4.1. Let the pairing operator B = cf1g1 + df2g2 + kf1f2 + lg1g2, c, d, k,

l ∈ C, be restricted to �(q), q ∈ Z, and let

W =
{

(c + d)|z|2 + kz̄ + lz

1 − |z|2 : z ∈ D

}
. (29)

Then (1 + |q|)W + τq ⊆ W(B|�(q) ), where τq = qd, if q � 0, and τq = −qc, if
q < 0.
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Proof. Let q � 0. For an arbitrary element ψ ∈ �(q),

ψ =
+∞∑
n=0

cne
n
1 ∗ e

n+q

2 , cn ∈ C,

the following holds:

(ψ, ψ) =
+∞∑
n=0

|cn|2n!(n + q)!,

(f1f2ψ, ψ) =
+∞∑
n=0

cnc̄n+1(n + 1)!(n + q + 1)!,

(g1g2ψ, ψ) =
+∞∑
n=0

cn+1c̄n(n + 1)!(n + q + 1)!,

(f1g1ψ, ψ) =
+∞∑
n=0

n|cn|2n!(n + q)!,

(f2g2ψ, ψ) =
+∞∑
n=0

(n + q)|cn|2n!(n + q)!.

If cn = zn/n!, z ∈ D, the above series converge. We have

(ψ, ψ) =
+∞∑
n=0

q∏
j=1

(n + j)|z|2n = q! 1

(1 − |z|2)1+q
,

(f1f2ψ, ψ) = z̄

+∞∑
n=0

1+q∏
j=1

(n + j)|z|2n = (1 + q)! z̄

(1 − |z|2)2+q
,

(g1g2ψ, ψ) = z

+∞∑
n=0

1+q∏
j=1

(n + j)|z|2n = (1 + q)! z

(1 − |z|2)2+q
,

(f1g1ψ, ψ) =
+∞∑
n=0

q∏
j=0

(n + j)|z|2n = (1 + q)! |z|2
(1 − |z|2)2+q

,

(f2g2ψ, ψ) =
+∞∑
n=0

q∏
j=0

(n + j)|z|2n + q

+∞∑
n=0

q∏
j=1

(n + j)|z|2n

= (1 + q)! |z|2
(1 − |z|2)2+q

+ qq! 1

(1 − |z|2)1+q
.
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Thus, for q � 0, the complex numbers

(Bψ, ψ)

(ψ, ψ)
= (1 + q)

(c + d)|z|2 + kz̄ + lz

1 − |z|2 + qd, z ∈ D,

belong to W(B|�(q) ).
If q < 0, the proof is analogous. �

Given a convex subset K of C, a point µ ∈ K is called a corner of K if K is
contained in an angle with vertex at µ, and magnitude less than π .

The following result on the corners of the numerical range of unbounded linear
operators will be used in the proof of Theorem 4.2. The proof for bounded operators
in [3, Theorem 1.5-5] can be easily adapted to this case.

Theorem 4.1 [3]. If µ ∈ W(T ) is a corner of W(T ), then µ is an eigenvalue of the
operator T .

We now characterize the numerical range of the selfadjoint pairing operator B

restricted to �(0).

Theorem 4.2. Let the selfadjoint pairing operator B = cf1g1 + df2g2 + kf1f2 +
k̄g1g2, with c, d ∈ R and k ∈ C, be restricted to the subspace �(0) and � =
(c + d)2 − 4|k|2. Then W(B|�(0) ) is:

(i)
[
− 1

2 (c + d) + 1
2

√
�, +∞

)
, if � > 0 and c + d > 0;

(ii)
(
−∞, − 1

2 (c + d) − 1
2

√
�

]
, if � > 0 and c + d < 0;

(iii)
(
− 1

2 (c + d), +∞
)

, if � = 0 and c + d > 0;
(iv)

(
−∞, − 1

2 (c + d)
)

, if � = 0 and c + d < 0;
(v) {0}, if � = c + d = 0;
(vi) the whole R, if � < 0.

Proof. Since the pairing operator B is selfadjoint, c + d ∈ R and l = k̄. Obviously,
W(B|�(0) ) is a subset of the real line. Since it is a connected set, W(B|�(0) ) is an
interval. Now, we characterize the extreme points of this interval. If an extremum
point of the interval is a corner of W(B|�(0) ), by Theorem 4.1 it is an eigenvalue of
the operator.

(i) If � > 0, then c + d /= 0. Let c + d > 0. By Theorem 3.1, the minimum eigen-
value of the selfadjoint pairing operator B|�(0) is λ0 = − 1

2 (c + d) + 1
2

√
� and there

does not exist a maximum eigenvalue. By Theorem 4.1, (i) follows.
(ii) If � > 0 and c + d < 0, the proof proceeds analogously to (i).
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(iii) If � = 0 and c + d > 0, then c + d = 2|k| and easy computations show that
B can be reduced to the form

B = c − d

2
(f1g1 − f2g2) + c + d

2
(f2 + g1)

∗(f2 + g1) − c + d

2
ι.

When B is restricted to �(0), the first summand vanishes. Then B|�(0) is a
positive semidefinite selfadjoint operator translated by − 1

2 (c + d). We show
that the numerical range of B + 1

2 (c + d)ι restricted to �(0) is (0, +∞), or equiv-
alently, W(C|�(0) ) = (0, +∞), where C = (f2 + g1)

∗(f2 + g1). Indeed, let wN =∑N
n=1

un

n! f
n
1 f n

2 (1) ∈ �(0). Let u0 = uN+1 = 0. We have

(CwN, wN)

(wN, wN)
=

∑N
n=0(n + 1)|un + un+1|2∑N

n=1 |un|2
� 0

and 0 may be approached as closely as desired. In fact, if un = (−1)n(N − n), n =
1, . . . , N ,

lim
N→∞

(CwN, wN)

(wNwN)
= lim

N→∞
1 + 2 + · · · + (N + 1)

1 + 4 + · · · + (N − 1)2
= 0.

Suppose that 0 ∈ W(C|�(0) ). Thus, 0 is a corner of W(C|�(0) ) and, by Theorem
4.1, it is an eigenvalue of C. Then there exists a non-zero vector u ∈ �(0) such that
Cu = 0, and so (Cu, u) = ((f2 + g1)u, (f2 + g1)u) = 0. Therefore, (f2 + g1)u =
0, which is impossible by Proposition 3.6. Hence, 0 /∈ W(C|�(0) ). Thus, W(B|�(0) ) =
(− 1

2 (c + d), +∞).
(iv) If � = 0 and c + d < 0, the proof proceeds analogously to (iii).
(v) If � = c + d = 0, then k = 0 and B|�(0) = 0. Thus, its numerical range is the

singleton {0}.
(vi) Let � < 0. Since B is selfadjoint, by Lemma 4.1 we have

W =
{

(c + d)|z|2 + kz̄ + k̄z

1 − |z|2 : z ∈ D

}
⊆ W(B|�(0) ) ⊆ R.

Considering r = (1 + |z|2)/(1 − |z|2) and φ = arg z − arg k, we easily verify that

W =
{

c + d

2
(r − 1) + |k|

√
r2 − 1 cos φ : φ ∈ R, r � 1

}
= R.

Therefore, W(B|�(0) ) = R. �

Remark 4.1. Theorem 4.2 describes the numerical range of the following infi-
nite tridiagonal selfadjoint matrix, which is the matrix representation, in the stan-
dard basis, of the selfadjoint pairing operator B = cf1g1 + df2g2 + kf1f2 + k̄g1g2
restricted to the subspace �(0),
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0 k̄ 0 0 · · ·
k c + d 2k̄ 0 · · ·
0 2k 2(c + d) 3k̄ · · ·
0 0 3k 3(c + d) · · ·
...

...
...

...
. . .

 , c + d ∈ R, k ∈ C. (30)

For q ∈ Z, we have the following result.

Theorem 4.3. Let the selfadjoint pairing operator B = cf1g1 + df2g2 + kf1f2 +
k̄g1g2, c, d ∈ R and k ∈ C, be restricted to the subspace �(q), q ∈ Z. Let � =
(c + d)2 − 4|k|2 and

ακ =
{

1+q
2 (d − c + κ

√
�) − d, if q � 0

1−q
2 (c − d + κ

√
�) − c, if q < 0

, κ ∈ {−1, 0, 1}.

Then W(B|�(q) ) is:

(i) [α1, +∞), if � > 0 and c + d > 0;
(ii) (−∞, α−1], if � > 0 and c + d < 0;
(iii) (α0, +∞), if � = 0 and c + d > 0;
(iv) (−∞, α0), if � = 0 and c + d < 0;
(v) {α0}, if � = c + d = 0;
(vi) the whole R, if � < 0.

Proof. The proof follows similar steps to the proof of Theorem 4.2, using Theorem
3.2 instead of Theorem 3.1. �

Remark 4.2. If q � 0, Theorem 4.3 describes the numerical range of the tridiagonal
selfadjoint matrix S

q
c,d given by

dq k̄
√

1 + q 0 0 · · ·
k
√

1 + q c + d + dq k̄
√

2(2 + q) 0 · · ·
0 k

√
2(2 + q) 2(c + d) + dq k̄

√
3(3 + q) · · ·

0 0 k
√

3(3 + q) 3(c + d) + dq · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

 , c, d ∈ R, k ∈ C.

If q < 0, Theorem 4.3 characterizes W(S
−q
d,c ).

The Hyperbolical Range Theorem will be used in the proof of Theorem 4.5 and
has the following statement:

Theorem 4.4 (Hyperbolical Range Theorem)[11]. Let A = (aij ) ∈ M2 and J =
diag(1, −1). Let α1, α2 be the eigenvalues of JA, and let

M = |λ1|2 + |λ2|2 − Tr(A∗JAJ), N = Tr(A∗JAJ) − 2Re(ᾱ1α2).
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Denote by l1 the line perpendicular to the line defined by α1 and α2 and passing
through α = 1

2 Tr(JA). Denote by l2 the line defined by a11 and −a22.

(a) If M > 0 and N > 0, then V +
J (A) is bounded by a branch of the hyperbola with

α1 and α2 as foci, transverse and non-transverse axis of length
√

N and
√

M,

respectively.
(b) If M > 0 and N = 0, then V +

J (A) is

(i) the line l1, if |a12| = |a21|;
(ii) an open half-plane defined by the line l1, if |a12| /= |a21|.

(c) If M > 0 and N < 0, then V +
J (A) is the whole complex plane.

(d) If M = 0 and N > 0, then V +
J (A) is a closed half-line in l2 with endpoint α1 or

α2.

(e) If M = N = 0, then V +
J (A) is

(i) the singleton {α}, if Tr(A) = 0;
(ii) an open half-line in l2 with endpoint α, if Tr(A) /= 0.

Next, we generalize Theorem 4.2 for non-selfadjoint pairing operators. We will
denote by Re(A) the selfadjoint operator 1

2 (A + A∗).

Theorem 4.5. Let the pairing operator B = cf1g1 + df2g2 + kf1f2 + lg1g2, c, d,

k, l ∈ C, be restricted to �(0). Let � = (c + d)2 − 4kl, and let

M = 1

2
|�| + |k|2 + |l|2 − 1

2
|c + d|2, N = 1

2
|�| − |k|2 − |l|2 + 1

2
|c + d|2.

Denote by l1 the line perpendicular to the line defined by α1 = − 1
2 (c + d) +

1
2

√
� and α2 = − 1

2 (c + d) − 1
2

√
�, and passing through − 1

2 (c + d). Denote by l2
the line defined by 0 and c + d.

(a) If M > 0 and N > 0, then W(B|�(0) ) is bounded by a branch of the hyperbola
with α1 and α2 as foci, transverse and non-transverse axis of length

√
N and√

M, respectively.
(b) If M > 0 and N = 0, then W(B|�(0) ) is

(i) the line l1, if |k| = |l|;
(ii) an open half-plane defined by the line l1, if |k| /= |l|.

(c) If M > 0 and N < 0, then W(B|�(0) ) is the whole complex plane.
(d) If M = 0 and N > 0, then W(B|�(0) ) is a closed half-line in l2 with endpoint α1

or α2.

(e) If M = N = 0, then W(B|�(0) ) is
(i) the singleton {0}, if c + d = 0;
(ii) an open half-line in l2 with endpoint − 1

2 (c + d), if c + d /= 0.



N. Bebiano et al. / Linear Algebra and its Applications 381 (2004) 259–279 275

Proof. By Lemma 4.1, W is a subset of W(B|�(0) ). Let J = diag(1, −1) and

A =
[

0 l

k c + d

]
.

It can be easily verified that

W =
{

1

1 − |z|2 (1 z̄)A(1 z)T : z ∈ D

}
= V +

J (A),

and so the subset W is described by the Hyperbolical Range Theorem. Let � =
(c + d)2 − 4kl and P = 2|k|2 + 2|l|2 − |c + d|2. The eigenvalues α1 and α2 of the
matrix JA are − 1

2 (c + d) ± 1
2

√
�, and we have

M = |α1|2 + |α2|2 − Tr(A∗JAJ) = 1

2
(|�| + P),

N = Tr(A∗JAJ) − 2Re(ᾱ1α2) = 1

2
(|�| − P).

It can be easily seen that M � 0 and

|�|2 = |c + d|4 + 16|k|2|l|2 − 8|k||l||c + d|2 cos(2α − 2β), (31)

where 2α = arg(kl) and β = arg(c + d). By the Hyperbolical Range Theorem, the
subset W of W(B|�(0) ) is bounded by a branch of a possibly degenerate hyperbola.
The following cases may occur:

Case 1. M > 0 and N > 0. We prove the claim that W(B|�(0) ) = W. The unit
eigenvectors associated with an extremum eigenvalue of Re(eiθB), θ ∈ [0, 2π), give
rise to boundary points of the numerical range of B. The real part of eiθB is
Re(eiθB) = cθf1g1 + dθf2g2 + kθf1f2 + k̄θ g1g2, where cθ = Re(eiθ c), dθ =
Re(eiθ d) and 2kθ = (k + l̄) cos θ + i(k − l̄) sin θ. Moreover, cθ + dθ = |c + d|
cos(β + θ). Let �θ = (cθ + dθ )

2 − 4|kθ |2. After some computations, we get �θ =
1
2 |�| cos(2θ + ψ) − 1

2P, where tan ψ = Im�/Re�. It follows that −M � �θ � N,

for all θ ∈ [0, 2π). Let θ be such that �θ > 0. If cθ + dθ > 0, by Theorem 3.1, the
minimum eigenvalue of the selfadjoint pairing operator Re(eiθB) is λθ

0 = − 1
2 (cθ +

dθ ) + 1
2

√
�θ . The eigenvectors associated with λθ

0 are vθ
0 = c0ezθ f1f2(1), where c0

is a non-zero complex number, zθ = 0, if kθ = 0, and zθ = λθ
0/k̄θ , if kθ /= 0. Then

zθ ∈ D and, as in the proof of Lemma 4.1 (i), for q = 0, we have

(Bvθ
0 , vθ

0 )

(vθ
0 , vθ

0 )
= (c + d)|zθ |2 + kz̄θ + lzθ

1 − |zθ |2 .

This point belongs to the boundary of W(B|�(0) ) and also belongs to W . As θ

varies in [0, 2π), all the boundary points of W(B|�(0) ) belong to W . If cθ + dθ <

0, the discussion follows along similar lines. Thus, W(B|�(0) ) = W is bounded by
a branch of the hyperbola with foci α1 and α2, transverse axis of length

√
N and

non-transverse axis of length
√

M .
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Case 2. M > 0 and N = 0. Since N = 0, we have M = |�| = P . Therefore, �θ =
1
2M(cos(2θ + ψ) − 1) and it can be easily seen that there exists θ ′ = −ψ/2 ∈ [0, 2π)

such that the real sinusoidal function f (θ) := �θ satisfies f (θ) < 0, for θ /= θ ′ and
f (θ ′) = 0. In this case, there is a unique supporting line of W , specifically the line
l1 passing through −(c + d)/2 and perpendicular to the line defined by α1 and
α2. If |k| /= |l|, then W is an open half-plane defined by the line l1. By Theorem
4.2 iii) or iv), the boundary of the half-plane does not belong to W(B|�(0) ) and so
W(B|�(0) ) coincides with W . If |k| = |l| /= 0, then W is the line l1. In this case, �θ

and cθ + dθ vanish only in the direction θ = (π/2 − β) mod π . By Theorem 4.2 v),
it follows that W(B|�(0) ) coincides with W . If k = l = 0, then M = 0, contradicting
the hypothesis.

Case 3. M > 0 and N < 0. Since N < 0, there does not exist any supporting line
for the set W, which is the whole complex plane. Hence, W(B|�(0) ) = C.

Case 4. M = 0 and N > 0. Since M = 0, we have N = |�| = −P > 0. In this
case, there are infinite supporting lines of the set W and the branch of the hyperbola
given by the Hyperbolical Range Theorem degenerates into a closed half-line in
the line defined by 0 and c + d , with endpoint either α1 or α2. For θ ∈ [0, 2π),
�θ = 1

2N(cos(2θ + ψ) + 1) � 0. Using analogous arguments to those in the proof
of the Case 2, we conclude that W(B|�(0) ) = W .

Case 5. M = 0 and N = 0. It can be easily seen that N = � = 0 and straightfor-
ward computations yield |k| = |l| = 1

2 |c + d|. If k = 0, having in mind Theorem
4.2 (v), we conclude that W(B) = {0}. If k /= 0, W is an open half-line in the line
defined by 0 and c + d and with endpoint − 1

2 (c + d). In this case, �θ = 0 for θ ∈
[0, 2π), and cθ + dθ vanishes only in the direction θ = (π

2 − α) mod π . By similar
arguments to those used above, it can be shown that W(B|�(0) ) = W .

Case 6. M = 0 and N < 0. Under these hypothesis, it can easily be seen that 0 =
−M � �θ � N < 0, which is impossible. �

Using Theorem 3.2, Lemma 4.1 and the ideas in the proof of Theorem 4.5, we
may characterize the numerical range of the pairing operator B, restricted to the
subspace �(q), q ∈ Z. We shall prove that these sets are homothetic, that is, they are
bounded by (possibly degenerate) homothetic hyperbolas.

Theorem 4.6. Let the pairing operator B = cf1g1 + df2g2 + kf1f2 + lg1g2, c, d,

k, l ∈ C, be restricted to �(q), q ∈ Z. Let � = (c + d)2 − 4kl and let

M = 1

2
|�| + |k|2 + |l|2 − 1

2
|c + d|2, N = 1

2
|�| − |k|2 − |l|2 + 1

2
|c + d|2.
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Let κ ∈ {−1, 0, 1} and εε′ ∈ {11, 02, 20}. Denote by l1 the line passing through
α0

11 and perpendicular to the line defined by α1
11 and α−1

11 , and denote by l2 the line
defined by α0

20 and α0
02, where

ακ
εε′ =

{
1+q

2 (εd − ε′c + κ
√

�) − d, if q � 0,
1−q

2 (εc − ε′d + κ
√

�) − c, if q < 0.

(a) If M > 0 and N > 0, then W(B|�(q) ) is bounded by a branch of the hyper-
bola with α1

11 and α−1
11 as foci, transverse and non-transverse axis of length

(1 + |q|)√N and (1 + |q|)√M, respectively.
(b) If M > 0 and N = 0, then W(B|�(q) ) is

(i) the line l1, if |k| = |l|;
(ii) an open half-plane defined by the line l1, if |k| /= |l|.

(c) If M > 0 and N < 0, then W(B|�(q) ) is the whole complex plane.
(d) If M = 0 and N > 0, then W(B|�(q) ) is a closed half-line in l2 with endpoint α1

11
or α−1

11 .

(e) If M = N = 0, then W(B|�(q) ) is
(i) the singleton {α0

11}, if c + d = 0;
(ii) an open half-line in l2 with endpoint α0

11, if c + d /= 0.

Proof. We prove that

W(B|�(q) ) = (1 + |q|)W(B|�(0) ) + τq, q ∈ Z, (32)

where τq = qd , if q � 0, and τq = −qc, if q < 0. By Lemma 4.1, W(B|�(q) ) con-
tains (1 + |q|)W + τq , and by Theorem 4.5, we have that W = W(B|�(0) ). Thus,
(1 + |q|)W(B|�(0) ) + τq ⊆ W(B|�(q) ), q ∈ Z. Let q � 0. As in the proof of Theo-
rem 4.4, we consider Re(eiθB) = cθf1g1 + dθf2g2 + kθf1f2 + k̄θ g1g2, with cθ =
Re(eiθ c), dθ = Re(eiθ d) and 2kθ = (k + l̄) cos θ + i(k − l̄) sin θ .

(a) Let θ ∈ [0, 2π) be such that �θ = (cθ + dθ )
2 − 4|kθ |2 > 0. If cθ + dθ > 0, by

Theorem 3.2, the minimum eigenvalue of the selfadjoint pairing operator Re(eiθB)

restricted to �(q), q � 0, is

λθ
0q = q

2
(dθ − cθ ) − 1

2
(cθ + dθ ) + 1 + q

2

√
�θ = (1 + q)λθ

00 + qdθ ,

and the eigenvectors of Re(eiθB) associated with the eigenvalue λθ
0q are the vectors

vθ
0q = c0f̃

q

2 ezθ f1f2(1), where c0 is a non-zero complex number, zθ = 0, if kθ = 0,

zθ = λθ
00/k̄θ , if kθ /= 0, and f̃2 = 1√

1−|zθ |2 (f2 − z̄θ g1). Using analogous arguments

to those in the proof of Lemma 4.1, we find

wθ
q = (Bvθ

0q, vθ
0q)

(vθ
0q, vθ

0q)
= (1 + q)

(c + d)|zθ |2 + kz̄θ + lzθ

1 − |zθ |2 + qd, (33)
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which is a boundary point of W(B|�(q) ), q � 0. If cθ + dθ < 0, the reasoning is
similar. From (33), we get the following relation between the boundary points wθ

q of

W(B|�(q) ), q > 0, and the boundary points wθ
0 of W(B|�(0) ): wθ

q = (1 + q)wθ
0 + qd.

This means that the boundary generating curve of W(B|�(q) ), q > 0, is obtained
from the boundary generating curve of W(B|�(0) ) by a dilation of ratio 1 + q and
a translation associated with qd . Hence, the equality in (32) holds for q � 0. That
is, W(B|�(q) ), q � 0, is bounded by a branch of the hyperbola with α1

11 and α−1
11 as

foci, and transverse and non-transverse axis of length (1 + q)
√

N and (1 + q)
√

M,

respectively.
(b) If |k| /= |l|, then (1 + q)W + qd is an open half-plane defined by the line

l1. By similar arguments to those in the proof of Theorem 4.3 iii), it can be shown
that the boundary of this half-plane does not belong to W(B|�(q) ) and so W(B|�(q) )

coincides with (1 + q)W + qd , for q � 0. If |k| = |l| /= 0, then (1 + q)W + dq is
the line l1. In this case, �θ = (cθ + dθ )

2 − 4|kθ |2 and cθ + dθ vanish only in one
direction, and so the equality in (32), q � 0, follows.

(c) Since W = C, it is clear that W(B|�(q) ) = C.
(d) In this case, the set (1 + q)W + qd degenerates into a closed half-line in l2

with endpoint α1
11 or α−1

11 . Since �θ � 0 for θ ∈ [0, 2π), by analogous arguments to
those used above, the equality in (32), q � 0, is proved to hold.

(e) As in the proof of Theorem 4.5, we have |k| = |l| = 1
2 |c + d|. If k = 0, we

conclude that W(B|�(q) ) = {qd}. If k /= 0, (1 + q)W + qd is an open half-line in l2
with endpoint α0

11 and we may conclude that W(B|�(q) ) = (1 + q)W + qd .
If q < 0, the proof is similar. �

Remark 4.3. The pairing operator B = cf1g1 + df2g2 + kf1f2 + lg1g2 restricted
to �(q) is represented by the tridiagonal matrix T

q
c,d in Remark 3.1. Thus, W(T

q
c,d),

q � 0, is characterized by Theorem 4.6. For q < 0, the pairing operator B = cf1g1 +
df2g2 + kf1f2 + lg1g2 restricted to �(q) is represented by the tridiagonal matrix
T

−q
d,c , and so W(T

q
c,d) is given by the same theorem, replacing q, c and d by −q, d

and c, respectively.
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