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Abstract

Geometric properties of the numerical ranges of operators on an indefinite inner product
space are investigated. In particular, classes of matrices are presented such that the boundary
generating curves of the J -numerical range are hyperbolical. The curvature of the J -numerical
range at a boundary point is studied, generalizing results of Fiedler on the classical numerical
range.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout the paper, Mn×m denotes the set of n×m complex matrices, simply
Mn, if n = m, denoting Hn the set of n× n Hermitian matrices. For H ∈ Hn and
A ∈ Mn, consider the subsets of the complex plane

VH (A) =
{
x∗Ax
x∗Hx

: x ∈ Cn, x∗Hx /= 0

}
,
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and the H -numerical range of A denoted and defined by

WH(A) = VH (HA).

If H is the identity matrix In ∈ Mn, then VH (A) and WH(A) reduce to the clas-
sical numerical range, usually denoted by W(A). If H is a non-singular indefinite
Hermitian matrix, the sets WH(A) and VH (A) can be understood as natural gener-
alizations of the numerical range with respect to the Krein structure defined by the
indefinite inner product 〈x, y〉H = y∗Hx, x, y ∈ Cn [12].

For convenience, we consider the related sets

V ±
H (A) = {

x∗Ax : x ∈ Cn, x∗Hx = ±1
}

and W±
H (A) = V ±

H (HA).

Evidently, we have

W+
−H (A) = −W−

H (A), WH (A) = W+
H (A) ∪W+

−H (A).

If H = In, then VH (A) = V +
H (A) = WH(A) = W+

H (A) = W(A) and V −
H (A) =

W−
H (A) = ∅.
For any A ∈ Mn, W(A) contains σ(A), the spectrum of A. For the H -numerical

range, we have the following inclusion property: σH (A) ⊂ WH(A), σH (A) denoting
the set of the eigenvalues of A that have H -anisotropic eigenvectors, that is, vec-
tors x for which x∗Hx /= 0. Compactness and convexity are basic properties of the
classical numerical range. Actually, W(A) is always a compact and convex set for
A ∈ Mn [9]. In contrast with the classical case, the set WH(A) may not be closed and
is either unbounded or a singleton [12,13]. (For λ ∈ C, WH(A) = {λ} if and only if
HA = λH .) On the other hand, WH(A) may not be convex. Nevertheless, WH(A)

is pseudo-convex [12]; that is, for any pair of distinct points x, y ∈ WH(A), either
WH(A) contains the closed line segment joining x and y, or WH(A) contains the
line defined by x and y, except the open line segment joining x and y.

LetA = ReA+ i ImA, where ReA = (A+ A∗)/2 and ImA = (A− A∗)/2i, be
the cartesian decomposition of A ∈ Mn. For H ∈ Hn, the H -shell of A is the subset
of R3 denoted and defined by

SH (A)=
{(

x∗ Re(HA)x

x∗Hx
,
x∗ Im(HA)x

x∗Hx
,
x∗A∗HAx

x∗Hx

)
: x ∈ Cn, x∗Hx /= 0

}
.

This concept motivated some investigation [2]. If H = In, then SH (A) reduces to
the Davis–Wiedlant shell S(A) studied by Davis [4,5]. The sets

S±
H (A) = {(

x∗ Re(HA)x, x∗ Im(HA)x, x∗A∗HAx
) : x ∈ Cn, x∗Hx = ±1

}
are closely related to the H -shell of A. Obviously,

S+
−H (A) = −S−

H (A), SH (A) = S+
H (A) ∪ S+

−H (A).

Since WH(A) (W
±
H (A)) is the image of SH (A) (S

±
H (A)) under the projection

(x, y, r) �→ x + iy, more information on the matrix A can be obtained from SH (A)

(S±
H (A)). Moreover, there is an interesting interplay between the algebraic proper-

ties of the matrix A and the geometrical properties of SH (A).
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In this paper, we assume H non-singular. Without loss of generality, we can con-
sider in the definitions of WH(A) and SH (A), instead of H, the matrix J = P(Ir ⊕
−In−r )P T, where P is a permutation matrix. In fact, using Sylvester’s law of inertia
[8], we can easily check that WH(A) = WJ (R

−1AR) and SH (A) = SJ (R
−1AR),

R being a non-singular matrix such that R∗HR = J is the inertia matrix of H .
We recall that a matrix U ∈ Mn is pseudo-unitary of signature (r, n− r), 0 �

r � n, if and only if U∗JU = J . This matrix is also called J -unitary. The pseudo-
unitary matrices of signature (r, n− r) form a group denoted by Ur,n−r . For any
U ∈ Ur,n−r , VJ (A) = VJ (U

∗AU).
For simplicity of notation, we consider throughout

H1 = Re(JA) and H2 = Im(JA).

Let κ ∈ WJ (A) be a boundary point of WJ (A). A line containing κ and defining
two half planes, such that one of them does not contain W+

J (A) (−W−
J (A)) but it

contains −W−
J (A)(W

+
J (A)) will be called a supporting line of WJ (A). Supporting

lines may not exist, and they may not be unique. As proved in [1, Theorem 2.2], if
ux + vy + w = 0 is the equation of a supporting line L of WJ (A), then

det(uH1 + vH2 + wJ) = 0, (1)

and −w is the maximum or the minimum eigenvalue of the matrix uJH1 + vJH2,
according to ux + vy + w � 0, for all points in W+

J (A) (W
−
J (A)), or ux + vy +

w � 0, for these points. Conversely, the intersection L ∩W±
J (A) consists of all

points 〈Az, z〉J for which z is an eigenvector of uJH1 + vJH2 corresponding to −w
such that z∗Jz = ±1. Since det(uH1 + vH2 + wJ) is a homogeneous polynomial
of degree n, (1) can be considered the dual (line) equation of an algebraic curve
(for details on algebraic curves, see e.g. [16,18]). Its real part, throughout denoted by
CJ (A) (simply C(A), if J = In), is called the boundary generating curve of WJ (A).
Kippenhahn [10] proved that the curve C(A) generates W(A) as its convex hull. The
algebraic curve CJ (A) generates WJ (A) as its pseudo-convex hull, which is obtained
in the following way: for any two points x1, x2 in the boundary generating curve, let
zi ∈ Cn be such that

z∗i JAzi
z∗i J zi

= xi, i = 1, 2;
take the closed line segment defined by x1, x2, if (z∗1Jz1)(z

∗
2Jz2) > 0; and take the

two rays {αx1 + (1 − α)x2 : α � 0 or α � 1}, if (z∗1Jz1)(z
∗
2Jz2) < 0. The boundary

generating curve CJ (A) has class n, that is, through a general point in the plane there
are n lines (may be complex) tangent to CJ (A), and it has the eigenvalues of A as
its real foci.

This paper is organized as follows. In Section 2, WJ (A) is described for A a
J -normal matrix and A a J -unitary matrix with simple eigenvalues, answering affir-
matively questions posed by Li et al. in [12]. It is also proved that if A is a J -normal
matrix and JH1 has simple eigenvalues, then S+

J (A) is a polyhedron, proving, in
a particular case, a conjecture formulated in [2]. In Section 3, classes of matrices
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are presented such that the boundary generating curves of WJ (A) are hyperbolical.
In Section 4, a formula for the curvature of WJ (A) at a boundary point is obtained,
and the connection between the curvature of the boundary of WJ (A) at λmax(H1)

and of the local J -generalized Levinger curve at 1/2 is investigated. These results
generalize results of Fiedler [6,7] on the classical numerical range.

2. Results for J -Hermitian, J -normal and J -unitary matrices

It is known that WJ (A) ⊆ R if and only if A is J -Hermitian, that is, JA ∈ Hn.
Now, we prove the following.

Proposition 2.1. If A is a J -Hermitian matrix such that the eigenvalues of A are
not all real, then WJ (A) is the whole real line.

Proof. Since JA ∈ Hn, then it is obvious that WJ (A) ⊆ R. Suppose that the eigen-
values λ1, λ̄1, . . . , λr , λ̄r , λ2r+1, . . . , λn of A are all distinct, and suppose that only
λ2r+1, . . . , λn are real. It is clear that the corresponding eigenvectors u1, v1, . . . , ur ,

vr , u2r+1, . . . , un are linearly independent. Clearly, u∗
i J ui=v∗

i J vi=0, i=1, . . . , r .
Let D ∈ Mn be the matrix whose columns are the vectors of this eigenbasis. The
matrix D∗JD is a block diagonal matrix with 2×2 and 1×1 blocks, corresponding
to complex and to real eigenvalues, respectively. Moreover, the 2×2 blocks have
zero diagonal entries and the off diagonal entries non-zero. Hence, det(D∗JD) /= 0,
which implies u∗

i J vi = γi /= 0, and so u∗
i JAvi = λ̄iγi , i = 1, . . . , r .

Consider the subset Rui,vi (A) of WJ (A) defined by

Rui,vi (A)=
{
(ui + avi)

∗JA(ui + avi)

(ui + avi)∗J (ui + avi)
: a ∈ C, (ui + avi)

∗J (ui + avi) /=0

}
.

Since λi /= λ̄i , by straightforward computation, we can prove that

Re(aλ̄iγi)

Re(aγi)
= |λi |(cosφi − sinφi tan ξi)

are elements of Rui,vi (A), for φi = −arg λi and ξi = arg a + arg γi . Therefore,
Rui,vi (A) is the whole real line, as well as WJ (A). By a perturbation, we can take
the eigenvalues of A simple, and the result follows by a continuity argument, as it
can be easily seen, for instance, by a contradiction argument. �

Remark 2.1. The set WJ (A) may be the whole real line even if the eigenvalues of
A are all real. Indeed, consider A = diag(1, 2, 3) and J = diag(1,−1, 1). It can be
easily shown that WJ (A) is the real line.
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A matrix A ∈ Mn is called essentially J -Hermitian if µA+ υIn is J -Hermitian,
for some 0 /= µ ∈ C and υ ∈ C.

Corollary 2.1. If A is essentially J -Hermitian and the eigenvalues of the J -Hermi-
tian matrix B = µA+ υIn, 0 /= µ ∈ C, υ ∈ C, are not all real, then WJ (A) is the
whole straight line passing through −υ/µ and with direction −argµ.

Proof. By the hypothesis and using the previous theorem, we can conclude that
WJ (B) = R. Since WJ (µA+ υIn) = µWJ (A)+ υ, the result easily follows. �

Let A ∈ Mn. In [14], it was proved that if a boundary point w in WJ (A) is a
corner of WJ (A), that is, it is on more than one supporting line of WJ (A), then w

is an eigenvalue of A and there exists an eigenvector x associated to w, such that
Ax = wx, A[∗]x = w̄x, x∗Jx = ±1.

Clearly, ReWJ (A) = WJ (JH1) and ImWJ (A) = WJ (JH2).

Lemma 2.1. Let A ∈ Mn and x ∈ Cn such that x∗Jx = ±1. If W±
J (JH1) is a

closed half line then the following conditions are equivalent:

(a) Re(x∗JAx) is the extreme point of ±ReW±
J (A);

(b) x∗H1x is the extreme point in ±W±
J (JH1);

(c) JH1x = λMx, where λM is the maximum or the minimum eigenvalue in
σJ (JH1).

Proof. The equivalence of (a) and (b) is obvious. Suppose that w is the extreme
point of the closed half-line W±

J (JH1). Then w is a corner of W±
J (JH1), and so it

is the maximum or the minimum eigenvalue in σJ (JH1), that is, w = λM .
(c) ⇒ (b) If x is an eigenvector of JH1 associated with λM , then ±(x∗H1x) = λM

is the extremum of W±
J (JH1).

(b) ⇒ (c) (By contradiction.) Suppose that x is not an eigenvector of JH1 associ-
ated with the eigenvalue λM , that is, H1x /= λMJx. Then ±(x∗H1x) /= λM , and λM
would not be the extreme point of W±

J (JH1), a contradiction. �

In [1], an algorithm to describe the boundary generating curve of VJ (A) was
presented. In this spirit, we prove the following proposition.

Proposition 2.2. Let A ∈ Mn and let θ belong to a subset � of [0, 2�) such that
the n eigenvalues λ1(θ), . . . , λn(θ) of J Re(e−iθJA) are real and simple. Let uk(θ)
be an eigenvector of J Re(e−iθJA) associated with λk(θ), k = 1, . . . , n. Then the
boundary generating curve CJ (A) of WJ (A) is given by{

zk(θ) = u∗
k(θ)JAuk(θ)

u∗
k(θ)Juk(θ)

: θ ∈ �, k = 1, . . . , n

}

and WJ (A) is the pseudo-convex hull of CJ (A).
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Proof. Let pA(u, v,w) = det(uH1 + vH2 + wJ). The curve CJ (A) is the dual
curve to the algebraic curve determined by pA(u, v,w) = 0 in the complex pro-
jective plane CP2, that is, consists of all points [x, y, z] in CP2 such that ux + vy +
wz = 0 is a tangent line to pA(u, v,w) = 0. As usual, we identify the point (x, y) in
C2 with [x, y, 1] in CP2, and identify any point [x, y, z] in CP2 such that z /= 0 with
(x/z, y/z) in C2. Hence, in particular, the plane R2 (identified with C) sits in CP2

by the way of the identification of the point (a, b) of R2 with [a, b, 1] in CP2. In [1,
Theorem 2.2], it was proved that if ux + vy + w = 0 is the equation of a supporting
line of WJ (A), then pA(u, v,w) = 0. Since the dual curve of CJ (A) is the original
curve pA(u, v,w) = 0, we infer, in particular, that every supporting line of WJ (A)

is tangent to CJ (A). Consider the real direction (cos θ, sin θ), θ ∈ [0, 2�), for which
(1) provides n real eigenvalues for J Re(e−iθJA) = cos θJH1 + sin θJH2, namely,
λ1(θ), . . . , λn(θ). Let uk(θ) be an eigenvector of J Re(e−iθJA) associated with
λk(θ), k = 1, . . . , n. If the eigenvalues corresponding to eigenvectors with positive
J -norm are all smaller (or larger) than all the eigenvalues corresponding to eigenvec-
tors with negative J -norm, then supporting lines of WJ (A) exist. Let −w(θ) be the
maximum (or the minimum) eigenvalue of J Re(e−iθJA), so that cos θx + sin θy =
w(θ) is a supporting line L of WJ (A). Since λ1(θ), . . . , λn(θ) are distinct, then
u1(θ), . . . , un(θ) form an eigenbasis and u∗

k(θ)Juk(θ) /= 0, k = 1, . . . , n. Applying
Lemma 2.1 to the matrix e−iθJA, we conclude that the intersection L ∩W±

J (A)

consists of all points 〈Az, z〉J for which z is an eigenvector of cos θJH1 + sin θJH2
corresponding to −w(θ) such that z∗Jz = ±1. These points belong to CJ (A) which
is given by

uk(θ)
∗JAuk(θ)

uk(θ)∗Juk(θ)
= zk(θ), θ ∈ �, k = 1, . . . , n.

By the pseudo-convexity of WJ (A), we conclude the result.
If there does not exist supporting lines of WJ (A), then in any real direction in

R2, say (cos θ, sin θ), θ ∈ [0, 2�), there are n real lines tangent to CJ (A) with this
direction, namely the n real eigenvalues λ1(θ), . . . , λn(θ) of J Re(e−iθJA) and the
result easily follows. �

Remark 2.2. The hypothesis on the simplicity of the eigenvalues in Proposition
2.2 ensures that all eigenvectors are anisotropic. If λk(θ), k = 1, . . . , n, are not all
simple, but have anisotropic associated eigenvectors uk(θ), k = 1, . . . , n, the result
is still valid.

The J -adjoint of A ∈ Mn, denoted by A[∗], is defined by 〈Ax, y〉J = 〈x,A[∗]y〉J ,
x, y ∈ Cn, and it can be expressed explicitly in terms of A and J by A[∗] = JA∗J .

A matrix A ∈ Mn is said to be J -normal if and only if AA[∗] = A[∗]A. It is well-
known that if A ∈ Mn is normal, then W(A) is the convex hull of the spectrum of A.
An analogous result for WJ (A) and a J -normal matrix A, with simple eigenvalues,
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is obtained in the next proposition. This answers, in a particular case, a question
proposed in [12].

Proposition 2.3. Let A ∈ Mn be a J -normal matrix with simple eigenvalues. If the
eigenvalues of A+ A[∗] are all real, then WJ (A) is the pseudo-convex hull of these
eigenvalues.

Proof. Denote by λ1, . . . , λn the distinct eigenvalues of A. For k = 1, . . . , n, let
vk be an eigenvector of A associated with the eigenvalue λk . Since by hypothesis A
is J -normal, then Awk = λkwk , for wk = A[∗]vk . Because the eigenvalues of A are
all distinct, the corresponding eigenvectors are linearly independent. Hence, there
exist complex numbers ck such that wk = ckvk . Moreover, (A+ A[∗])vk = (λk +
ck)vk , and since the eigenvalues of A+ A[∗] are all real, we have ck = λ̄k . There-
fore, A[∗]vk = λ̄kvk . Easy calculations show that J Re(e−iθJA)vk = Re(e−iθλk)vk ,
[0, 2�]. We notice that the eigenvector vk does not depend on θ and vk is an eigen-
vector of A associated with the eigenvalue λk , k = 1, . . . , n. By Proposition 2.2,
(v∗
k JAvk)/(v

∗
k J vk) = λk, k = 1, . . . , n, give the boundary generating curve of

WJ (A). It is straightforward to show that WJ (A) is the pseudo-convex hull of the
eigenvalues of A. �

Remark 2.3. If J = In, then A[∗] = A∗ and A+ A[∗] is Hermitian, and so its
eigenvalues are all real. Hence, in the particular case J = In, Proposition 2.3 yields
the well-known property that W(A) is the convex hull of the spectrum of A, when A
is a normal matrix (valid even if the eigenvalues of A are not all simple).

Remark 2.4. The hypothesis on the simplicity of the eigenvalues in Proposition
2.3 ensures that all eigenvectors are anisotropic. The existence of multiple eigen-
values may lead to the existence of isotropic eigenvectors, that is, vectors x for which
x∗Jx = 0. Let J = −I1 ⊕ I1 and consider the J -Hermitian matrix

A =
[

3 −1
1 1

]
.

The double eigenvalue of A is 2, the eigenvectors associated with 2 are isotropic and
WJ (A) is R\{2}. In this example, the concept of pseudo-convex hull is meaningless.

We say that W±
S (A) is polygonal if it is the intersection of a finite number of

closed half-planes or the whole complex plane. The setWS(A) is said to be polygonal
if the closures of the both convex components W±

S (A) are polygonal. In [17], it was
proved that if A is a J -normal matrix, then WJ (A) is polygonal, the converse not
being true in general.

It is well-known that A ∈ Mn is unitary if and only if W(A) is a polygon in-
scribed in the unit disc D and σ(A) ⊂ ∂D, the boundary of D, that is, the unit circle.
Whether an analogous result is valid for WJ (U), when U is a pseudo-unitary matrix,
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is a question proposed in [12]. In this vein, we have the following result. We observe
that U ∈ Ur,n−r if and only if U [∗]U = In.

Corollary 2.2. If the eigenvalues of U ∈ Ur,n−r are all simple, then WJ (U) is the
pseudo-convex hull of these eigenvalues.

Proof. Letvk be an eigenvector ofU associated with the eigenvalueλk , k = 1, . . . , n.
Hence (Uvk)∗ = λ̄kv

∗
k , and it can be easily seen that

v∗
kU

∗Jvk = λ̄kv
∗
k J vk. (2)

Since U [∗]U = In and Uvk = λkvk , we easily get λkU [∗]vk = vk , and so

v∗
k J vk = λkv

∗
kU

∗Jvk. (3)

From (2) and (3), we can conclude that |λk| = 1, k = 1, . . . , n, that is, the spec-
trum of U is on the unit circle. We may also conclude that U [∗]vk = λ̄kvk , and vk is
an eigenvector of U + U [∗] corresponding to the eigenvalue λk + λ̄k , k = 1, . . . , n.
Since the eigenvalues of U + U [∗] are all real, applying Proposition 2.3 to the J -
normal matrix U , the result follows. �

A polyhedral set is the intersection of finitely many closed half-planes or the
whole R3. The Davis–Wiedlant shell S(A) is a polyhedron, that is, the convex hull of
a finite number of points in R3, if and only if A is a normal matrix [4]. A polyhedron
is clearly a bounded polyhedral set.

In [2], it was conjectured that, for H -normal operators, S+
H (A) is convex and

its closure is a polyhedral set. The conjecture was proved for indefinite inner prod-
uct spaces of dimension at most three, and for H invertible with only one positive
eigenvalue. In this vein we have the following result.

Proposition 2.4. If A ∈ Mn is a J -normal matrix and the eigenvalues of JH1 are
all simple, then S+

J (A) (S
−
J (A)) is a polyhedron.

Proof. Let H1 = Re(JA) and H2 = Im(JA). By the hypothesis, A is J -normal,
that is, AJA∗J = JA∗JA. This implies that

H1JH2 = H2JH1 (4)

and so

A[∗]A = H1JH1 +H2JH2. (5)

If α1, . . . , αn are the distinct eigenvalues of JH1, then JH1vk = αkvk , where the
eigenvectors vk of JH1 associated with αk are linearly independent vectors such
that v∗

k J vk = 1, k = 1, . . . , n. We show that the eigenvectors vk of JH1 are also
eigenvectors of JH2 and of A[∗]A. Indeed, from JH1vk = αkvk and using (4), we
have JH1JH2vk = JH2JH1vk = αkJH2vk. It follows that JH2vk is an eigenvector
of JH1 associated with αk . Thus, there exist non-zero real numbers βk such that
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JH2vk = βkvk . In fact, since βk = v∗
kH2vk , it is a real number. Moreover, from (5),

we have A[∗]Avk = J (H1JH1 +H2JH2)vk = (α2
k + β2

k )vk , that is, vk is an eigen-
vector ofA[∗]A associated with the eigenvalue α2

k+β2
k . Now, let z=(x∗H1x, x

∗H2x,

x∗A∗JAx) be an arbitrary element in S+
J (A). Writing x = ∑n

i=1 ckvk , ck ∈ C, we
get z = ∑n

k=1 |ck|2(αk, βk, α2
k + β2

k ). An analogous result holds for S−
J (A). �

Remark 2.5. The present approach does not allow to relax the condition on the
simplicity of the eigenvalues of JH1.

A matrix A ∈ Mn is called J -decomposable if there exists a pseudo-unitary mat-
rix U ∈ Mn such that U∗JAU = A1 ⊕ A2, where A1, A2 are square matrices. Oth-
erwise, A is called J -indecomposable. We notice that the next result was previously
obtained by Li and Rodman in [14]. Here we present an alternative proof.

Theorem 2.1. Let A ∈ Mn be J -indecomposable. If z ∈ σJ (A), then z is in the
interior of WJ (A).

Proof. (By contradiction.) Suppose that z = a + ib ∈ σJ (A) is in the boundary of
WJ (A). Then there exists a supporting line passing through z and there exists φ0 ∈ R

such that a cosφ0 + b sinφ0 = λM(e−iφ0JA), where λM(e−iφ0JA) is the maximum
(or minimum) eigenvalue of J Re(e−iφ0JA). Let x be an eigenvector of A associated
with the eigenvalue z, such that x∗Jx = ±1. From e−iφ0JAx = e−iφ0(a + ib)Jx,
we easily get

x∗Re(e−iφ0JA)x

x∗Jx
= a cosφ0 + b sinφ0. (6)

Clearly Re(e−iφ0JA) = H1 cosφ0 +H2 sinφ0, and so it follows from (6) that

(H1 cosφ0 +H2 sinφ0)x = (a cosφ0 + b sinφ0)Jx.

This in conjunction with the condition Ax = zx gives

(H1 sinφ0 −H2 cosφ0)x = (a sinφ0 − b cosφ0)Jx.

Hence, H1x = aJx and H2x = bJx. Now, it can be easily shown that x∗JA =
zx∗J . Taking the pseudo-unitary matrix U whose first column is x, we have
U∗JAU = [z] ⊕ A1, a contradiction. �

3. Hyperbolical boundary generating curves

The classical numerical range of a 2×2 matrix A is an elliptical disc, possi-
bly degenerate, with the eigenvalues λ1 and λ2 of A as foci and minor axis of
length

√
Tr(A∗A)− |λ1|2 − |λ2|2. For A ∈ M2 and J = I1 ⊕ −I1, the Hyperbolical
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Range Theorem [1] asserts that WJ (A) is bounded by a non-degenerate
hyperbola, with the eigenvalues λ1 and λ2 of A as foci and non-transverse axis
of length

√|λ1|2 + |λ2|2 − Tr(A[∗]A), if 2 Re(λ̄1λ2) < Tr(A[∗]A) < |λ1|2 + |λ2|2.
For the degenerate cases, WJ (A) is a singleton, a line, a subset of a line, the whole
complex plane, or the complex plane except a line. In this section, we present a
hyperbolical range theorem for a wide class of matrices.

Consider the block matrix

A =
[
aIr X

Y bIn−r

]
, a, b ∈ C, (7)

where X, Y ∗ are r × (n− r) complex matrices, such that XY and YX are normal
matrices, and let p = min(r, n− r). In [3], it was proved that the numerical range
of A is the convex hull of at most p ellipses, all of which centered at (a + b)/2. We
prove that, for A of type (7) and J = Ir ⊕ −In−r , 0 < r < n, the set WJ (A) is the
pseudo-convex hull of at most p hyperbolas, all centered at (a + b)/2.

Lemma 3.1. Let J = Ir ⊕ −In−r , 0 < r < n, and p = min(r, n− r). Let A be a
block matrix of type (7), such that XY and YX are normal matrices, σ1, . . . , σp and
δ1, . . . , δp being the singular values of X and Y, respectively. Then, there exists a
pseudo-unitary matrix U such that

U∗JAU =
[
aIr �
� −bIn−r

]
, (8)

where �,�∗ ∈ Mr,n−r , the diagonal entries of � and � are σ1eiφ1 , . . . , σpeiφp and
δ1eiφ1 , . . . , δpeiφp , respectively, for some φ1, . . . , φp ∈ R, all the other entries being
zero.

Proof. By the singular value decomposition, there exist unitary matrices U1 ∈ Mr ,
U2 ∈ Mn−r such that the diagonal entries of U∗

1XU2 are the singular values σ1, . . . ,

σp of X, all the other entries being zero. If XY and YX are normal matrices, then
the diagonal entries of U∗

1 Y
∗U2 are −δ1e2iφ1 , . . . ,−δpe2iφp , with δ1, . . . , δp the

singular values of Y , and φ1, . . . , φp ∈ R, all the other entries being zero [8, p.
426]. Moreover, let D1 = diag(eiη1 , . . . , eiηp )⊕ Ir−p, D2 = diag(eiµ1 , . . . , eiµp)⊕
In−r−p such that µl − ηl = φl , l = 1, . . . , p. It can be easily seen that the
block matrix U = (U1D1)⊕ (U2D2) satisfies U∗JU = J and has the asserted
property. �

Before the main result of this section, we recall that if T ∈ Mn is a block matrix

T =
[
X Y

Z W

]
,

such thatX, Y,Z,W are square matrices and all commute, then det(T ) = det(XW −
ZY) (see, e.g. [11]).
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Theorem 3.1. Let A and J be matrices under the conditions of Lemma 3.1, and let

2βl± = a + b ±
√
(a − b)2 − 4σlδle2iφl , l = 1, . . . , p. (9)

If

2 Re(βl+βl−) < |a|2 + |b|2 − σ 2
l − δ2

l < |βl+|2 + |βl−|2, l = 1, . . . , p,

(10)

then the boundary generating curve of WJ (A) is given by the p hyperbolas (some
possibly coincident), all centered at (a + b)/2, with foci at βl±, with non-transverse

axis of length
√

|βl+|2 + |βl−|2 − |a|2 − |b|2 + σ 2
l + δ2

l , l = 1, . . . , p, and possibly
a point, a if n < 2r, and b if n > 2r. The set WJ (A) is the pseudo-convex hull of
these p hyperbolas.

Proof. Since WJ (A) = VJ (U
∗JAU), without loss of generality, we may concen-

trate on the study of VJ (B), where B = U∗JAU is given by (8). The characteristic
polynomial of the matrix J Re(eiθB) is

Pn(t) = (t − caθ )
r−p(t − cbθ )

n−r−p det
(
(t − caθ )(t − cbθ )Ip +Dθ

)
,

where caθ = |a| cos(θ + arg a), cbθ = |b| cos(θ + arg b) andDθ is the diagonal mat-
rix whose lth diagonal entry is

dl(θ) = σlδl

2
cos(2θ + 2φl)+ σ 2

l

4
+ δ2

l

4
, l = 1, . . . , p.

The roots of Pn(t) satisfy

(t − caθ )
r−p(t − cbθ )

n−r−p
p∏
l=1

(
t2 − (caθ + cbθ )t + caθ cbθ + dl(θ)

) = 0,

and so the eigenvalues of J Re(eiθB) are

λl±(θ) = 1
2 (caθ + cbθ )± 1

2

√
(caθ − cbθ )

2 − 4dl(θ), l = 1, . . . , p, (11)

and caθ (cbθ ), if n < 2r (n > 2r). Since (10) holds, there exist directions for which
all the characteristic roots of J Re(eiθB) are non-zero real numbers. We observe that
σl , δl are not simultaneously zero, otherwise the second inequality in (10) would not
hold. The eigenvectors of J Re(eiθB) associated with the eigenvalue λl±(θ) are the
vectors ul±(θ) whose lth entry is

2(cbθ + λl±(θ))
σle−i(θ+φl) + δlei(θ+φl) ,

the (r + l)th entry is 1 and all the others are 0, l = 1, . . . , p. Hence, it can be eas-
ily seen that the boundary generating curve of VJ (B) coincides with the boundary
generating curve of VJ2(Bl), J2 = I1 ⊕ −I1 and

Bl =
[

a σleiφl

δleiφl −b
]
, l = 1, . . . , p, (12)
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and possibly a point. The eigenvalues of J2Bl are βl± defined in (9) and Tr(B[∗]
l Bl) =

|a|2 + |b|2 − σ 2
l − δ2

l . By the Hyperbolical Range Theorem for 2×2 matrices, we
conclude that VJ2(Bl) is bounded by a hyperbola, with foci at βl± and non-transverse

axis of length
√

|βl+|2 + |βl−|2 − |a|2 − |b|2 + σ 2
l + δ2

l . If n = 2r , the boundary
generating curve of VJ (B) is given precisely by these p hyperbolas (some of them
possibly coincident). If n < 2r(n > 2r), the eigenvectors associated with the eigen-
value caθ (cbθ ) are the vectors ej (em) of the standard basis of Cn, and e∗

jBej =
ae∗

j J ej , j = n− r + 1, . . . , r(e∗
mBem = be∗

mJem, m = 2r + 1, . . . , n). By Propo-

sition 2.2, the boundary generating curve of VJ (B) is given by the previous p hyper-
bolas and a point, a if n < 2r , and b if n > 2r .

We observe that a ∈ V +
J2
(Bl) and b ∈ −V −

J2
(Bl), l = 1, . . . , p. Therefore, even in

the case of rectangular matrices X and Y , the set VJ (B) is the pseudo-convex hull of
these p hyperbolas. �

Example 1. Let J = I2 ⊕ −I2 and A be a block matrix of type (7), with n = 4,
r = 2, a = 1, b = −1, X = diag(1/2, 3/2), Y = diag(1, i). The boundary generat-
ing curve of WJ (A) is shown in Fig. 1.

Now, we consider Y ∗ = kX in (7), for some constant k ∈ C. In this special case,
the block matrix A has an elliptical classical numerical range [3]. In the following
corollary, we prove that WJ (A) is bounded by a hyperbola. Our proof follows the
steps of the proof of Corollary 2.3 in [3].

Corollary 3.1. Let J = Ir ⊕ −In−r , 0 < r < n, and let p = min(r, n− r). Let A
be a block matrix of type (7), with Y ∗ = kX, k ∈ C. Moreover, let 2βl± = a + b ±

-4 -2 0 2 4
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0

2

4
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Fig. 1. The boundary generating curve of WJ (A) for the matrix A in Example 1.
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√
(a − b)2 + 4kσ 2

l , l = 1, . . . , p, where σ1 � . . . � σp are the singular values of
X. If

2 Re(βl+βl−) < |a|2 + |b|2 − σ 2
l (1 + |k|2)< |βl+|2 + |βl−|2, l = 1, . . . , p,

then WJ (A) is bounded by a hyperbola, with foci at β1± and with non-transverse

axis of length
√

|β1+|2 + |β1−|2 − |a|2 − |b|2 + σ 2
1 (1 + |k|2).

Proof. From the proof of Theorem 3.1, we may conclude that W+
J (A) is the convex

hull of the sets V +
J2
(B1), where J2 = I1 ⊕ −I1 and Bl are the 2×2 matrices in (12),

l = 1, . . . , p. Since Y ∗ = kX, then δl = |k|σl and 2φl = arg k + �, l = 1, . . . , p.
We shall prove that

V +
J2
(Bl) ⊂ V +

J2
(B1), l = 2, . . . , p. (13)

Recalling the definition of V +
J2
(Bl), we have

V +
J2
(Bl) = {

a|x1|2 − b|x2|2 + σle
iφl (x̄1x2 + |k|x̄2x1) : |x1|2 − |x2|2 = 1

}
.

(14)

Taking in (14) r = |x1|2, γ = arg x2 − arg x1, γ ∈ [0, 2�), and denoting by E the
curve {

(1 + |k|) cos γ + i(1 − |k|) sin γ : γ ∈ [0, 2�)
}
,

we may write

V +
J2
(Bl) =

⋃
r�1

{
(a − b)r + b + σle

iφl
√
r(r − 1)E

}
.

Any z ∈ V +
J2
(Bl) lies on the curve �l = (a − b)r + b + σleiφl

√
r(r − 1)E, for a cer-

tain choice of r . Depending on the value of k, the curve E is either the boundary of
an ellipse or a line segment, in both cases centered at the origin. Since σ1 � σl , then
�l lies in the domain bounded by �1. Since �1 ⊂ V +

J2
(B1) and the later set is con-

vex, it follows that z ∈ �l ⊂ V +
J2
(B1) and (13) holds. Hence, W+

J (A) = V +
J2
(B1). An

analogous result holds for W−
J (A) and the corollary follows directly from Theorem

3.1. �

If k = 0 in Corollary 3.1, then we have the following result concerning matrices
of type:

A =
[
aIr X

0 bIn−r

]
, a, b ∈ C, X ∈ Mr,n−r . (15)

Corollary 3.2. Let J = Ir ⊕ −In−r , 0 < r < n, and let A be a block matrix of type
(15). If 0 < σ1 < |a − b|, where σ1 is the largest singular value of X, then WJ (A)

is bounded by a hyperbola, with a and b as foci, and with non-transverse axis of
length σ1.
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4. Curvature of WJ (A) at a boundary point

We will state our results forW+
J (A), with the understanding that analogous results

hold for W−
J (A), because W−

J (A) = −W+
−J (A). Suppose that the boundary point

under consideration belongs to W+
J (A). For any α, β ∈ C, W+

J (αI + βA) = α +
βW+

J (A). Thus, by an appropriate rotation and translation, we can assume that the
boundary point stays at the origin and the supporting line coincides with the y-axis,
W+
J (A) being in the half-plane x � 0. For

H1xi = λiJxi, i = 0, . . . , n− 1, (16)

this situation obviously corresponds to the case that λ0 = 0,

H1x0 = 0, x∗
0H2x0 = 0, for some vector x0 ∈ Cn, x∗

0Jx0 = 1, (17)

and

λix
∗
i J xi � 0, i = 1, . . . , n− 1. (18)

It is known that if a boundary point of WJ (A) is a corner point of WJ (A), then it
is an eigenvalue of A and there exists a pseudo-unitary matrix U ∈ Ur,n−r such that
U∗JAU = A1 ⊕ A2, for square matrices A1, A2 of order at least one [14]. There-
fore, if we restrict our study to the case that the curve CJ (A) given by (1) is irre-
ducible and n � 2, the boundary of WJ (A) is a smooth curve. As will be proved in
Theorem 4.1, this boundary can then contain a line segment only if the corresponding
line is a singular tangent to CJ (A), that is, its coordinates satisfy (1) and also all the
three partial derivatives of the left-hand side with respect to u, v and w vanish. A line
is called a non-singular tangent to CJ (A) if its coordinates satisfy (1) and at most
one of the partial derivatives of the left-hand side of (1) with respect to u, v and w

vanish.
The proofs in this section are inspired on the parallel results on the classical

numerical range due to Fiedler [6,7].

Lemma 4.1. Let A be a n× n complex matrix satisfying (16)–(18). Then the line
x = 0 is a non-singular tangent of CJ (A) at the origin if and only if 0 is a simple
eigenvalue of H1.

Proof. The left-hand side of (1) may be written as

c0u
n + c1(v,w)u

n−1 + · · · + cn(v,w), (19)

with ck(v,w) being homogeneous polynomials in v,w of degree k (possibly zero).
By simple algebraic-geometrical considerations, if x = 0 is a non-singular tangent of
CJ (A) then c0 = 0 and c1(v,w) = kw, k /= 0. (Thenw = 0 is the dual tangent at the
dual point (1, 0, 0), which means that the origin is the tangent point of the tangent
x = 0.) If U is a unitary matrix for which U∗H1U is diagonal with the first entry
zero, it follows that H1 has to have rank n− 1, since, otherwise, the term kwun−1

with k /= 0 would not appear in (19). The converse is easily checked. �
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Theorem 4.1. Let A ∈ Mn. The boundary of W+
J (A) contains a line segment only

if the corresponding supporting line is a singular tangent to CJ (A).

Proof. Without loss of generality, suppose that the supporting line referred to in the
theorem is x = 0, with W+

J (A) lying in the half-plane x � 0. Let (0, y1) and (0, y2)

be the (distinct) extreme points of the line segment. It can be easily seen that

x∗
1JAx1 = y1i and x∗

2JAx2 = y2i, (20)

for x1, x2 ∈ Cn linearly independent vectors (since y1 /= y2) such that x∗
1Jx1 =

x∗
2Jx2 = 1. From (20), we have that x∗

1H1x1 = x∗
2H1x2 = 0. Since x = 0 is a sup-

porting line of W+
J (A) and W+

J (A) is on the half-plane x � 0, we conclude that
x∗

1H1x1 = x∗
2H1x2 = 0 are extreme points of the quadratic form x∗H1x, with x

satisfying x∗Jx = 1. The boundary generating curve of W+
J (A) is det J det(JH1 +

wI) = 0, therefore 0 is not a simple eigenvalue of JH1. By the previous Lemma,
x = 0 is a singular tangent to CJ (A). �

Through the paper, we denote by A† the Moore–Penrose generalized inverse of
A.

We state a lemma of the perturbation theory for matrices, which will be used in
the study of the curvature of WJ (A) at a boundary point.

Lemma 4.2. Let 0 be a simple eigenvalue of L ∈ Hn, with a corresponding eigen-
vector u such that u∗Ju = 1. Then for any K ∈ Mn and ε ∈ C, |ε| → 0, the expan-
sion of the eigenvalue λ(ε) of the matrix J (L+ εK) in the neighborhood of 0 is

λ(ε) = ελ(1) + ε2λ(2) + O(ε3),

where λ(1) = u∗Ku and λ(2) = −u∗(K − λ(1)J )L†(K − λ(1)J )u, and the expan-
sion of the eigenvector u(ε) associated with λ(ε) in the same neighborhood of 0
is

u(ε) = u− εL†(K − λ(1)J )u+ O(ε2).

Proof. Let (L+ εK)u(ε) = λ(ε)Ju(ε). By the simplicity of the eigenvalue 0, λ(ε)
and u(ε) are analytic functions of ε in the neighborhood of 0. Consider the power
series for λ(ε) and u(ε), respectively,

λ(ε) = ελ(1) + ε2λ(2) + O(ε3) and u(ε) = u+ εu(1) + ε2u(2) + O(ε3).

It can easily be seen that Ku+ Lu(1) = λ(1)Ju and

Ku(1) + Lu(2) = λ(1)Ju(1) + λ(2)Ju. (21)

Thus, λ(1) = u∗Ku and u(1) = −L†(K − λ(1)J )u. Multiplying (21) on the left by
u∗, we get λ(2) = u∗(K − λ(1)J )u(1), and the result follows. �
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Theorem 4.2. Let x0 ∈ Cn and A ∈ Mn satisfying (16)–(18). If x = 0 is a non-
singular tangent of CJ (A), then CJ (A) has a positive finite curvature at the origin
and the radius of curvature at 0 is given by r = −2x∗

0H2H
†
1H2x0.

Proof. To evaluate the radius r of curvature at 0, we determine the coordinates x(v)
and y(v) of the intersection of the supporting line x + vy + w = 0 (in the “neighbor-
hood” of x = 0) with CJ (A). We can conclude that det(JH1 + vJH2 + wI) = 0,
and so −w is an eigenvalue of the matrix J (H1 + vH2). Since x = 0 is a non-singu-
lar tangent of CJ (A), by Lemma 4.1, w = 0 is a simple eigenvalue of H1. Therefore,
we can apply Lemma 4.2 to the left-hand side of (1), for H1 as L, H2 as K , x0 as u,
and v as ε. Since x∗

0H2x0 = 0, we obtain

w = w(v) = −v2x∗
0H2H

†
1H2x0 + O(v3). (22)

An eigenvector ν(v) associated with the eigenvalue −w(v) of J (H1 + vH2) has
the following expansion ν(v) = x0 + vH

†
1H2x0 + O(v2). The parametric equations

of CJ (A) in the “neighborhood” of x = 0 are

x(v) = ν∗(v)H1ν(v)

ν∗(v)J ν(v)
, y(v) = ν∗(v)H2ν(v)

ν∗(v)J ν(v)
,

with |v| < ε sufficiently small. From (22), it follows that

x(v) = v2x∗
0H2H

†
1H2x0 + O(v3), y(v) = 2vx∗

0H2H
†
1H2x0 + O(v2).

Since r = − limv→0 y
2(v)/(2x(v)) and x(0) = y(0) = x′(0) = 0, the theorem is

proved. �

Considering J = In in Lemma 4.1 and in Theorem 4.2, we obtain Theorem 3.3
of Fiedler in [6].

The J -generalized Levinger transformation of A ∈ Mn is defined by

LJ (A, α) = (1 − α)A+ αA[∗], α ∈ [0, 1]
(denoted simply by L(A, α), if J = In). Obviously,

LJ (A, α) = JH1 + i(1 − 2α)JH2 (23)

and LJ (A
[∗], α) = LJ (A, 1 − α), α ∈ [0, 1].

There is a relation betweenWJ (A) andWJ (LJ (A, α)), in case the sets are hyper-
bolical. A parallel result for the classical case (J = In) was presented by Maroulas
et al. [15]. In fact, due to (23), we may write

WJ (LJ (A, α)) = {
x + i(1 − 2α)y : x, y ∈ R, x + iy ∈ WJ (A)

}
.

Supposing that the boundary of WJ (A) in the plane (u, v) has equation

u2

M2
− v2

N2
= 1, M,N > 0,
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via the change of variables x = u and y = (1 − 2α)v, then the boundary of
WJ (LJ (A, α)) has equation

x2

M2
− y2

(1 − 2α)2N2
= 1.

If α /= 1/2, then WJ (A) is bounded by a non-degenerate hyperbola with transverse
and non-transverse axis of lengthM andN , respectively, if and only ifWJ(LJ (A, α))

is bounded by a non-degenerate hyperbola with transverse and non-transverse axis of
lengthM and |1 − 2α|N , respectively. If α= 1/2, thenWJ (LJ (A, α)) = ReWJ (A)

is a subset of a line.
In [7], Fiedler investigated the connection between the curvature of the boundary

of W(A), A ∈ Mn, and the curvature of the generalized Levinger curve, which is the
graph of the function φA : [0, 1] → R such that

φA(α) = max
{
Re λ : λ ∈ σ(L(A, α))

}
.

Now, we consider the J -generalized Levinger function φA,J : [0, 1] → R defined by

φA,J (α) = max
{
Re λ : λ ∈ σ(LJ (A, α))

}
.

The following theorem reduces to [7, Theorem 3.2], considering J = In.

Theorem 4.3. Let x0 ∈ Cn and A ∈ Mn satisfy (16)–(18), and let the maximum
eigenvalue 0 of H1 be simple.

(i) If x0 is not an eigenvector of A associated with 0, then there is an open inter-
val I with midpoint 1/2, such that the J -generalized Levinger function φA,J
is increasing in the left half of I, has zero derivative at the point 1/2 and is
concave in I. Moreover, the radius of curvature R of φA,J at the point 1/2 is
related to the radius of curvature r of the boundary of W+

J (A) at the point 0 by
Rr = 1/4.

(ii) If x0 is an eigenvector of A associated with 0, then φA,J is constant.

Proof. (i) Since 0 is a simple eigenvalue of H1, there is a unique eigenvalue λ(ε)
of LJ (A, 1/2 + ε) = J (H1 − i2εH2), in some neighborhood of 0. By Lemma 4.2,
we have λ(ε) = ελ(1) + ε2λ(2) + O(ε3), where λ(1) = x∗

0H2x0 = 0 and λ(2) =
4x∗

0H2H
†
1H2x0. For ε real, Re λ(ε) = ε2 Re λ(2) + O(ε3). So, there is an open inter-

val I containing 0 in which φA,J (1/2 + ε) = Re λ(ε). For the derivatives, we have
φ′
A,J (1/2) = 0, φ′′

A,J (1/2) = 2Re λ(2) = 8x∗
0H2H

†
1H2x0. Since x0 is not an eigen-

vector of A, and therefore of JA, associated to 0, H2x0 is not a multiple of x0. By
the hypothesis, 0 is the maximum eigenvalue of the matrix H1, therefore −H1 is
positive semidefinite. Under our assumptions, the eigenspace associated with 0 is
one-dimensional and H1 has only multiples of x0 as annihilating vectors, and the
same holds for its Moore-Penrose inverse. We can conclude that the second deriva-
tive of the J -generalized Levinger function at the point 1/2 is positive and remains
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positive in some neighborhood of 1/2. Hence, the J -generalized Levinger function is
concave in I and the radius of curvature R of the J -generalized Levinger function at
the point 1/2 is R = −1/φ′′

A,J (1/2). By Theorem 4.2, the radius of the curvature r of

the boundary of W+
J (A) at the origin is r = −2x∗

0H2H
†
1H2x0. Therefore, Rr = 1/4.

(ii) If Ax0 = 0, then JAx0 = 0. Thus, 0 is a common eigenvalue of all matrices
LJ (A, α), α ∈ [0, 1]. �

Remark 4.1. In Theorem 4.3, if x0 is an eigenvector of A, then 0 is a corner of
WJ (A), so that the radius of curvature r can be considered as 0 and R as infinity.
Moreover, WJ (A) has a flat point at 0 if the maximum eigenvalue of H1 is multiple.
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