Available online at www.sciencedirect.com

Three observations on the determinantal range

N. Bebiano ${ }^{\text {a }}$, G. Soares ${ }^{\mathrm{b}, *}$
${ }^{a}$ Department of Mathematics, University of Coimbra, P 3001-454 Coimbra, Portugal
${ }^{\mathrm{b}}$ Department of Mathematics, University of Trás-os-Montes e Alto Douro, P 5000-911 Vila Real, Portugal
Received 31 October 2003; accepted 7 June 2004
Available online 3 August 2004
Submitted by R. Merris
Dedicated to G. de Oliveira

Abstract

Let $A, C \in M_{n}$, the algebra of $n \times n$ complex matrices. The set of complex numbers

$$
\Delta_{C}(A)=\left\{\operatorname{det}\left(A-U C U^{*}\right): U^{*} U=I_{n}\right\}
$$

is the C-determinantal range of A. In this note, it is proved that $\Delta_{C}(A)$ is an elliptical disc for $A, C \in M_{2}$. A necessary and sufficient condition for $\Delta_{C}(A)$ to be a line segment is given when A and C are normal matrices with pairwise distinct eigenvalues. The linear operators L that satisfy the linear preserver property $\Delta_{C}(A)=\Delta_{C}(L(A))$, for all $A, C \in M_{n}$, are characterized.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Determinantal range; Cross ratio; Linear preserver

1. Introduction

Let M_{n} be the algebra of $n \times n$ complex matrices, and let U_{n} be the group of $n \times n$ unitary matrices. Let H_{n} denote the real space of $n \times n$ Hermitian matrices. For

[^0]$A, C \in M_{n}$ the C-determinantal range of A is the set of the complex plane denoted and defined by
\[

$$
\begin{equation*}
\Delta_{C}(A)=\left\{\operatorname{det}\left(A-U C U^{*}\right): U \in U_{n}\right\} . \tag{1}
\end{equation*}
$$

\]

This set is compact and connected, but it may not be simply connected [1].
The C-determinantal range of A can be viewed as a variation of the concept of C-numerical range of A, introduced in [10], and defined by

$$
W_{C}(A)=\left\{\operatorname{Tr}\left(C U^{*} A U\right): U \in U_{n}\right\} .
$$

In fact, both sets are ranges of continuous functions defined on the unitary similarity orbit of $A \in M_{n}, \mathbb{O}(A)=\left\{U^{*} A U: U \in U_{n}\right\}$ and a certain parallelism exists between the properties of these notions [1,2]. Nevertheless, it seems much more complicated to deal with $\Delta_{C}(A)$ than with $W_{C}(A)$.

Let $\alpha_{1}, \ldots, \alpha_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ be the eigenvalues of A and C, respectively. It can be easily seen that the n ! points (not necessarily distinct)

$$
z_{\sigma}=\prod_{i=1}^{n}\left(\alpha_{i}-\gamma_{\sigma(i)}\right), \quad \sigma \in S_{n}
$$

S_{n} the symmetric group of degree n, belong to $\Delta_{C}(A)$. In the sequel, these points will be called σ-points.

It is easy to verify that $\Delta_{C}(A)$ is unitarily invariant, that is,

$$
\Delta_{C}(A)=\Delta_{U^{*} C U}\left(V^{*} A V\right), \quad \text { for any } U, V \in U_{n}
$$

Let $A, C \in M_{n}$ be normal matrices. Since A and C are diagonalizable under unitary similarity transformations, and $\Delta_{C}(A)$ is unitarily invariant, we may consider $A=$ $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $C=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ in (1). Marcus [13] and de Oliveira [18] conjectured that

$$
\begin{equation*}
\Delta_{C}(A) \subseteq \operatorname{Co}\left\{\prod_{i=1}^{n}\left(\alpha_{i}-\gamma_{\sigma(i)}\right): \sigma \in S_{n}\right\} \tag{2}
\end{equation*}
$$

where $\operatorname{Co}\{\cdot\}$ is the convex hull of $\{\cdot\}$. This conjecture was proved in certain special cases (see $[3-5,8,11,15,16]$), but even the case $n=4$ remains open. While it seems difficult to prove (or disprove) (2), to give the complete characterization of $\Delta_{C}(A)$ it is much more difficult. Indeed, even the statement of a necessary and sufficient condition for $\Delta_{C}(A)$ to be a line segment is not trivial. Sufficient conditions for $\Delta_{C}(A)$ to be a line segment are known. Fiedler [9] proved that if $A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), C=$ $\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and all the α_{i} and γ_{j} belong to the same straight line through the origin, that is, $\arg \left(\alpha_{1}\right)=\cdots=\arg \left(\alpha_{n}\right)=\arg \left(\gamma_{1}\right)=\cdots=\arg \left(\gamma_{n}\right)(\bmod \pi)$, then $\Delta_{C}(A)$ is a line segment through the origin and the equality in (2) holds. In [3] it was proved that if $A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), C=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and all the α_{i} and γ_{j} belong to the same circle with center at the origin, that is, $\left|\alpha_{1}\right|=\cdots=\left|\alpha_{n}\right|=$ $\left|\gamma_{1}\right|=\cdots=\left|\gamma_{n}\right|$, then $\Delta_{C}(A)$ is a line segment through the origin and the equality in (2) holds.

One of the motivations of this note is the exploitation of the parallelism between the properties of $\Delta_{C}(A)$ and $W_{C}(A)$ [14], as well as to emphasize the analogies
of the proof techniques in both situations. The note is organized as follows. In Section 2, we prove that $\Delta_{C}(A)$ is an elliptical disc when $A, C \in M_{2}$. In Section 3, a necessary and sufficient condition for $\Delta_{C}(A)$ to be a line segment is given, when $A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), C=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $\alpha_{1}, \ldots, \alpha_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ are pairwise distinct. We conjecture that this restriction on the eigenvalues may be relaxed and that if $\Delta_{C}(A), n \geqslant 2$, is a line segment, then the line containing it passes through the origin. In Section 4, linear operators L on M_{n} (and on H_{n}) that satisfy the linear preserver property $\Delta_{C}(A)=\Delta_{C}(L(A))$, for all $A, C \in M_{n}$ (for all $A \in H_{n}$ and $C \in M_{n}$) are characterized.

2. The elliptical range theorem for $\Delta_{C}(A)$

For $C=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}\right)$ and $A \in M_{2}$, it was proved [2] that $\Delta_{c}(A)$ is an elliptical disc with foci $\left(\alpha_{1}-\gamma_{1}\right)\left(\alpha_{2}-\gamma_{2}\right)$ and $\left(\alpha_{1}-\gamma_{2}\right)\left(\alpha_{2}-\gamma_{1}\right)$, and with the length of the minor axis equal to $\left|\gamma_{1}-\gamma_{2}\right| \sqrt{\operatorname{Tr} A A^{*}-\left|\alpha_{1}\right|^{2}-\left|\alpha_{2}\right|^{2}}$. This result is generalized for $A, C \in M_{2}$ in Theorem 2.1 which treats the general case. In fact, following analogous steps to those used in Section 2 of [12] we can prove that for $A, C \in M_{2}$, $\Delta_{C}(A)=\Delta_{C_{1}}\left(A_{1}\right), A_{1}$ and C_{1} being matrices of the form (3).

Theorem 2.1. Let

$$
A=\xi_{1}\left[\begin{array}{ll}
\alpha & a \tag{3}\\
b & \alpha
\end{array}\right] \quad \text { and } \quad C=\xi_{2}\left[\begin{array}{ll}
\gamma & c \\
d & \gamma
\end{array}\right]
$$

where $\alpha, \gamma, \xi_{1}, \xi_{2} \in \mathbb{C}$ with $\left|\xi_{1}\right|=\left|\xi_{2}\right|=1, a \geqslant b \geqslant 0$ and $c \geqslant d \geqslant 0$. Let α_{1}, α_{2} and γ_{1}, γ_{2} be the eigenvalues of A and C, respectively. Then

$$
\begin{aligned}
\Delta_{C}(A)= & \left(\xi_{1} \alpha-\xi_{2} \gamma\right)^{2}-\left(\xi_{1}^{2} a b+\xi_{2}^{2} d c\right) \\
& +\xi_{1} \xi_{2}\{r[(a c+b d) \cos t+\mathrm{i}(a c-b d) \sin t]: r \in[0,1], \quad t \in[0,2 \pi)\},
\end{aligned}
$$

that is, $\Delta_{C}(A)$ is an elliptical disc with $\left(\alpha_{1}-\gamma_{1}\right)\left(\alpha_{2}-\gamma_{2}\right)$ and $\left(\alpha_{1}-\gamma_{2}\right)\left(\alpha_{2}-\gamma_{1}\right)$ as foci and $\left\{\left(\xi_{1} \alpha-\xi_{2} \gamma\right)^{2}-\left(\xi_{1}^{2} a b+\xi_{2}^{2} d c\right)+\xi_{1} \xi_{2} s(a c+b d): s \in[-1,1]\right\}$ and $\left\{\left(\xi_{1} \alpha-\xi_{2} \gamma\right)^{2}-\left(\xi_{1}^{2} a b+\xi_{2}^{2} d c\right)+\mathrm{i} \xi_{1} \xi_{2} s(a c-b d): s \in[-1,1]\right\}$ as major and minor axis, respectively.

Lemma 2 .1 [12,17]. Let A, C be matrices of the form (3) with $\xi=\xi_{2}=1$.
Then

$$
\begin{aligned}
W_{C}(A)= & \{2 \alpha \gamma+r[(a c+b d) \cos t \\
& +\mathrm{i}(a c-b d) \sin t]: r \in[0,1], t \in[0,2 \pi)\},
\end{aligned}
$$

which is the elliptical disc with $\{2 \alpha \gamma+s(a c+b d): s \in[-1,1]\}$ as the major axis and with $\{2 \alpha \gamma+$ is $(a c-b d): s \in[-1,1]\}$ as the minor axis.

We now prove Theorem 2.1.

Proof. The following expansion can be easily obtained

$$
\begin{equation*}
\operatorname{det}\left(A-U^{*} C U\right)=\operatorname{det} A+\operatorname{det} C-\operatorname{Tr}\left(Z^{\mathrm{T}} A Z U^{*} C U\right) \tag{4}
\end{equation*}
$$

where

$$
Z=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

We can assume $A, C \in M_{2}$ of the form

$$
A=\xi_{1}\left[\begin{array}{cc}
\alpha & -b \tag{5}\\
-a & \alpha
\end{array}\right] \quad \text { and } \quad C=\xi_{2}\left[\begin{array}{ll}
\gamma & c \\
d & \gamma
\end{array}\right]
$$

where $\alpha, \gamma, \xi_{1}, \xi_{2} \in \mathbb{C}$ are such that $\left|\xi_{1}\right|=\left|\xi_{2}\right|=1,-a \leqslant-b \leqslant 0$ and $c \geqslant d \geqslant 0$. Having in mind (4), and applying Lemma 2.1 to the matrices A and C defined in (5), we can conclude that $\Delta_{C}(A)$ is the elliptical disc centered at $\left(\xi_{1} \alpha-\xi_{2} \gamma\right)^{2}-$ $\left(\xi_{1}^{2} a b+d c \xi_{2}^{2}\right)$, with $2(a c+b d)$ and $2(a c-b d)$ as the lengths of its major and minor axis, respectively. Hence, the semi-focal distance is given by $2 \sqrt{a b} \sqrt{c d}$. The direction of the major axis is $u=2 \xi_{1} \xi_{2}(a c+b d)$. Since $\left|\xi_{1}\right|=\left|\xi_{2}\right|=1$, we have $|u|=2(a c+b d)$. The foci of the elliptical disc are

$$
f_{i}=\left(\xi_{1} \alpha-\xi_{2} \gamma\right)^{2}-\left(\xi_{1}^{2} a b+d c \xi_{2}^{2}\right) \pm 2 \sqrt{a b} \sqrt{c d} \frac{u}{|u|}, \quad i=1,2
$$

We observe that the eigenvalues of A and C are $\alpha_{i}=\xi_{1}(\alpha \pm \sqrt{a b})$ and $\gamma_{i}=\xi_{2}(\gamma \pm$ $\sqrt{c d}), i=1,2$, respectively. By straightforward computations, we have that $f_{1}=$ $\left(\alpha_{1}-\gamma_{1}\right)\left(\alpha_{2}-\gamma_{2}\right)$ and $f_{2}=\left(\alpha_{1}-\gamma_{2}\right)\left(\alpha_{2}-\gamma_{1}\right)$, and so the theorem follows.

Remark. Li [12] proved that $W_{C}(A), A, C \in M_{2}$, is an elliptical disc. Following analogous steps, an alternative proof for Theorem 2.1 can be obtained.

3. A necessary and sufficient condition for $\Delta_{c}(\boldsymbol{A})$ to be a line segment

In order to prove the main result of this section, we recall the definition of cross ratio of $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$. Define $S: \mathbb{C}_{\infty} \longrightarrow \mathbb{C}_{\infty}$ by

$$
\begin{aligned}
& S(z)=\frac{\left(z-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z-z_{4}\right)\left(z_{2}-z_{3}\right)} \quad \text { if } z_{2}, z_{3}, z_{4} \in \mathbb{C} \\
& S(z)=\frac{z-z_{3}}{z-z_{4}} \quad \text { if } z_{2}=\infty \\
& S(z)=\frac{z_{2}-z_{4}}{z-z_{4}} \quad \text { if } z_{3}=\infty \\
& S(z)=\frac{z-z_{3}}{z_{2}-z_{3}} \quad \text { if } z_{4}=\infty
\end{aligned}
$$

We have $S\left(z_{2}\right)=1, S\left(z_{3}\right)=0$ and $S\left(z_{4}\right)=\infty$, and S is the unique Möbius transformation which satisfies the previous conditions. The cross ratio of $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}$
denoted by ($z_{1}, z_{2}, z_{3}, z_{4}$), is the image of z_{1} under the unique Möbius transformation which takes z_{2} to $1, z_{3}$ to 0 , and z_{4} to ∞.

The following lemma will be used in the proof of Lemma 3.2. For a proof, see e.g. [7].

Lemma 3.1. Let z_{1}, z_{2}, z_{3} and z_{4} be four distinct points in \mathbb{C}_{∞}. Then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is a real number if and only if z_{1}, z_{2}, z_{3} and z_{4} belong to the same straight line or to the same circle.

We give a solution to Problem 10484 in [6].

Lemma 3.2. Let $n \geqslant 2$, and let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be complex row vectors such that $\alpha_{1}, \ldots, \alpha_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ are pairwise distinct. Consider the $n!$ complex numbers (counting multiplicities)

$$
z_{\sigma}=\prod_{i=1}^{n}\left(\alpha_{i}-\gamma_{\sigma(i)}\right), \quad \sigma \in S_{n}
$$

For $P(\alpha, \gamma)=\operatorname{Co}\left\{z_{\sigma}: \sigma \in S_{n}\right\}, P(\alpha, \gamma)$ is a line segment of a line passing through the origin if and only if all the α_{i} and γ_{j} lie on a common circle or straight line.

Proof. (\Rightarrow) For $\alpha_{i}, \alpha_{j}, \gamma_{i}, \gamma_{j} \in \mathbb{C}_{\infty}, i, j=1, \ldots, n$, by the definition of cross ratio, we have

$$
\left(\alpha_{i}, \alpha_{j}, \gamma_{i}, \gamma_{j}\right)=S\left(\alpha_{i}\right)
$$

where S is the unique Möbius transformation such that $S\left(\alpha_{j}\right)=1, S\left(\gamma_{i}\right)=0$ and $S\left(\gamma_{j}\right)=\infty$. By definition of S,

$$
S\left(\alpha_{i}\right)=\frac{\left(\alpha_{i}-\gamma_{i}\right)\left(\alpha_{j}-\gamma_{j}\right)}{\left(\alpha_{i}-\gamma_{j}\right)\left(\alpha_{j}-\gamma_{i}\right)} .
$$

For $\sigma=(i d)$ and $\tau=(i j)$, we clearly have

$$
\frac{\left(\alpha_{i}-\gamma_{i}\right)\left(\alpha_{j}-\gamma_{j}\right)}{\left(\alpha_{i}-\gamma_{j}\right)\left(\alpha_{j}-\gamma_{i}\right)}=\frac{z_{\sigma}}{z_{\tau}},
$$

and so

$$
S\left(\alpha_{i}\right)=\frac{z_{\sigma}}{z_{\tau}}=\frac{\left|z_{\sigma}\right| \mathrm{e}^{\operatorname{iarg}\left(z_{\sigma}\right)}}{\left|z_{\tau}\right| \mathrm{e}^{\operatorname{iarg}\left(z_{\tau}\right)}} .
$$

Since z_{σ} and z_{τ} belong to $P(\alpha, \gamma)$ and $P(\alpha, \gamma)$ is a line segment of a line passing through the origin, then $\arg \left(z_{\sigma}\right)=\arg \left(z_{\tau}\right)(\bmod \pi)$. Thus,

$$
S\left(\alpha_{i}\right)=\frac{\left|z_{\sigma}\right|}{\left|z_{\tau}\right|} \quad \text { or } \quad S\left(\alpha_{i}\right)=-\frac{\left|z_{\sigma}\right|}{\left|z_{\tau}\right|} .
$$

Since $S\left(\alpha_{i}\right)$ is a real number, we conclude that $\left(\alpha_{i}, \alpha_{j}, \gamma_{i}, \gamma_{j}\right)$ is a real number for $i, j=1, \ldots, n$. By Lemma 3.1, $\alpha_{i}, \alpha_{j}, \gamma_{i}$ and γ_{j} belong to the same circle or to the same straight line.
(\Leftarrow) Suppose that all the α_{i} and $\gamma_{j}, i, j=1, \ldots, n$, belong to the same circle or to the same straight line. By Lemma 3.1, there is a unique Möbius transformation S such that $S\left(\alpha_{j}\right)=1, S\left(\gamma_{\sigma(i)}\right)=0$ and $S\left(\gamma_{\sigma(j)}\right)=\infty$ and

$$
S\left(\alpha_{i}\right)=\frac{\left(\alpha_{i}-\gamma_{\sigma(i)}\right)\left(\alpha_{j}-\gamma_{\sigma(j)}\right)}{\left(\alpha_{i}-\gamma_{\sigma(j)}\right)\left(\alpha_{j}-\gamma_{\sigma(i)}\right)}
$$

is a real number, for $i=1, \ldots, n$ and $\sigma \in S_{n}$. Consider the transposition $\tau \in S_{n}$ such that $\tau(k)=\sigma(k)$ for $k \neq i, j, \tau(i)=\sigma(j)$ and $\tau(j)=\sigma(i)$. Then

$$
S\left(\alpha_{i}\right)=\frac{z_{\sigma}}{z_{\tau}}=\frac{\left|z_{\sigma}\right| \mathrm{e}^{\mathrm{iarg} z_{\sigma}}}{\left|z_{\tau}\right| \mathrm{e}^{\mathrm{iarg} z_{\tau}}} .
$$

By the hypothesis, $S\left(\alpha_{i}\right)$ is a real number for $i=1, \ldots, n$, and so $\arg \left(z_{\sigma}\right)=$ $\arg \left(z_{\tau}\right)(\bmod \pi)$ for all $\sigma, \tau \in S_{n}$. As $P(\alpha, \gamma)=\operatorname{Co}\left\{z_{\sigma}: \sigma \in S_{n}\right\}$ is a compact and connected subset of \mathbb{R} (or of $\mathrm{e}^{\mathrm{i} \theta} \mathbb{R}, \theta$ real), it follows that $P(\alpha, \gamma)$ is a line segment.

Theorem 3.1. Let A and C be $n \times n$ normal matrices with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$, respectively, such that $\alpha_{1}, \ldots, \alpha_{n}, \gamma_{1}, \ldots, \gamma_{n}$, are pairwise distinct. The set $\Delta_{C}(A)$ is a line segment of a line passing through the origin if and only if all the α_{i} and γ_{j} lie on a common circle or straight line.

Proof. (\Rightarrow) Let $\Delta_{C}(A)$ be a line segment of a line through the origin. The endpoints of this segment are corners (z belonging to the boundary of $\Delta_{C}(A)$ is a corner, if in the neighborhood of $z, \Delta_{C}(A)$ is contained in an angle with vertex at z and measuring less than π.) It is known $[2,8]$ that if z is a corner, then $z=z_{\sigma}$ for some $\sigma \in S_{n}$. Thus, $\Delta_{C}(A)=\operatorname{Co}\left\{z_{\sigma}: \sigma \in S_{n}\right\}=P(\alpha, \gamma)$ is a line segment of a line through the origin, and by Lemma 3.2 all the α_{i} and γ_{j} lie on a common circle or straight line.
(\Leftarrow) If all the α_{i} and γ_{j} lie on a common circle or straight line, by Lemma 3.2 $P(\alpha, \gamma)$ is a line segment of a line passing through the origin. In these cases, (2) holds with equality $[3,9]$.

Observation. For the sufficient condition the relaxation on the eigenvalues is trivial. We conjecture that this relaxation is still possible for the necessary condition. Moreover, we conjecture that if $\Delta_{C}(A), n \geqslant 2$, is a line segment, then the line containing it passes through the origin.

4. A linear preserver property

We investigate the structure of those linear operators $L: M_{n} \longrightarrow M_{n}$ that satisfy the relation $\Delta_{C}(A)=\Delta_{C}(L(A))$, for all $A, C \in M_{n}$. We start with some useful lemmas.

Lemma 4.1. Let $A \in M_{n}$. The following conditions are equivalent:
(i) For any $C \in M_{n}, \Delta_{C}(A)$ is a singleton.
(ii) A is a scalar matrix.

Proof. The proof (ii) \Rightarrow (i) is trivial. We prove the direct implication.
Let $A \in M_{n}$. Since $\Delta_{C}(A)$ reduces to a singleton for any $C \in M_{n}$, there exists a matrix $C \in M_{n}$ such that the eigenvalues of A and C are pairwise distinct and the corresponding determinantal range is a singleton. Thus, all the σ-points, $\sigma \in S_{n}$, coincide with the singleton $\Delta_{C}(A)$, and so

$$
\frac{\alpha_{i}-\gamma_{i}}{\alpha_{j}-\gamma_{i}}=\frac{\alpha_{i}-\gamma_{j}}{\alpha_{j}-\gamma_{j}}=\frac{\gamma_{i}-\gamma_{j}}{\gamma_{i}-\gamma_{j}}=1, \quad i, j=1, \ldots, n .
$$

We conclude that $\alpha_{i}=\alpha_{j}$, for all $i, j=1, \ldots, n$.
Because the set $\Delta_{C}(A)$ is unitarily invariant, we may use Schur's Lemma and consider A in upper triangular form. Suppose that $A=\left(a_{j h}\right)$ is not a normal matrix, and so there exists $a_{j h} \neq 0$, with $j<h$. By the hypothesis, $\Delta_{C}(A)$ is a singleton for any C. Hence, there exists a matrix C such that $\gamma_{\sigma(j)} \neq \gamma_{\sigma(h)}, \sigma \in S_{n}$, and for which $\Delta_{C}(A)$ is a singleton. Let $V=P_{\sigma} P_{(1 j) \circ(2 h)} \in M_{n}$, where $P_{\sigma}=\left(\delta_{j \sigma(h)}\right)$ and $P_{(1 j) \circ(2 h)}$ is the permutation matrix associated with $\tau=(1 j) \circ(2 h) \in S_{n}$. It is easy to see that

$$
\left\{\operatorname{det}\left(A-V\left(W_{2} \oplus I_{n-2}\right) V^{\mathrm{T}} C V\left(W_{2} \oplus I_{n-2}\right)^{*} V^{\mathrm{T}}: W_{2} \in U_{2}\right\} \subset \Delta_{C}(A)\right.
$$

This region is an elliptical disc with foci z_{σ} and $z_{\sigma \circ(j h)}$, and with the length of the minor axis $\left|a_{j h} \| \gamma_{\sigma(j)}-\gamma_{\sigma(h)}\right|$. Since $\Delta_{C}(A)$ is a singleton, this is a contradiction. It follows that A is a normal matrix, namely, a scalar matrix.

Lemma 4.2. Let $\xi \in \mathbb{C}$. The equality $\operatorname{det}\left(I_{n}-C\right)=\operatorname{det}\left(\xi I_{n}-C\right)$ is valid for all $C \in M_{n}$ if and only if $\xi=1$.

Proof. The part (\Leftarrow) is clear.
Suppose that $\xi \neq 1$. Taking $C=I_{n}$ we obtain $\operatorname{det}\left(I_{n}-C\right)=0$. We also have $\operatorname{det}\left(\xi I_{n}-C\right)=\operatorname{det}\left((\xi-1) I_{n}\right)=(\xi-1)^{n}$. As $\xi \neq 1$, then $\operatorname{det}\left(\xi I_{n}-C\right) \neq 0$, a contradiction.

Lemma 4.3 [19]. A linear operator on H_{n} mapping the cone of positive semi-definite matrices onto itself must be of the form $A \mapsto U^{*} A U$ or $A \mapsto U^{*} A^{\mathrm{T}} U$, for some invertible $U \in M_{n}$.

Theorem 4.1. A linear operator $L: H_{n} \longrightarrow H_{n}$ satisfies

$$
\Delta_{C}(A)=\Delta_{C}(L(A)), \quad \text { for all } A \in H_{n} \quad \text { and } \quad \text { for all } C \in M_{n},
$$

if and only if there exists a unitary matrix U such that L is of the form

$$
A \mapsto U A U^{*} \quad \text { or } \quad A \mapsto U A^{\mathrm{T}} U^{*}
$$

Proof. The implication (\Leftarrow) is clear.
We prove the converse. First of all, if $L(A)=0$, then A is a scalar matrix. In fact, this is a consequence of Lemma 4.1, since $\Delta_{C}(A)=\Delta_{C}(L(A))$ is a singleton for any $C \in M_{n}$. Suppose $A \neq 0$. Then there exists a non-singular matrix C such that $\Delta_{C}(A)=0$. But, if C is non-singular, then $\Delta_{C}(0)=\Delta_{C}(L(A)) \neq 0$, which contradicts $\Delta_{C}(A)=\Delta_{C}(L(A))=0$. Hence $A=0$ and so L is non-singular.

Next, note that $\Delta_{C}\left(L\left(I_{n}\right)\right)=\Delta_{C}\left(I_{n}\right)=\operatorname{det}\left(I_{n}-C\right)$, for all $C \in M_{n}$ and, by Lemma 4.1, $L\left(I_{n}\right)=\xi I_{n}$, for some $\xi \in \mathbb{C}$. For all $C \in M_{n}$, we have $\Delta_{C}\left(\xi I_{n}\right)=$ $\Delta_{C}\left(I_{n}\right)$ and, by Lemma 4.2, it follows that $\xi=1$. Therefore, the operator L preserves I_{n} and $\Delta_{C}(A)$. Now, we show that this operator L maps the set of positive definite matrices onto itself. To this end, let A be positive definite. Suppose $L(A)$ is not positive definite. Then there exists $r \geqslant 0$ such that $L(A)+r I_{n}$ is singular. We know that

$$
\Delta_{C}\left(L\left(A+r I_{n}\right)\right)=\Delta_{C}\left(L(A)+r I_{n}\right)=\Delta_{C}\left(A+r I_{n}\right)
$$

for all Hermitian C. In particular for $C=0$, we have

$$
\Delta_{0}\left(A+r I_{n}\right)=\Delta_{0}\left(L(A)+r I_{n}\right)
$$

Since $A+r I_{n}$ is positive definite, $\Delta_{0}\left(A+r I_{n}\right)=\operatorname{det}\left(A+r I_{n}\right)>0$. On the other hand,

$$
\Delta_{0}\left(L(A)+r I_{n}\right)=\operatorname{det}\left(L(A)+r I_{n}\right)=0
$$

because $L(A)+r I_{n}$ is a singular matrix. Hence, there does not exist $r \geqslant 0$ such that $L(A)+r I_{n}$ is singular, and so $L(A)$ is positive definite.

Since L is invertible, one can apply the previous arguments to L^{-1} to conclude that L^{-1} maps the set of positive definite matrices into itself. Thus, it preserves I_{n} and $\Delta_{C}(A)$. Hence, L maps the set of positive definite matrices onto itself. By Lemma 4.3, there exists an invertible matrix U such that the operator L is of the form

$$
A \mapsto U A U^{*} \quad \text { or } \quad A \mapsto U A^{\mathrm{T}} U^{*}
$$

Since $L\left(I_{n}\right)=I_{n}$, we have $U U^{*}=I_{n}$.
The following result will be used in the proof of Theorem 4.2.
Lemma 4.4 [2]. Let C be an $n \times n$ normal matrix with simple eigenvalues. If there exists at least one corner on the boundary of $\Delta_{C}(A)$, then $A \in M_{n}$ is a normal matrix.

Theorem 4.2. A linear operator $L: M_{n} \longrightarrow M_{n}$ satisfies

$$
\Delta_{C}(A)=\Delta_{C}(L(A)), \quad \text { for all } A, C \in M_{n}
$$

if and only if there exists a unitary matrix U such that L is of the form

$$
A \mapsto U A U^{*} \quad \text { or } \quad A \mapsto U A^{\mathrm{T}} U^{*}
$$

Proof. (\Rightarrow) Let L be a linear operator in M_{n} such that $\Delta_{C}(A)=\Delta_{C}(L(A))$ for all $A, C \in M_{n}$. Suppose that A is a Hermitian matrix. We prove that $L(A)$ is Hermitian.

By the hypothesis, $\Delta_{C}(A)=\Delta_{C}(L(A))$ for all $C \in M_{n}$. In particular, there exists $C \in H_{n}$ such that the eigenvalues of C and A are pairwise distinct and also the eigenvalues of C and $L(A)$ are pairwise distinct. Since A and C are Hermitian, it follows that

$$
\Delta_{C}(A)=\left[\min _{\sigma} z_{\sigma}, \max _{\sigma} z_{\sigma}\right], \quad \sigma \in S_{n} .
$$

As $\Delta_{C}(A)=\Delta_{C}(L(A))$, using Lemma 3.2 we can conclude that the eigenvalues of C and $L(A)$ belong to the same straight line or to the same circle. Since C is Hermitian it has real eigenvalues, so $L(A)$ has real eigenvalues.

Since $\Delta_{C}(L(A))=\left[\min _{\sigma} z_{\sigma}, \max _{\sigma} z_{\sigma}\right]$, the endpoints of this line segment are corners and, by Lemma 4.4, $L(A)$ is normal. Thus, $L(A)$ is Hermitian and $L\left(H_{n}\right) \subseteq$ H_{n}.

By Theorem 4.1, we have

$$
\text { (i) } L(A)=U A U^{*} \quad \text { or } \quad \text { (ii) } L(A)=U A^{\mathrm{T}} U^{*} \text {. }
$$

Consider $A \in M_{n}$ in the cartesian decomposition, that is, $A=\operatorname{Re} A+\mathrm{i} \operatorname{Im} A$, where $\operatorname{Re} A=\left(A+A^{*}\right) / 2$ and $\operatorname{Im} A=\left(A-A^{*}\right) / 2 \mathrm{i}$ are Hermitian matrices. If (i) holds, then

$$
\begin{aligned}
L(A) & =L(\operatorname{Re} A)+\mathrm{i} L(\operatorname{Im} A) \\
& =U(\operatorname{Re} A) U^{*}+\mathrm{i} U(\operatorname{Im} A) U^{*} \\
& =U A U^{*} .
\end{aligned}
$$

If (ii) holds, a similar argument can be used. The converse implication follows directly.

References

[1] N. Bebiano, Some variations on the concept of the c-numerical range, Port. Math. 43 (1985-1986) 189-200.
[2] N. Bebiano, Some analogies between the c-numerical range and a certain variation of this concept, Linear Algebra Appl. 81 (1986) 47-54.
[3] N. Bebiano, J. da Providência, Some remarks on a conjecture of Oliveira, Linear Algebra Appl. 102 (1988) 241-246.
[4] N. Bebiano, New developments on the Marcus-Oliveira conjecture, Linear Algebra Appl. 197-198 (1994) 791-844.
[5] N. Bebiano, A. Kovačec, J. da Providência, The validity of the Marcus-Oliveira conjecture for essentially Hermitian matrices, Linear Algebra Appl. 197-198 (1994) 411-427.
[6] N. Bebiano, J. da Providência, Problem P 10484, Amer. Math. Monthly 9 (1995) 841.
[7] J.B. Conway, Functions of One Complex Variable I, second ed., Springer Verlag, 1991.
[8] S.W. Drury, B. Cload, On the determinantal conjecture of Marcus and de Oliveira, Linear Algebra Appl. 177 (1992) 105-109.
[9] M. Fiedler, Bounds for the determinant of the sum of Hermitian matrices, Proc. Amer. Math. Soc. 30 (1971) 27-31.
[10] M. Goldberg, E.G. Straus, Elementary inclusion relations of generalized numerical ranges, Linear Algebra Appl. 18 (1977) 1-24.
[11] A. Kovačec, On a conjecture of Marcus and de Oliveira, Linear Algebra Appl. 201 (1994) 91-97.
[12] C.-K. Li, Some convexity theorems for the generalized numerical ranges, Linear and Multilinear Algebra 40 (1996) 235-240.
[13] M. Marcus, Derivations, Plücker relations and the numerical range, Indiana Univ. Math. J. 22 (1973) 1137-1149.
[14] M. Marcus, M. Sandy, Conditions for the generalized numerical range to be real, Linear Algebra Appl. 71 (1985) 219-239.
[15] J.K. Merikoski, A. Virtanen, Some notes on de Oliveira's determinantal conjecture, Linear Algebra Appl. 121 (1989) 345-352.
[16] J.K. Merikoski, A. Virtanen, Some further notes on the Marcus-de Oliveira determinantal conjecture, Linear Algebra Appl. 187 (1993) 259-262.
[17] H. Nakazato, The C-numerical range of a 2×2 matrix, Sci. Rep. Hirosaki Univ. 41 (1994) 197-206.
[18] G.N. de Oliveira, Normal matrices (research problem), Linear and Multilinear Algebra 12 (1982) 153-154.
[19] H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965) 11-17.

[^0]: * Corresponding author.

 E-mail addressess: bebiano@ci.uc.pt (N. Bebiano), gsoares@utad.pt (G. Soares).

