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Abstract
Let A, C € My, the algebra of n x n complex matrices. The set of complex numbers
Ac(A) = {det(A —UCU™) : U*U = I}

is the C-determinantal range of A. In this note, it is proved that 4¢(A) is an elliptical disc
for A, C € Mj. A necessary and sufficient condition for A¢ (A) to be a line segment is given
when A and C are normal matrices with pairwise distinct eigenvalues. The linear operators L
that satisfy the linear preserver property Ac(A) = Ac(L(A)), forall A, C € My, are charac-
terized.

© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let M,, be the algebra of n x n complex matrices, and let U,, be the group of n x n
unitary matrices. Let H, denote the real space of n x n Hermitian matrices. For

* Corresponding author.
E-mail addressess: bebiano@ci.uc.pt (N. Bebiano), gsoares @utad.pt (G. Soares).

0024-3795/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2004.06.006


www.elsevier.com/locate/laa
mailto:bebiano@ci.uc.pt
mailto:gsoares@utad.pt

212 N. Bebiano, G. Soares / Linear Algebra and its Applications 401 (2005) 211-220

A, C € M,, the C-determinantal range of A is the set of the complex plane denoted
and defined by

Ac(A) ={det(A—UCU") : U € Uy,}. (1)
This set is compact and connected, but it may not be simply connected [1].

The C-determinantal range of A can be viewed as a variation of the concept of

C-numerical range of A, introduced in [10], and defined by
We(A) = {Tr (CU*AU) : U € Uy,}.

In fact, both sets are ranges of continuous functions defined on the unitary similar-
ity orbit of A € M, O(A) = {U*AU : U € U,} and a certain parallelism exists
between the properties of these notions [1,2]. Nevertheless, it seems much more
complicated to deal with A¢(A) than with W¢(A).

Letag,...,a, and yq, ..., ¥, be the eigenvalues of A and C, respectively. It can
be easily seen that the n! points (not necessarily distinct)

n
lo = H(a,- —Yo@i)), O €Sy,
i=1

Sn the symmetric group of degree n, belong to A¢(A). In the sequel, these points
will be called o -points.
It is easy to verify that Ac (A) is unitarily invariant, that is,

Ac(A) = Ay=cy(VFAV), forany U,V € U,.

Let A, C € M, be normal matrices. Since A and C are diagonalizable under unitary
similarity transformations, and A¢(A) is unitarily invariant, we may consider A =
diag («q, ..., o) and C = diag (yy, - . ., ¥») in (1). Marcus [13] and de Oliveira [18]
conjectured that

n
Ac(A) € Co {H(ai — Vo) 10 € Sn} ; 2
i=1
where Co {-} is the convex hull of {-}. This conjecture was proved in certain special
cases (see [3-5,8,11,15,16]), but even the case n = 4 remains open. While it seems
difficult to prove (or disprove) (2), to give the complete characterization of A¢(A) it
is much more difficult. Indeed, even the statement of a necessary and sufficient con-
dition for 4¢(A) to be a line segment is not trivial. Sufficient conditions for A¢(A) to

be a line segment are known. Fiedler [9] proved that if A = diag («q, ..., o), C =
diag (y1, ..., y») and all the «; and y; belong to the same straight line through the
origin, that is, arg (1) = --- = arg () = arg (yy) = - - - = arg (¥,)(mod ), then

Ac(A) is a line segment through the origin and the equality in (2) holds. In [3] it
was proved that if A = diag (a1, ..., ®,), C =diag(yy, ..., y,) and all the «; and

y; belong to the same circle with center at the origin, that is, |oj| = -+ = o, | =
[y1l =+ = |ynl, then 4¢(A) is a line segment through the origin and the equality
in (2) holds.

One of the motivations of this note is the exploitation of the parallelism between
the properties of Ac(A) and W (A) [14], as well as to emphasize the analogies
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of the proof techniques in both situations. The note is organized as follows. In
Section 2, we prove that Ac(A) is an elliptical disc when A, C € M. In Section
3, a necessary and sufficient condition for A¢(A) to be a line segment is given,
when A = diag («q, ..., ), C =diag(yy, ..., ) and ay, ..., a, and y1, ..., ¥,
are pairwise distinct. We conjecture that this restriction on the eigenvalues may be
relaxed and that if A¢(A), n > 2, is a line segment, then the line containing it passes
through the origin. In Section 4, linear operators L on M,, (and on H,) that satisfy
the linear preserver property Ac(A) = Ac(L(A)),forall A, C € M, (forall A € H,
and C € M,) are characterized.

2. The elliptical range theorem for 4¢(A)

For C = diag (y1, y2) and A € M», it was proved [2] that 4.(A) is an elliptical
disc with foci («; — 1) (2 — y2) and (@1 — y2) (2 — y1), and with the length of the
minor axis equal to |y; — 7/2|\/Tr AA* — |a|? — |az|?. This result is generalized for
A, C € M3 in Theorem 2.1 which treats the general case. In fact, following anal-
ogous steps to those used in Section 2 of [12] we can prove that for A, C € M»,
Ac(A) = Ac, (A1), Ay and C being matrices of the form (3).

Theorem 2.1. Let

_ a a _ y
A_gl[b a} and c_gz[d y] )
where a, y,&1,6 € Cwith |&1| =& =1, a>b>0and c >d > 0. Let oy, o
and y1, v2 be the eigenvalues of A and C, respectively. Then

Ac(A) = (ra — &) — (Efab + &5 dc)
+ &6 {r[(ac+bd) cost+i(ac—bd)sint] : r € [0,1], 1 € [0,27)},
that is, Ac (A) is an elliptical disc with (a1 — y1)(a2 — y2) and (o1 — y2) (2 — ¥1)
as foci and {1 — &y)? — (Elab + E3dc) + &1&xs(ac + bd): s € [—1, 11} and

((Ela — E27)% — (élzab + é%dc) +i&1&s(ac — bd) : s € [—1, 1]} as major and
minor axis, respectively.

Lemma 2.1 [12,17]. Let A, C be matrices of the form (3) with& =& = 1.
Then

Wc(A) = {2ay + rl(ac + bd) cost
+i(ac — bd)sint] : r € [0, 1], t € [0,27)},
which is the elliptical disc with {2ay + s(ac + bd) : s € [—1, 1]} as the major axis
and with 2ay +is(ac — bd) : s € [—1, 1]} as the minor axis.

We now prove Theorem 2.1.
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Proof. The following expansion can be easily obtained
det (A — U*CU) = det A +detC — Tr(ZTAZU*CU), (4)
where
0 -1
Z-= [1 . ] |

We can assume A, C € M, of the form

A:él[ (Xb} and C=§2|:Z ;} (5)
where «, y, &1, & € C are such that [§1] = |&| =1, —a < —b <0andc >d > 0.
Having in mind (4), and applying Lemma 2.1 to the matrices A and C defined in
(5), we can conclude that A4¢(A) is the elliptical disc centered at (&1 — Ezy)z —
(§%ab + dct?), with 2(ac + bd) and 2(ac — bd) as the lengths of its major and
minor axis, respectively. Hence, the semi-focal distance is given by 2v/ab+/cd. The
direction of the major axis is u = 2&1&>(ac + bd). Since |&1| = |&| = 1, we have
lu| = 2(ac + bd). The foci of the elliptical disc are

fi = (10 — £2)? — (E2ab + de£?) + 2«/%«/@%, i=1,2.

o
—da

We observe that the eigenvalues of A and C are o; = &j (o &= v/ab) and y; = & (y £
ved), i = 1,2, respectively. By straightforward computations, we have that f; =
(1 — y1)(a — y2) and f> = (a1 — y2)(a2 — 1), and so the theorem follows. [

Remark. Li [12] proved that W (A), A, C € M>, is an elliptical disc. Following
analogous steps, an alternative proof for Theorem 2.1 can be obtained.

3. A necessary and sufficient condition for 4.(A) to be a line segment

In order to prove the main result of this section, we recall the definition of cross
ratio of 71, 22, 23, 24 € C. Define S : Coo —> Co by

(z —2z3)(z2 — 24)

S(z) = ——— if22,23,24 € C;
(z —z4)(z2 — 23)
Z—Z .
S(z) = 3 if zo = oc;
Z— 24
Sz) = 275 itz = oo
Z— 24
Z—2Z .
S(z) = 3 if z4 = o0.
72 — 23

We have S(z2) = 1, S(z3) = 0 and S(z4) = 00, and § is the unique M6bius transfor-
mation which satisfies the previous conditions. The cross ratio of z1, 22, 23, z4 € Co
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denoted by (z1, 22, 23, 24), is the image of z; under the unique Mobius transforma-
tion which takes z» to 1, z3 to 0, and z4 to oo.

The following lemma will be used in the proof of Lemma 3.2. For a proof, see
e.g. [7].

Lemma 3.1. Let z1, z2, 23 and z4 be four distinct points in Coo. Then (z1, 22, 23, 24)
is a real number if and only if 71, 22, 73 and z4 belong to the same straight line or to
the same circle.

We give a solution to Problem 10484 in [6].

Lemma 3.2. Letn > 2,andleta = (a1, ...,0n) andy = (y1, ..., ¥Yn) be complex
row vectors such that ay, ..., o, and y1, . .., Y, are pairwise distinct. Consider the
n! complex numbers (counting multiplicities)

n
lo = H(ai - V(r(i))a o €S,
i=1
For P(a,y) = Co{zy : 0 € 8,1}, P(w, y) is aline segment of a line passing through
the origin if and only if all the a; and y; lie on a common circle or straight line.

Proof. (=) For «;,a;, ¥, vj € Cx,i,j =1,...,n, by the definition of cross
ratio, we have
(i, aj, vi,vj) = S(a;),
where § is the unique Mobius transformation such that S(«;) =1, S(y;) =0 and
S(yj) = oo. By definition of S,
(i —yi)ej —v))
(i =y — )
For o = (id) and t = (ij), we clearly have
(i —y)(aj —v¥j) _ Zo
(0 —yp)aj—v) 2
and so

S(e)

Zo |ZU|eiarg(ZJ)

S0 = = e

Since z, and z; belong to P(«, y) and P(a, y) is a line segment of a line passing
through the origin, then arg (z,) = arg (z;)(mod 7). Thus,

z z
S(a;) = %] or S(a,»)=—| "'.
|z¢| |z¢|
Since S(«;) is a real number, we conclude that («;, «;, i, ;) is a real number for
i,j=1,...,n. By Lemma 3.1, o;, o}, y; and y; belong to the same circle or to the

same straight line.
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(<) Suppose that all the o; and y;, i, j =1, ..., n, belong to the same circle or
to the same straight line. By Lemma 3.1, there is a unique Md&bius transformation S
such that S(;) = 1, S(¥5()) = 0 and S(ys(j)) = 00 and

(@ — Vo) (@j — Vo(j))
(@ = Yo()(@j — Yoi))

S(a) =

is a real number, for i = 1,...,n and o € §,. Consider the transposition 7 € S,
such that 7 (k) = o (k) fork # i, j, 7(i) = o(j) and t(j) = o(i). Then

eiargz,,
Say) = o = [7ele
Zr |z |etEi
By the hypothesis, S(«;) is a real number for i = 1,...,n, and so arg(z,) =

arg (z¢)(modx) for all 0,7 € §,. As P(a,y) =Co{zs : 0 € §,} is a compact
and connected subset of R (or of ¢ R, @ real), it follows that P(«, y) is a line
segment. [

Theorem 3.1. Let A and C be n x n normal matrices with eigenvalues o1, . .., oy
and yi, ..., Yn, respectively, such that oy, ..., dn, Y1, ..., Yn, are pairwise distinct.
The set Ac(A) is a line segment of a line passing through the origin if and only if all
the a; and y; lie on a common circle or straight line.

Proof. (=) Let Ac(A) be a line segment of a line through the origin. The endpoints
of this segment are corners (z belonging to the boundary of A¢(A) is a corner, if in
the neighborhood of z, 4¢(A) is contained in an angle with vertex at z and measuring
less than 7r.) It is known [2,8] that if z is a corner, then z = z, for some o € S,,. Thus,
Ac(A) =Cof{zy : 0 € S} = P(a, y) is a line segment of a line through the origin,
and by Lemma 3.2 all the «; and y; lie on a common circle or straight line.

(<) If all the o; and y; lie on a common circle or straight line, by Lemma 3.2
P(a, y) is a line segment of a line passing through the origin. In these cases, (2)
holds with equality [3,9]. O

Observation. For the sufficient condition the relaxation on the eigenvalues is trivial.
We conjecture that this relaxation is still possible for the necessary condition. More-
over, we conjecture that if Ac(A), n > 2, is a line segment, then the line containing
it passes through the origin.

4. A linear preserver property
We investigate the structure of those linear operators L : M, — M, that sat-

isfy the relation A¢c(A) = A¢c(L(A)), for all A, C € M,,. We start with some useful
lemmas.
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Lemma 4.1. Let A € M,,. The following conditions are equivalent:

(i) For any C € My, Ac(A) is a singleton.
(i1) A is a scalar matrix.

Proof. The proof (ii) = (i) is trivial. We prove the direct implication.

Let A € M,,. Since Ac(A) reduces to a singleton for any C € M, there exists
a matrix C € M, such that the eigenvalues of A and C are pairwise distinct and
the corresponding determinantal range is a singleton. Thus, all the o -points, o € S,
coincide with the singleton A¢(A), and so

o —Yi =Y Vi~V
®j—vi & =Y Vi~V
We conclude that o; = «j, foralli, j =1, ..., n.

Because the set A¢(A) is unitarily invariant, we may use Schur’s Lemma and
consider A in upper triangular form. Suppose that A = (a ) is not a normal matrix,
and so there exists a;, # 0, with j < h. By the hypothesis, 4¢(A) is a singleton
for any C. Hence, there exists a matrix C such that y;(j) # Vo), 0 € Sy, and for
which 4¢(A) is a singleton. Let V = Py P(1j)02n) € My, Where Py = (§j5()) and
P(1 j)o(2n) 1s the permutation matrix associated with T = (1j) o (2h) € S,. It is easy
to see that

{det(A— V(W2 ® L,_)VICV(Wa & 1,_2)*VT : Wy € Up} C Ac(A).

This region is an elliptical disc with foci z5 and zgo(ji), and with the length of the
minor axis |a;n|lVs(j) — Yon)l. Since A¢ (A) is a singleton, this is a contradiction. It
follows that A is a normal matrix, namely, a scalar matrix. [

Lemma 4.2. Let & € C. The equality det (I, — C) = det (§1,, — C) is valid for all
C e M, ifandonlyifé = 1.

Proof. The part («<=) is clear.

Suppose that & # 1. Taking C = I, we obtain det (I, — C) = 0. We also have
det(6l, —C) =det((¢ — 1DI,)) =& —1)". As € £ 1, then det (1, — C) #0, a
contradiction. [J

Lemma 4.3 [19]. A linear operator on H, mapping the cone of positive semi-definite
matrices onto itself must be of the form A+ U*AU or A — U*ATU, for some
invertible U € M,,.

Theorem 4.1. A linear operator L : H, —> H, satisfies
Ac(A) = Ac(L(A)), forall A€ H, and forallC € M,,
if and only if there exists a unitary matrix U such that L is of the form
A UAU* or A UAU*.
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Proof. The implication (<) is clear.

We prove the converse. First of all, if L(A) = 0, then A is a scalar matrix. In
fact, this is a consequence of Lemma 4.1, since A¢c(A) = A¢c(L(A)) is a single-
ton for any C € M,. Suppose A # 0. Then there exists a non-singular matrix C
such that A¢c(A) = 0. But, if C is non-singular, then A¢ (0) = A¢c(L(A)) # 0, which
contradicts Ac(A) = Ac(L(A)) = 0. Hence A = 0 and so L is non-singular.

Next, note that Ac(L(I,)) = Ac(I,) = det (I, — C), for all C € M,, and, by
Lemma 4.1, L(I,) = &1, for some & € C. For all C € M,,, we have Ac (1) =
Ac(I,) and, by Lemma 4.2, it follows that & = 1. Therefore, the operator L preserves
I,, and 4¢(A). Now, we show that this operator L maps the set of positive definite
matrices onto itself. To this end, let A be positive definite. Suppose L(A) is not
positive definite. Then there exists » > 0 such that L(A) + r 1, is singular. We know
that

Ac(L(A+rly)) = Ac(L(A) +rly) = Ac(A+rly),
for all Hermitian C. In particular for C = 0, we have

Ao(A +rly) = Ao(L(A) +rly).
Since A + r1, is positive definite, 4g(A + r1,) = det (A + r1,) > 0. On the other
hand,

Ao(L(A) +rl,) =det(L(A) +rl,) =0,

because L(A) + r1, is a singular matrix. Hence, there does not exist » > 0 such that
L(A) + rl, is singular, and so L(A) is positive definite.

Since L is invertible, one can apply the previous arguments to L~! to conclude
that L~ maps the set of positive definite matrices into itself. Thus, it preserves
I, and Ac(A). Hence, L maps the set of positive definite matrices onto itself. By
Lemma 4.3, there exists an invertible matrix U such that the operator L is of the
form

A UAU* or Ar UATU*.
Since L(I,) = I,, we have UU* = I,,. [

The following result will be used in the proof of Theorem 4.2.

Lemma 4.4 [2]. Let C be an n x n normal matrix with simple eigenvalues. If there
exists at least one corner on the boundary of Ac(A), then A € M, is a normal
matrix.

Theorem 4.2. A linear operator L : M,, —> M,, satisfies
Ac(A) = Ac(L(A)), forall A,C e M,

if and only if there exists a unitary matrix U such that L is of the form
A UAU* or A UATU.
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Proof. (=) Let L be a linear operator in M,, such that Ac(A) = Ac(L(A)) for all
A, C € M,,. Suppose that A is a Hermitian matrix. We prove that L(A) is Hermitian.

By the hypothesis, Ac(A) = Ac(L(A)) for all C € M,,. In particular, there exists
C € H, such that the eigenvalues of C and A are pairwise distinct and also the
eigenvalues of C and L(A) are pairwise distinct. Since A and C are Hermitian, it
follows that

Ac(A) = [minz,, maxz,], o € S,.
o (e

As Ac(A) = Ac(L(A)), using Lemma 3.2 we can conclude that the eigenvalues
of C and L(A) belong to the same straight line or to the same circle. Since C is
Hermitian it has real eigenvalues, so L(A) has real eigenvalues.

Since Ac(L(A)) = [min, z,, maX, Zo ], the endpoints of this line segment are
corners and, by Lemma 4.4, L(A) is normal. Thus, L(A) is Hermitian and L(H,) C
H,.

By Theorem 4.1, we have

(i) L(A) = UAU* or (i) L(A)=UATU*.

Consider A € M, in the cartesian decomposition, thatis, A = Re A 4+ iIm A, where
ReA = (A+ A*)/2 and Im A = (A — A*)/2i are Hermitian matrices. If (i) holds,
then

L(A)=L(Re A) +iL(Im A)
=U(Re A)U* +iU(Im A)U*
=UAU*.

If (ii) holds, a similar argument can be used. The converse implication follows
directly. O
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