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Abstract

Let A,C ∈ Mn, the algebra of n × n complex matrices. The set of complex numbers

�C(A) = {det (A − UCU∗) : U∗U = In}
is the C-determinantal range of A. In this note, it is proved that �C(A) is an elliptical disc
for A,C ∈ M2. A necessary and sufficient condition for �C(A) to be a line segment is given
when A and C are normal matrices with pairwise distinct eigenvalues. The linear operators L
that satisfy the linear preserver property �C(A) = �C(L(A)), for all A,C ∈ Mn, are charac-
terized.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

LetMn be the algebra of n × n complex matrices, and letUn be the group of n × n

unitary matrices. Let Hn denote the real space of n × n Hermitian matrices. For
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A,C ∈ Mn the C-determinantal range of A is the set of the complex plane denoted
and defined by

�C(A) = {det (A − UCU∗) : U ∈ Un}. (1)

This set is compact and connected, but it may not be simply connected [1].
The C-determinantal range of A can be viewed as a variation of the concept of

C-numerical range of A, introduced in [10], and defined by

WC(A) = {Tr (CU∗AU) : U ∈ Un}.
In fact, both sets are ranges of continuous functions defined on the unitary similar-
ity orbit of A ∈ Mn, O(A) = {U∗AU : U ∈ Un} and a certain parallelism exists
between the properties of these notions [1,2]. Nevertheless, it seems much more
complicated to deal with �C(A) than with WC(A).

Let α1, . . . , αn and γ1, . . . , γn be the eigenvalues of A and C, respectively. It can
be easily seen that the n! points (not necessarily distinct)

zσ =
n∏
i=1

(αi − γσ(i)), σ ∈ Sn,

Sn the symmetric group of degree n, belong to �C(A). In the sequel, these points
will be called σ -points.

It is easy to verify that �C(A) is unitarily invariant, that is,

�C(A) = �U∗CU(V
∗AV ), for any U,V ∈ Un.

Let A,C ∈ Mn be normal matrices. Since A and C are diagonalizable under unitary
similarity transformations, and �C(A) is unitarily invariant, we may consider A =
diag (α1, . . . , αn) andC = diag (γ1, . . . , γn) in (1). Marcus [13] and de Oliveira [18]
conjectured that

�C(A) ⊆ Co

{
n∏
i=1

(αi − γσ(i)) : σ ∈ Sn

}
, (2)

where Co {·} is the convex hull of {·}. This conjecture was proved in certain special
cases (see [3–5,8,11,15,16]), but even the case n = 4 remains open. While it seems
difficult to prove (or disprove) (2), to give the complete characterization of �C(A) it
is much more difficult. Indeed, even the statement of a necessary and sufficient con-
dition for �C(A) to be a line segment is not trivial. Sufficient conditions for �C(A) to
be a line segment are known. Fiedler [9] proved that if A = diag (α1, . . . , αn), C =
diag (γ1, . . . , γn) and all the αi and γj belong to the same straight line through the
origin, that is, arg (α1) = · · · = arg (αn) = arg (γ1) = · · · = arg (γn)(modπ), then
�C(A) is a line segment through the origin and the equality in (2) holds. In [3] it
was proved that if A = diag (α1, . . . , αn), C = diag (γ1, . . . , γn) and all the αi and
γj belong to the same circle with center at the origin, that is, |α1| = · · · = |αn| =
|γ1| = · · · = |γn|, then �C(A) is a line segment through the origin and the equality
in (2) holds.

One of the motivations of this note is the exploitation of the parallelism between
the properties of �C(A) and WC(A) [14], as well as to emphasize the analogies
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of the proof techniques in both situations. The note is organized as follows. In
Section 2, we prove that �C(A) is an elliptical disc when A,C ∈ M2. In Section
3, a necessary and sufficient condition for �C(A) to be a line segment is given,
when A = diag (α1, . . . , αn), C = diag (γ1, . . . , γn) and α1, . . . , αn and γ1, . . . , γn
are pairwise distinct. We conjecture that this restriction on the eigenvalues may be
relaxed and that if �C(A), n � 2, is a line segment, then the line containing it passes
through the origin. In Section 4, linear operators L on Mn (and on Hn) that satisfy
the linear preserver property �C(A) = �C(L(A)), for all A,C ∈ Mn (for all A ∈ Hn

and C ∈ Mn) are characterized.

2. The elliptical range theorem for �C(A)

For C = diag (γ1, γ2) and A ∈ M2, it was proved [2] that �c(A) is an elliptical
disc with foci (α1 − γ1)(α2 − γ2) and (α1 − γ2)(α2 − γ1), and with the length of the
minor axis equal to |γ1 − γ2|

√
TrAA∗ − |α1|2 − |α2|2. This result is generalized for

A,C ∈ M2 in Theorem 2.1 which treats the general case. In fact, following anal-
ogous steps to those used in Section 2 of [12] we can prove that for A,C ∈ M2,
�C(A) = �C1(A1), A1 and C1 being matrices of the form (3).

Theorem 2.1. Let

A = ξ1

[
α a

b α

]
and C = ξ2

[
γ c

d γ

]
, (3)

where α, γ, ξ1, ξ2 ∈ C with |ξ1| = |ξ2| = 1, a � b � 0 and c � d � 0. Let α1, α2
and γ1, γ2 be the eigenvalues of A and C, respectively. Then

�C(A) = (ξ1α − ξ2γ )
2 − (ξ2

1 ab + ξ2
2 dc)

+ ξ1ξ2{r[(ac+bd) cos t+i(ac−bd) sin t] : r ∈ [0, 1], t ∈ [0, 2π)},
that is, �C(A) is an elliptical disc with (α1 − γ1)(α2 − γ2) and (α1 − γ2)(α2 − γ1)

as foci and {(ξ1α − ξ2γ )
2 − (ξ2

1 ab + ξ2
2 dc) + ξ1ξ2s(ac + bd) : s ∈ [−1, 1]} and

{(ξ1α − ξ2γ )
2 − (ξ2

1 ab + ξ2
2 dc) + iξ1ξ2s(ac − bd) : s ∈ [−1, 1]} as major and

minor axis, respectively.

Lemma 2.1 [12,17]. Let A,C be matrices of the form (3) with ξ = ξ2 = 1.
Then

WC(A) = {2αγ + r[(ac + bd) cos t

+ i(ac − bd) sin t] : r ∈ [0, 1], t ∈ [0, 2π)},
which is the elliptical disc with {2αγ + s(ac + bd) : s ∈ [−1, 1]} as the major axis
and with {2αγ + is(ac − bd) : s ∈ [−1, 1]} as the minor axis.

We now prove Theorem 2.1.
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Proof. The following expansion can be easily obtained

det (A − U∗CU) = detA + detC − Tr (ZTAZU∗CU), (4)

where

Z =
[

0 −1
1 0

]
.

We can assume A,C ∈ M2 of the form

A = ξ1

[
α −b

−a α

]
and C = ξ2

[
γ c

d γ

]
, (5)

where α, γ , ξ1, ξ2 ∈ C are such that |ξ1| = |ξ2| = 1, −a � −b � 0 and c � d � 0.
Having in mind (4), and applying Lemma 2.1 to the matrices A and C defined in
(5), we can conclude that �C(A) is the elliptical disc centered at (ξ1α − ξ2γ )

2 −
(ξ2

1 ab + dcξ2
2 ), with 2(ac + bd) and 2(ac − bd) as the lengths of its major and

minor axis, respectively. Hence, the semi-focal distance is given by 2
√
ab

√
cd . The

direction of the major axis is u = 2ξ1ξ2(ac + bd). Since |ξ1| = |ξ2| = 1, we have
|u| = 2(ac + bd). The foci of the elliptical disc are

fi = (ξ1α − ξ2γ )
2 − (ξ2

1 ab + dcξ2
2 ) ± 2

√
ab

√
cd

u

|u| , i = 1, 2.

We observe that the eigenvalues of A and C are αi = ξ1(α ± √
ab) and γi = ξ2(γ ±√

cd), i = 1, 2, respectively. By straightforward computations, we have that f1 =
(α1 − γ1)(α2 − γ2) and f2 = (α1 − γ2)(α2 − γ1), and so the theorem follows. �

Remark. Li [12] proved that WC(A), A,C ∈ M2, is an elliptical disc. Following
analogous steps, an alternative proof for Theorem 2.1 can be obtained.

3. A necessary and sufficient condition for �c(A) to be a line segment

In order to prove the main result of this section, we recall the definition of cross
ratio of z1, z2, z3, z4 ∈ C∞. Define S : C∞ −→ C∞ by

S(z) = (z − z3)(z2 − z4)

(z − z4)(z2 − z3)
if z2, z3, z4 ∈ C;

S(z) = z − z3

z − z4
if z2 = ∞;

S(z) = z2 − z4

z − z4
if z3 = ∞;

S(z) = z − z3

z2 − z3
if z4 = ∞.

We have S(z2) = 1, S(z3) = 0 and S(z4) = ∞, and S is the unique Möbius transfor-
mation which satisfies the previous conditions. The cross ratio of z1, z2, z3, z4 ∈ C∞
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denoted by (z1, z2, z3, z4), is the image of z1 under the unique Möbius transforma-
tion which takes z2 to 1, z3 to 0, and z4 to ∞.

The following lemma will be used in the proof of Lemma 3.2. For a proof, see
e.g. [7].

Lemma 3.1. Let z1, z2, z3 and z4 be four distinct points in C∞. Then (z1, z2, z3, z4)

is a real number if and only if z1, z2, z3 and z4 belong to the same straight line or to
the same circle.

We give a solution to Problem 10484 in [6].

Lemma 3.2. Let n � 2, and let α = (α1, . . . , αn) and γ = (γ1, . . . , γn) be complex
row vectors such that α1, . . . , αn and γ1, . . . , γn are pairwise distinct. Consider the
n! complex numbers (counting multiplicities)

zσ =
n∏
i=1

(αi − γσ(i)), σ ∈ Sn.

For P(α, γ ) = Co {zσ : σ ∈ Sn}, P (α, γ ) is a line segment of a line passing through
the origin if and only if all the αi and γj lie on a common circle or straight line.

Proof. (⇒) For αi, αj , γi, γj ∈ C∞, i, j = 1, . . . , n, by the definition of cross
ratio, we have

(αi, αj , γi, γj ) = S(αi),

where S is the unique Möbius transformation such that S(αj ) = 1, S(γi) = 0 and
S(γj ) = ∞. By definition of S,

S(αi) = (αi − γi)(αj − γj )

(αi − γj )(αj − γi)
.

For σ = (id) and τ = (ij), we clearly have

(αi − γi)(αj − γj )

(αi − γj )(αj − γi)
= zσ

zτ
,

and so

S(αi) = zσ

zτ
= |zσ |eiarg (zσ )

|zτ |eiarg (zτ )
.

Since zσ and zτ belong to P(α, γ ) and P(α, γ ) is a line segment of a line passing
through the origin, then arg (zσ ) = arg (zτ )(modπ). Thus,

S(αi) = |zσ |
|zτ | or S(αi) = −|zσ |

|zτ | .
Since S(αi) is a real number, we conclude that (αi, αj , γi, γj ) is a real number for
i, j = 1, . . . , n. By Lemma 3.1, αi, αj , γi and γj belong to the same circle or to the
same straight line.
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(⇐) Suppose that all the αi and γj , i, j = 1, . . . , n, belong to the same circle or
to the same straight line. By Lemma 3.1, there is a unique Möbius transformation S

such that S(αj ) = 1, S(γσ(i)) = 0 and S(γσ(j)) = ∞ and

S(αi) = (αi − γσ(i))(αj − γσ(j))

(αi − γσ(j))(αj − γσ(i))

is a real number, for i = 1, . . . , n and σ ∈ Sn. Consider the transposition τ ∈ Sn
such that τ(k) = σ(k) for k /= i, j , τ(i) = σ(j) and τ(j) = σ(i). Then

S(αi) = zσ

zτ
= |zσ |eiarg zσ

|zτ |eiarg zτ
.

By the hypothesis, S(αi) is a real number for i = 1, . . . , n, and so arg (zσ ) =
arg (zτ )(modπ) for all σ, τ ∈ Sn. As P(α, γ ) = Co {zσ : σ ∈ Sn} is a compact
and connected subset of R (or of eiθR, θ real), it follows that P(α, γ ) is a line
segment. �

Theorem 3.1. Let A and C be n × n normal matrices with eigenvalues α1, . . . , αn
and γ1, . . . , γn, respectively, such that α1, . . . , αn, γ1, . . . , γn, are pairwise distinct.
The set �C(A) is a line segment of a line passing through the origin if and only if all
the αi and γj lie on a common circle or straight line.

Proof. (⇒) Let �C(A) be a line segment of a line through the origin. The endpoints
of this segment are corners (z belonging to the boundary of �C(A) is a corner, if in
the neighborhood of z, �C(A) is contained in an angle with vertex at z and measuring
less than π .) It is known [2,8] that if z is a corner, then z = zσ for some σ ∈ Sn. Thus,
�C(A) = Co {zσ : σ ∈ Sn} = P(α, γ ) is a line segment of a line through the origin,
and by Lemma 3.2 all the αi and γj lie on a common circle or straight line.

(⇐) If all the αi and γj lie on a common circle or straight line, by Lemma 3.2
P(α, γ ) is a line segment of a line passing through the origin. In these cases, (2)
holds with equality [3,9]. �

Observation. For the sufficient condition the relaxation on the eigenvalues is trivial.
We conjecture that this relaxation is still possible for the necessary condition. More-
over, we conjecture that if �C(A), n � 2, is a line segment, then the line containing
it passes through the origin.

4. A linear preserver property

We investigate the structure of those linear operators L : Mn −→ Mn that sat-
isfy the relation �C(A) = �C(L(A)), for all A,C ∈ Mn. We start with some useful
lemmas.
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Lemma 4.1. Let A ∈ Mn. The following conditions are equivalent:

(i) For any C ∈ Mn, �C(A) is a singleton.
(ii) A is a scalar matrix.

Proof. The proof (ii) ⇒ (i) is trivial. We prove the direct implication.
Let A ∈ Mn. Since �C(A) reduces to a singleton for any C ∈ Mn, there exists

a matrix C ∈ Mn such that the eigenvalues of A and C are pairwise distinct and
the corresponding determinantal range is a singleton. Thus, all the σ -points, σ ∈ Sn,
coincide with the singleton �C(A), and so

αi − γi

αj − γi
= αi − γj

αj − γj
= γi − γj

γi − γj
= 1, i, j = 1, . . . , n.

We conclude that αi = αj , for all i, j = 1, . . . , n.
Because the set �C(A) is unitarily invariant, we may use Schur’s Lemma and

consider A in upper triangular form. Suppose that A = (ajh) is not a normal matrix,
and so there exists ajh /= 0, with j < h. By the hypothesis, �C(A) is a singleton
for any C. Hence, there exists a matrix C such that γσ(j) /= γσ(h), σ ∈ Sn, and for
which �C(A) is a singleton. Let V = PσP(1j)◦(2h) ∈ Mn, where Pσ = (δjσ(h)) and
P(1j)◦(2h) is the permutation matrix associated with τ = (1j) ◦ (2h) ∈ Sn. It is easy
to see that

{det (A − V (W2 ⊕ In−2)V
TCV (W2 ⊕ In−2)

∗V T : W2 ∈ U2} ⊂ �C(A).

This region is an elliptical disc with foci zσ and zσ◦(jh), and with the length of the
minor axis |ajh||γσ(j) − γσ(h)|. Since �C(A) is a singleton, this is a contradiction. It
follows that A is a normal matrix, namely, a scalar matrix. �

Lemma 4.2. Let ξ ∈ C. The equality det (In − C) = det (ξIn − C) is valid for all
C ∈ Mn if and only if ξ = 1.

Proof. The part (⇐) is clear.
Suppose that ξ /= 1. Taking C = In we obtain det (In − C) = 0. We also have

det (ξIn − C) = det ((ξ − 1)In) = (ξ − 1)n. As ξ /= 1, then det (ξIn − C) /= 0, a
contradiction. �

Lemma 4.3 [19]. A linear operator on Hn mapping the cone of positive semi-definite
matrices onto itself must be of the form A �→ U∗AU or A �→ U∗ATU, for some
invertible U ∈ Mn.

Theorem 4.1. A linear operator L : Hn −→ Hn satisfies

�C(A) = �C(L(A)), for all A ∈ Hn and for all C ∈ Mn,

if and only if there exists a unitary matrix U such that L is of the form

A �→ UAU∗ or A �→ UATU∗.
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Proof. The implication (⇐) is clear.
We prove the converse. First of all, if L(A) = 0, then A is a scalar matrix. In

fact, this is a consequence of Lemma 4.1, since �C(A) = �C(L(A)) is a single-
ton for any C ∈ Mn. Suppose A /= 0. Then there exists a non-singular matrix C

such that �C(A) = 0. But, if C is non-singular, then �C(0) = �C(L(A)) /= 0, which
contradicts �C(A) = �C(L(A)) = 0. Hence A = 0 and so L is non-singular.

Next, note that �C(L(In)) = �C(In) = det (In − C), for all C ∈ Mn and, by
Lemma 4.1, L(In) = ξIn, for some ξ ∈ C. For all C ∈ Mn, we have �C(ξIn) =
�C(In) and, by Lemma 4.2, it follows that ξ = 1. Therefore, the operatorL preserves
In and �C(A). Now, we show that this operator L maps the set of positive definite
matrices onto itself. To this end, let A be positive definite. Suppose L(A) is not
positive definite. Then there exists r � 0 such that L(A) + rIn is singular. We know
that

�C(L(A + rIn)) = �C(L(A) + rIn) = �C(A + rIn),

for all Hermitian C. In particular for C = 0, we have

�0(A + rIn) = �0(L(A) + rIn).

Since A + rIn is positive definite, �0(A + rIn) = det (A + rIn) > 0. On the other
hand,

�0(L(A) + rIn) = det (L(A) + rIn) = 0,

because L(A) + rIn is a singular matrix. Hence, there does not exist r � 0 such that
L(A) + rIn is singular, and so L(A) is positive definite.

Since L is invertible, one can apply the previous arguments to L−1 to conclude
that L−1 maps the set of positive definite matrices into itself. Thus, it preserves
In and �C(A). Hence, L maps the set of positive definite matrices onto itself. By
Lemma 4.3, there exists an invertible matrix U such that the operator L is of the
form

A �→ UAU∗ or A �→ UATU∗.
Since L(In) = In, we have UU∗ = In. �

The following result will be used in the proof of Theorem 4.2.

Lemma 4.4 [2]. Let C be an n × n normal matrix with simple eigenvalues. If there
exists at least one corner on the boundary of �C(A), then A ∈ Mn is a normal
matrix.

Theorem 4.2. A linear operator L : Mn −→ Mn satisfies

�C(A) = �C(L(A)), for all A,C ∈ Mn

if and only if there exists a unitary matrix U such that L is of the form

A �→ UAU∗ or A �→ UATU∗.
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Proof. (⇒) Let L be a linear operator in Mn such that �C(A) = �C(L(A)) for all
A,C ∈ Mn. Suppose that A is a Hermitian matrix. We prove that L(A) is Hermitian.

By the hypothesis, �C(A) = �C(L(A)) for all C ∈ Mn. In particular, there exists
C ∈ Hn such that the eigenvalues of C and A are pairwise distinct and also the
eigenvalues of C and L(A) are pairwise distinct. Since A and C are Hermitian, it
follows that

�C(A) = [min
σ

zσ ,max
σ

zσ ], σ ∈ Sn.

As �C(A) = �C(L(A)), using Lemma 3.2 we can conclude that the eigenvalues
of C and L(A) belong to the same straight line or to the same circle. Since C is
Hermitian it has real eigenvalues, so L(A) has real eigenvalues.

Since �C(L(A)) = [minσ zσ ,maxσ zσ ], the endpoints of this line segment are
corners and, by Lemma 4.4, L(A) is normal. Thus, L(A) is Hermitian and L(Hn) ⊆
Hn.

By Theorem 4.1, we have

(i) L(A) = UAU∗ or (ii) L(A) = UATU∗.
Consider A ∈ Mn in the cartesian decomposition, that is, A = ReA + i ImA, where
ReA = (A + A∗)/2 and ImA = (A − A∗)/2i are Hermitian matrices. If (i) holds,
then

L(A)=L(ReA) + iL(ImA)

=U(ReA)U∗ + iU(ImA)U∗

=UAU∗.

If (ii) holds, a similar argument can be used. The converse implication follows
directly. �
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