

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

LSEVIER Linear Algebra and its Applications 401 (2005) 211–220

www.elsevier.com/locate/laa

Three observations on the determinantal range

N. Bebiano ^a, G. Soares ^{b,*}

^aDepartment of Mathematics, University of Coimbra, P 3001-454 Coimbra, Portugal

^bDepartment of Mathematics, University of Trás-os-Montes e Alto Douro,

P 5000-911 Vila Real, Portugal

Received 31 October 2003; accepted 7 June 2004 Available online 3 August 2004 Submitted by R. Merris

Dedicated to G. de Oliveira

Abstract

Let $A, C \in M_n$, the algebra of $n \times n$ complex matrices. The set of complex numbers

$$\Delta_C(A) = \{ \det(A - UCU^*) : U^*U = I_n \}$$

is the *C*-determinantal range of *A*. In this note, it is proved that $\Delta_C(A)$ is an elliptical disc for $A, C \in M_2$. A necessary and sufficient condition for $\Delta_C(A)$ to be a line segment is given when *A* and *C* are normal matrices with pairwise distinct eigenvalues. The linear operators *L* that satisfy the linear preserver property $\Delta_C(A) = \Delta_C(L(A))$, for all $A, C \in M_n$, are characterized

© 2004 Elsevier Inc. All rights reserved.

Keywords: Determinantal range; Cross ratio; Linear preserver

1. Introduction

Let M_n be the algebra of $n \times n$ complex matrices, and let U_n be the group of $n \times n$ unitary matrices. Let H_n denote the real space of $n \times n$ Hermitian matrices. For

 $\textit{E-mail addressess:} \ bebiano@ci.uc.pt \ (N.\ Bebiano), gsoares@utad.pt \ (G.\ Soares).$

^{*} Corresponding author.

 $A, C \in M_n$ the *C-determinantal range of A* is the set of the complex plane denoted and defined by

$$\Delta_C(A) = \{ \det (A - UCU^*) : U \in U_n \}. \tag{1}$$

This set is compact and connected, but it may not be simply connected [1].

The *C*-determinantal range of *A* can be viewed as a variation of the concept of *C*-numerical range of *A*, introduced in [10], and defined by

$$W_C(A) = \{ \operatorname{Tr} (CU^*AU) : U \in U_n \}.$$

In fact, both sets are ranges of continuous functions defined on the *unitary similar*ity orbit of $A \in M_n$, $\mathbb{O}(A) = \{U^*AU : U \in U_n\}$ and a certain parallelism exists between the properties of these notions [1,2]. Nevertheless, it seems much more complicated to deal with $\Delta_C(A)$ than with $W_C(A)$.

Let $\alpha_1, \ldots, \alpha_n$ and $\gamma_1, \ldots, \gamma_n$ be the eigenvalues of A and C, respectively. It can be easily seen that the n! points (not necessarily distinct)

$$z_{\sigma} = \prod_{i=1}^{n} (\alpha_i - \gamma_{\sigma(i)}), \quad \sigma \in S_n,$$

 S_n the symmetric group of degree n, belong to $\Delta_C(A)$. In the sequel, these points will be called σ -points.

It is easy to verify that $\Delta_C(A)$ is *unitarily invariant*, that is,

$$\Delta_C(A) = \Delta_{U^*CU}(V^*AV), \text{ for any } U, V \in U_n.$$

Let $A, C \in M_n$ be normal matrices. Since A and C are diagonalizable under unitary similarity transformations, and $\Delta_C(A)$ is unitarily invariant, we may consider $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_n)$ and $C = \operatorname{diag}(\gamma_1, \ldots, \gamma_n)$ in (1). Marcus [13] and de Oliveira [18] conjectured that

$$\Delta_C(A) \subseteq \operatorname{Co}\left\{\prod_{i=1}^n (\alpha_i - \gamma_{\sigma(i)}) : \sigma \in S_n\right\},$$
(2)

where Co $\{\cdot\}$ is the convex hull of $\{\cdot\}$. This conjecture was proved in certain special cases (see [3–5,8,11,15,16]), but even the case n=4 remains open. While it seems difficult to prove (or disprove) (2), to give the complete characterization of $\Delta_C(A)$ it is much more difficult. Indeed, even the statement of a necessary and sufficient condition for $\Delta_C(A)$ to be a line segment is not trivial. Sufficient conditions for $\Delta_C(A)$ to be a line segment are known. Fiedler [9] proved that if $A=\operatorname{diag}(\alpha_1,\ldots,\alpha_n)$, $C=\operatorname{diag}(\gamma_1,\ldots,\gamma_n)$ and all the α_i and γ_j belong to the same straight line through the origin, that is, $\operatorname{arg}(\alpha_1)=\cdots=\operatorname{arg}(\alpha_n)=\operatorname{arg}(\gamma_1)=\cdots=\operatorname{arg}(\gamma_n)(\operatorname{mod}\pi)$, then $\Delta_C(A)$ is a line segment through the origin and the equality in (2) holds. In [3] it was proved that if $A=\operatorname{diag}(\alpha_1,\ldots,\alpha_n)$, $C=\operatorname{diag}(\gamma_1,\ldots,\gamma_n)$ and all the α_i and γ_j belong to the same circle with center at the origin, that is, $|\alpha_1|=\cdots=|\alpha_n|=|\gamma_1|=\cdots=|\gamma_n|$, then $\Delta_C(A)$ is a line segment through the origin and the equality in (2) holds.

One of the motivations of this note is the exploitation of the parallelism between the properties of $\Delta_C(A)$ and $W_C(A)$ [14], as well as to emphasize the analogies

of the proof techniques in both situations. The note is organized as follows. In Section 2, we prove that $\Delta_C(A)$ is an elliptical disc when $A, C \in M_2$. In Section 3, a necessary and sufficient condition for $\Delta_C(A)$ to be a line segment is given, when $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_n), C = \operatorname{diag}(\gamma_1, \ldots, \gamma_n)$ and $\alpha_1, \ldots, \alpha_n$ and $\gamma_1, \ldots, \gamma_n$ are pairwise distinct. We conjecture that this restriction on the eigenvalues may be relaxed and that if $\Delta_C(A), n \geq 2$, is a line segment, then the line containing it passes through the origin. In Section 4, linear operators L on M_n (and on H_n) that satisfy the linear preserver property $\Delta_C(A) = \Delta_C(L(A))$, for all $A, C \in M_n$ (for all $A \in H_n$ and $C \in M_n$) are characterized.

2. The elliptical range theorem for $\Delta_C(A)$

For $C = \operatorname{diag}(\gamma_1, \gamma_2)$ and $A \in M_2$, it was proved [2] that $\Delta_c(A)$ is an elliptical disc with foci $(\alpha_1 - \gamma_1)(\alpha_2 - \gamma_2)$ and $(\alpha_1 - \gamma_2)(\alpha_2 - \gamma_1)$, and with the length of the minor axis equal to $|\gamma_1 - \gamma_2| \sqrt{\operatorname{Tr} A A^* - |\alpha_1|^2 - |\alpha_2|^2}$. This result is generalized for $A, C \in M_2$ in Theorem 2.1 which treats the general case. In fact, following analogous steps to those used in Section 2 of [12] we can prove that for $A, C \in M_2$, $\Delta_C(A) = \Delta_{C_1}(A_1)$, A_1 and C_1 being matrices of the form (3).

Theorem 2.1. Let

$$A = \xi_1 \begin{bmatrix} \alpha & a \\ b & \alpha \end{bmatrix} \quad and \quad C = \xi_2 \begin{bmatrix} \gamma & c \\ d & \gamma \end{bmatrix}, \tag{3}$$

where $\alpha, \gamma, \xi_1, \xi_2 \in \mathbb{C}$ with $|\xi_1| = |\xi_2| = 1$, $a \ge b \ge 0$ and $c \ge d \ge 0$. Let α_1, α_2 and γ_1, γ_2 be the eigenvalues of A and C, respectively. Then

$$\Delta_C(A) = (\xi_1 \alpha - \xi_2 \gamma)^2 - (\xi_1^2 ab + \xi_2^2 dc) + \xi_1 \xi_2 \{ r[(ac+bd)\cos t + i(ac-bd)\sin t] : r \in [0, 1], \quad t \in [0, 2\pi) \},$$

that is, $\Delta_C(A)$ is an elliptical disc with $(\alpha_1 - \gamma_1)(\alpha_2 - \gamma_2)$ and $(\alpha_1 - \gamma_2)(\alpha_2 - \gamma_1)$ as foci and $\{(\xi_1\alpha - \xi_2\gamma)^2 - (\xi_1^2ab + \xi_2^2dc) + \xi_1\xi_2s(ac + bd) : s \in [-1, 1]\}$ and $\{(\xi_1\alpha - \xi_2\gamma)^2 - (\xi_1^2ab + \xi_2^2dc) + i\xi_1\xi_2s(ac - bd) : s \in [-1, 1]\}$ as major and minor axis, respectively.

Lemma 2.1 [12,17]. Let A, C be matrices of the form (3) with $\xi = \xi_2 = 1$. Then

$$W_C(A) = \{2\alpha\gamma + r[(ac + bd)\cos t + i(ac - bd)\sin t] : r \in [0, 1], \ t \in [0, 2\pi)\},\$$

which is the elliptical disc with $\{2\alpha\gamma + s(ac+bd) : s \in [-1, 1]\}$ as the major axis and with $\{2\alpha\gamma + is(ac-bd) : s \in [-1, 1]\}$ as the minor axis.

We now prove Theorem 2.1.

Proof. The following expansion can be easily obtained

$$\det(A - U^*CU) = \det A + \det C - \operatorname{Tr}(Z^T A Z U^*CU), \tag{4}$$

where

$$Z = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

We can assume $A, C \in M_2$ of the form

$$A = \xi_1 \begin{bmatrix} \alpha & -b \\ -a & \alpha \end{bmatrix} \quad \text{and} \quad C = \xi_2 \begin{bmatrix} \gamma & c \\ d & \gamma \end{bmatrix}, \tag{5}$$

where α , γ , ξ_1 , $\xi_2 \in \mathbb{C}$ are such that $|\xi_1| = |\xi_2| = 1$, $-a \leqslant -b \leqslant 0$ and $c \geqslant d \geqslant 0$. Having in mind (4), and applying Lemma 2.1 to the matrices A and C defined in (5), we can conclude that $\Delta_C(A)$ is the elliptical disc centered at $(\xi_1\alpha - \xi_2\gamma)^2 - (\xi_1^2ab + dc\xi_2^2)$, with 2(ac + bd) and 2(ac - bd) as the lengths of its major and minor axis, respectively. Hence, the semi-focal distance is given by $2\sqrt{ab}\sqrt{cd}$. The direction of the major axis is $u = 2\xi_1\xi_2(ac + bd)$. Since $|\xi_1| = |\xi_2| = 1$, we have |u| = 2(ac + bd). The foci of the elliptical disc are

$$f_i = (\xi_1 \alpha - \xi_2 \gamma)^2 - (\xi_1^2 ab + dc \xi_2^2) \pm 2\sqrt{ab}\sqrt{cd} \frac{u}{|u|}, \quad i = 1, 2.$$

We observe that the eigenvalues of A and C are $\alpha_i = \xi_1(\alpha \pm \sqrt{ab})$ and $\gamma_i = \xi_2(\gamma \pm \sqrt{cd})$, i = 1, 2, respectively. By straightforward computations, we have that $f_1 = (\alpha_1 - \gamma_1)(\alpha_2 - \gamma_2)$ and $f_2 = (\alpha_1 - \gamma_2)(\alpha_2 - \gamma_1)$, and so the theorem follows. \square

Remark. Li [12] proved that $W_C(A)$, A, $C \in M_2$, is an elliptical disc. Following analogous steps, an alternative proof for Theorem 2.1 can be obtained.

3. A necessary and sufficient condition for $\Delta_c(A)$ to be a line segment

In order to prove the main result of this section, we recall the definition of *cross ratio* of $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$. Define $S : \mathbb{C}_{\infty} \longrightarrow \mathbb{C}_{\infty}$ by

$$S(z) = \frac{(z - z_3)(z_2 - z_4)}{(z - z_4)(z_2 - z_3)} \quad \text{if } z_2, z_3, z_4 \in \mathbb{C};$$

$$S(z) = \frac{z - z_3}{z_3} \quad \text{if } z_2 = \infty;$$

$$S(z) = \frac{z - z_3}{z - z_4} \quad \text{if } z_2 = \infty;$$

$$S(z) = \frac{z_2 - z_4}{z - z_4}$$
 if $z_3 = \infty$;

$$S(z) = \frac{z - z_3}{z_2 - z_3}$$
 if $z_4 = \infty$.

We have $S(z_2) = 1$, $S(z_3) = 0$ and $S(z_4) = \infty$, and S is the unique Möbius transformation which satisfies the previous conditions. The *cross ratio* of $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$

denoted by (z_1, z_2, z_3, z_4) , is the image of z_1 under the unique Möbius transformation which takes z_2 to 1, z_3 to 0, and z_4 to ∞ .

The following lemma will be used in the proof of Lemma 3.2. For a proof, see e.g. [7].

Lemma 3.1. Let z_1 , z_2 , z_3 and z_4 be four distinct points in \mathbb{C}_{∞} . Then (z_1, z_2, z_3, z_4) is a real number if and only if z_1 , z_2 , z_3 and z_4 belong to the same straight line or to the same circle.

We give a solution to Problem 10484 in [6].

Lemma 3.2. Let $n \ge 2$, and let $\alpha = (\alpha_1, ..., \alpha_n)$ and $\gamma = (\gamma_1, ..., \gamma_n)$ be complex row vectors such that $\alpha_1, ..., \alpha_n$ and $\gamma_1, ..., \gamma_n$ are pairwise distinct. Consider the n! complex numbers (counting multiplicities)

$$z_{\sigma} = \prod_{i=1}^{n} (\alpha_i - \gamma_{\sigma(i)}), \quad \sigma \in S_n.$$

For $P(\alpha, \gamma) = \text{Co}\{z_{\sigma} : \sigma \in S_n\}$, $P(\alpha, \gamma)$ is a line segment of a line passing through the origin if and only if all the α_i and γ_j lie on a common circle or straight line.

Proof. (\Rightarrow) For $\alpha_i, \alpha_j, \gamma_i, \gamma_j \in \mathbb{C}_{\infty}, i, j = 1, ..., n$, by the definition of cross ratio, we have

$$(\alpha_i, \alpha_j, \gamma_i, \gamma_j) = S(\alpha_i),$$

where S is the unique Möbius transformation such that $S(\alpha_j) = 1$, $S(\gamma_i) = 0$ and $S(\gamma_i) = \infty$. By definition of S,

$$S(\alpha_i) = \frac{(\alpha_i - \gamma_i)(\alpha_j - \gamma_j)}{(\alpha_i - \gamma_i)(\alpha_j - \gamma_i)}.$$

For $\sigma = (id)$ and $\tau = (ij)$, we clearly have

$$\frac{(\alpha_i-\gamma_i)(\alpha_j-\gamma_j)}{(\alpha_i-\gamma_j)(\alpha_j-\gamma_i)}=\frac{z_\sigma}{z_\tau},$$

and so

$$S(\alpha_i) = \frac{z_{\sigma}}{z_{\tau}} = \frac{|z_{\sigma}| e^{i\arg(z_{\sigma})}}{|z_{\tau}| e^{i\arg(z_{\tau})}}.$$

Since z_{σ} and z_{τ} belong to $P(\alpha, \gamma)$ and $P(\alpha, \gamma)$ is a line segment of a line passing through the origin, then $\arg(z_{\sigma}) = \arg(z_{\tau}) \pmod{\pi}$. Thus,

$$S(\alpha_i) = \frac{|z_{\sigma}|}{|z_{\tau}|}$$
 or $S(\alpha_i) = -\frac{|z_{\sigma}|}{|z_{\tau}|}$.

Since $S(\alpha_i)$ is a real number, we conclude that $(\alpha_i, \alpha_j, \gamma_i, \gamma_j)$ is a real number for i, j = 1, ..., n. By Lemma 3.1, $\alpha_i, \alpha_j, \gamma_i$ and γ_j belong to the same circle or to the same straight line.

(\Leftarrow) Suppose that all the α_i and γ_j , i, j = 1, ..., n, belong to the same circle or to the same straight line. By Lemma 3.1, there is a unique Möbius transformation S such that $S(\alpha_j) = 1$, $S(\gamma_{\sigma(i)}) = 0$ and $S(\gamma_{\sigma(j)}) = \infty$ and

$$S(\alpha_i) = \frac{(\alpha_i - \gamma_{\sigma(i)})(\alpha_j - \gamma_{\sigma(j)})}{(\alpha_i - \gamma_{\sigma(j)})(\alpha_j - \gamma_{\sigma(i)})}$$

is a real number, for $i=1,\ldots,n$ and $\sigma\in S_n$. Consider the transposition $\tau\in S_n$ such that $\tau(k)=\sigma(k)$ for $k\neq i,j,\tau(i)=\sigma(j)$ and $\tau(j)=\sigma(i)$. Then

$$S(\alpha_i) = \frac{z_{\sigma}}{z_{\tau}} = \frac{|z_{\sigma}| e^{i \arg z_{\sigma}}}{|z_{\tau}| e^{i \arg z_{\tau}}}.$$

By the hypothesis, $S(\alpha_i)$ is a real number for $i=1,\ldots,n$, and so $\arg(z_\sigma)=\arg(z_\tau)(\operatorname{mod}\pi)$ for all $\sigma,\tau\in S_n$. As $P(\alpha,\gamma)=\operatorname{Co}\{z_\sigma:\sigma\in S_n\}$ is a compact and connected subset of $\mathbb R$ (or of $e^{\mathrm{i}\theta}\mathbb R$, θ real), it follows that $P(\alpha,\gamma)$ is a line segment. \square

Theorem 3.1. Let A and C be $n \times n$ normal matrices with eigenvalues $\alpha_1, \ldots, \alpha_n$ and $\gamma_1, \ldots, \gamma_n$, respectively, such that $\alpha_1, \ldots, \alpha_n, \gamma_1, \ldots, \gamma_n$, are pairwise distinct. The set $\Delta_C(A)$ is a line segment of a line passing through the origin if and only if all the α_i and γ_j lie on a common circle or straight line.

- **Proof.** (\Rightarrow) Let $\Delta_C(A)$ be a line segment of a line through the origin. The endpoints of this segment are corners (z belonging to the boundary of $\Delta_C(A)$ is a corner, if in the neighborhood of z, $\Delta_C(A)$ is contained in an angle with vertex at z and measuring less than π .) It is known [2,8] that if z is a corner, then $z=z_\sigma$ for some $\sigma \in S_n$. Thus, $\Delta_C(A)=\operatorname{Co}\{z_\sigma:\sigma\in S_n\}=P(\alpha,\gamma)$ is a line segment of a line through the origin, and by Lemma 3.2 all the α_i and γ_i lie on a common circle or straight line.
- (\Leftarrow) If all the α_i and γ_j lie on a common circle or straight line, by Lemma 3.2 $P(\alpha, \gamma)$ is a line segment of a line passing through the origin. In these cases, (2) holds with equality [3,9]. \square

Observation. For the sufficient condition the relaxation on the eigenvalues is trivial. We conjecture that this relaxation is still possible for the necessary condition. Moreover, we conjecture that if $\Delta_C(A)$, $n \ge 2$, is a line segment, then the line containing it passes through the origin.

4. A linear preserver property

We investigate the structure of those linear operators $L: M_n \longrightarrow M_n$ that satisfy the relation $\Delta_C(A) = \Delta_C(L(A))$, for all $A, C \in M_n$. We start with some useful lemmas.

Lemma 4.1. Let $A \in M_n$. The following conditions are equivalent:

- (i) For any $C \in M_n$, $\Delta_C(A)$ is a singleton.
- (ii) A is a scalar matrix.

Proof. The proof (ii) \Rightarrow (i) is trivial. We prove the direct implication.

Let $A \in M_n$. Since $\Delta_C(A)$ reduces to a singleton for any $C \in M_n$, there exists a matrix $C \in M_n$ such that the eigenvalues of A and C are pairwise distinct and the corresponding determinantal range is a singleton. Thus, all the σ -points, $\sigma \in S_n$, coincide with the singleton $\Delta_C(A)$, and so

$$\frac{\alpha_i - \gamma_i}{\alpha_j - \gamma_i} = \frac{\alpha_i - \gamma_j}{\alpha_j - \gamma_j} = \frac{\gamma_i - \gamma_j}{\gamma_i - \gamma_j} = 1, \quad i, j = 1, \dots, n.$$

We conclude that $\alpha_i = \alpha_j$, for all i, j = 1, ..., n.

Because the set $\Delta_C(A)$ is unitarily invariant, we may use Schur's Lemma and consider A in upper triangular form. Suppose that $A=(a_{jh})$ is not a normal matrix, and so there exists $a_{jh} \neq 0$, with j < h. By the hypothesis, $\Delta_C(A)$ is a singleton for any C. Hence, there exists a matrix C such that $\gamma_{\sigma(j)} \neq \gamma_{\sigma(h)}$, $\sigma \in S_n$, and for which $\Delta_C(A)$ is a singleton. Let $V = P_{\sigma}P_{(1j)\circ(2h)} \in M_n$, where $P_{\sigma} = (\delta_{j\sigma(h)})$ and $P_{(1j)\circ(2h)}$ is the permutation matrix associated with $\tau = (1j) \circ (2h) \in S_n$. It is easy to see that

$$\{\det(A - V(W_2 \oplus I_{n-2})V^{\mathrm{T}}CV(W_2 \oplus I_{n-2})^*V^{\mathrm{T}}: W_2 \in U_2\} \subset \Delta_C(A).$$

This region is an elliptical disc with foci z_{σ} and $z_{\sigma \circ (jh)}$, and with the length of the minor axis $|a_{jh}||\gamma_{\sigma(j)} - \gamma_{\sigma(h)}|$. Since $\Delta_C(A)$ is a singleton, this is a contradiction. It follows that A is a normal matrix, namely, a scalar matrix. \Box

Lemma 4.2. Let $\xi \in \mathbb{C}$. The equality $\det(I_n - C) = \det(\xi I_n - C)$ is valid for all $C \in M_n$ if and only if $\xi = 1$.

Proof. The part (\Leftarrow) is clear.

Suppose that $\xi \neq 1$. Taking $C = I_n$ we obtain $\det(I_n - C) = 0$. We also have $\det(\xi I_n - C) = \det((\xi - 1)I_n) = (\xi - 1)^n$. As $\xi \neq 1$, then $\det(\xi I_n - C) \neq 0$, a contradiction. \square

Lemma 4.3 [19]. A linear operator on H_n mapping the cone of positive semi-definite matrices onto itself must be of the form $A \mapsto U^*AU$ or $A \mapsto U^*A^TU$, for some invertible $U \in M_n$.

Theorem 4.1. A linear operator $L: H_n \longrightarrow H_n$ satisfies

 $\Delta_C(A) = \Delta_C(L(A)), \quad \text{for all } A \in H_n \quad \text{and} \quad \text{for all } C \in M_n,$

if and only if there exists a unitary matrix U such that L is of the form

$$A \mapsto UAU^*$$
 or $A \mapsto UA^{\mathsf{T}}U^*$.

Proof. The implication (\Leftarrow) is clear.

We prove the converse. First of all, if L(A) = 0, then A is a scalar matrix. In fact, this is a consequence of Lemma 4.1, since $\Delta_C(A) = \Delta_C(L(A))$ is a singleton for any $C \in M_n$. Suppose $A \neq 0$. Then there exists a non-singular matrix C such that $\Delta_C(A) = 0$. But, if C is non-singular, then $\Delta_C(0) = \Delta_C(L(A)) \neq 0$, which contradicts $\Delta_C(A) = \Delta_C(L(A)) = 0$. Hence A = 0 and so L is non-singular.

Next, note that $\Delta_C(L(I_n)) = \Delta_C(I_n) = \det(I_n - C)$, for all $C \in M_n$ and, by Lemma 4.1, $L(I_n) = \xi I_n$, for some $\xi \in \mathbb{C}$. For all $C \in M_n$, we have $\Delta_C(\xi I_n) = \Delta_C(I_n)$ and, by Lemma 4.2, it follows that $\xi = 1$. Therefore, the operator L preserves I_n and $\Delta_C(A)$. Now, we show that this operator L maps the set of positive definite matrices onto itself. To this end, let A be positive definite. Suppose L(A) is not positive definite. Then there exists $r \geqslant 0$ such that $L(A) + rI_n$ is singular. We know that

$$\Delta_C(L(A+rI_n)) = \Delta_C(L(A)+rI_n) = \Delta_C(A+rI_n),$$

for all Hermitian C. In particular for C = 0, we have

$$\Delta_0(A + rI_n) = \Delta_0(L(A) + rI_n).$$

Since $A + rI_n$ is positive definite, $\Delta_0(A + rI_n) = \det(A + rI_n) > 0$. On the other hand,

$$\Delta_0(L(A) + rI_n) = \det(L(A) + rI_n) = 0,$$

because $L(A) + rI_n$ is a singular matrix. Hence, there does not exist $r \ge 0$ such that $L(A) + rI_n$ is singular, and so L(A) is positive definite.

Since L is invertible, one can apply the previous arguments to L^{-1} to conclude that L^{-1} maps the set of positive definite matrices into itself. Thus, it preserves I_n and $\Delta_C(A)$. Hence, L maps the set of positive definite matrices onto itself. By Lemma 4.3, there exists an invertible matrix U such that the operator L is of the form

$$A \mapsto UAU^*$$
 or $A \mapsto UA^TU^*$.

Since
$$L(I_n) = I_n$$
, we have $UU^* = I_n$. \square

The following result will be used in the proof of Theorem 4.2.

Lemma 4.4 [2]. Let C be an $n \times n$ normal matrix with simple eigenvalues. If there exists at least one corner on the boundary of $\Delta_C(A)$, then $A \in M_n$ is a normal matrix.

Theorem 4.2. A linear operator $L: M_n \longrightarrow M_n$ satisfies

$$\Delta_C(A) = \Delta_C(L(A)), \quad \text{for all } A, C \in M_n$$

if and only if there exists a unitary matrix U such that L is of the form

$$A \mapsto UAU^*$$
 or $A \mapsto UA^{\mathsf{T}}U^*$.

Proof. (\Rightarrow) Let L be a linear operator in M_n such that $\Delta_C(A) = \Delta_C(L(A))$ for all $A, C \in M_n$. Suppose that A is a Hermitian matrix. We prove that L(A) is Hermitian.

By the hypothesis, $\Delta_C(A) = \Delta_C(L(A))$ for all $C \in M_n$. In particular, there exists $C \in H_n$ such that the eigenvalues of C and A are pairwise distinct and also the eigenvalues of C and L(A) are pairwise distinct. Since A and C are Hermitian, it follows that

$$\Delta_C(A) = [\min_{\sigma} z_{\sigma}, \max_{\sigma} z_{\sigma}], \quad \sigma \in S_n.$$

As $\Delta_C(A) = \Delta_C(L(A))$, using Lemma 3.2 we can conclude that the eigenvalues of C and L(A) belong to the same straight line or to the same circle. Since C is Hermitian it has real eigenvalues, so L(A) has real eigenvalues.

Since $\Delta_C(L(A)) = [\min_{\sigma} z_{\sigma}, \max_{\sigma} z_{\sigma}]$, the endpoints of this line segment are corners and, by Lemma 4.4, L(A) is normal. Thus, L(A) is Hermitian and $L(H_n) \subseteq H_n$.

By Theorem 4.1, we have

(i)
$$L(A) = UAU^*$$
 or (ii) $L(A) = UA^TU^*$.

Consider $A \in M_n$ in the cartesian decomposition, that is, A = Re A + i Im A, where $\text{Re } A = (A + A^*)/2$ and $\text{Im } A = (A - A^*)/2$ i are Hermitian matrices. If (i) holds, then

$$L(A) = L(\operatorname{Re} A) + iL(\operatorname{Im} A)$$

$$= U(\operatorname{Re} A)U^* + iU(\operatorname{Im} A)U^*$$

$$= UAU^*.$$

If (ii) holds, a similar argument can be used. The converse implication follows directly. $\hfill\Box$

References

- [1] N. Bebiano, Some variations on the concept of the *c*-numerical range, Port. Math. 43 (1985–1986)
- [2] N. Bebiano, Some analogies between the *c*-numerical range and a certain variation of this concept, Linear Algebra Appl. 81 (1986) 47–54.
- [3] N. Bebiano, J. da Providência, Some remarks on a conjecture of Oliveira, Linear Algebra Appl. 102 (1988) 241–246.
- [4] N. Bebiano, New developments on the Marcus-Oliveira conjecture, Linear Algebra Appl. 197–198 (1994) 791–844.
- [5] N. Bebiano, A. Kovačec, J. da Providência, The validity of the Marcus–Oliveira conjecture for essentially Hermitian matrices, Linear Algebra Appl. 197–198 (1994) 411–427.
- [6] N. Bebiano, J. da Providência, Problem P 10484, Amer. Math. Monthly 9 (1995) 841.
- [7] J.B. Conway, Functions of One Complex Variable I, second ed., Springer Verlag, 1991.
- [8] S.W. Drury, B. Cload, On the determinantal conjecture of Marcus and de Oliveira, Linear Algebra Appl. 177 (1992) 105–109.

- [9] M. Fiedler, Bounds for the determinant of the sum of Hermitian matrices, Proc. Amer. Math. Soc. 30 (1971) 27–31.
- [10] M. Goldberg, E.G. Straus, Elementary inclusion relations of generalized numerical ranges, Linear Algebra Appl. 18 (1977) 1–24.
- [11] A. Kovačec, On a conjecture of Marcus and de Oliveira, Linear Algebra Appl. 201 (1994) 91–97.
- [12] C.-K. Li, Some convexity theorems for the generalized numerical ranges, Linear and Multilinear Algebra 40 (1996) 235–240.
- [13] M. Marcus, Derivations, Plücker relations and the numerical range, Indiana Univ. Math. J. 22 (1973) 1137–1149.
- [14] M. Marcus, M. Sandy, Conditions for the generalized numerical range to be real, Linear Algebra Appl. 71 (1985) 219–239.
- [15] J.K. Merikoski, A. Virtanen, Some notes on de Oliveira's determinantal conjecture, Linear Algebra Appl. 121 (1989) 345–352.
- [16] J.K. Merikoski, A. Virtanen, Some further notes on the Marcus—de Oliveira determinantal conjecture, Linear Algebra Appl. 187 (1993) 259–262.
- $[17] \;\; \text{H. Nakazato, The C-numerical range of a 2×2 matrix, Sci. Rep. Hirosaki Univ. 41 (1994) 197–206.}$
- [18] G.N. de Oliveira, Normal matrices (research problem), Linear and Multilinear Algebra 12 (1982) 153–154.
- [19] H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965) 11–17.