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Abstract

We obtain a lower bound for the degree of the minimal polynomial of generalized deri-
vations related to the elementary symmetric functions, restricted to Grassmann spaces. That
lower bound is used to obtain an additive number theory result.
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1. Introduction

Let F be an arbitrary field and let p be the characteristic of F in non-zero char-
acteristic and p = +∞ otherwise. Throughout this paper k and m are fixed positive
integers such that p > m � k.

Let r and n be positive integers. By �r,n we denote the set of all maps from
{0, 1, . . . , r − 1} in {0, 1, . . . , n− 1}. If α ∈ �r,n we use the r-tuple notation for
α, that is, α = (α(0), α(1), . . . , α(r − 1)). By Im(α) we denote the range of α and
the weight of α is w(α) = α(0)+ · · · + α(r − 1). Qr,n denotes the subset of �r,n

consisting of strictly increasing maps.
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Let X0, X1, . . . , Xm−1 be m distinct indeterminates. The kth elementary symmet-
ric function on these indeterminates is

sk(X0, X1, . . . , Xm−1) =
∑

ω∈Qk,m

Xω(0)Xω(1) · · ·Xω(m−1).

Let A = {a0, a1, . . . , an−1} be a finite non-empty subset of F, such that |A| =
n � m, where |A| denotes the cardinality of A.

By s∧k (A) we denote the set

{sk(aα(0), aα(1), . . . , aα(m−1)) : α ∈ Qm,n}.
For example,

s∧1 (A) =
{

m−1∑
i=0

aα(i) : α ∈ Qm,n

}

is the set, ∧mA, of restricted sums of m elements of A (see [1]) and

s∧m(A) =
{

m−1∏
i=0

aα(i) : α ∈ Qm,n

}
.

Erd"os and Heilbronn conjectured that, for F = Zp,

| ∧2 A| � min{p, 2|A| − 3}.
This lower bound was established by Dias da Silva and Hamidoune in 1994 (see

[1]). They proved that, for an arbitrary field,

| ∧m A| � min{p,m(|A| −m)+ 1} . (1)

Let V be a finite dimensional vector space over F such that dimV � m. Let Sm be
the symmetric group of degree m. For convenience of notation we consider the ele-
ments of Sm as permutations of elements of {0, 1, . . . , m− 1}. For σ ∈ Sm, P(σ) de-
notes the unique linear operator on themth tensor power product ofV ,⊗mV , such that

P(σ)(v0 ⊗ v1 ⊗ · · · ⊗ vm−1) = vσ−1(0) ⊗ vσ−1(1) ⊗ · · · ⊗ vσ−1(m−1),

for all v0, v1, . . . , vm−1 ∈ V .
Let ε be the alternating character on Sm. Consider the symmetrizer defined on

⊗mV by

Tε = 1

m!
∑
σ∈Sm

ε(σ )P (σ )

and let∧mV denote its range (∧mV is the mth Grassmann space of V ). For v0,v1, . . . ,

vm−1 ∈ V , v0 ∧ v1 ∧ · · · ∧ vm−1 denotes Tε(v0 ⊗ v1 ⊗ · · · ⊗ vm−1).
For g a linear operator on a vector space over F, Pg denotes the minimal poly-

nomial of g and deg(Pg) denotes its degree. The spectrum of g, i.e., the set of all
eigenvalues of g in the algebraic closure of F, is denoted by σ(g).

Let f be a linear operator on V . The derivation associated with f is the linear
operator on ⊗mV ,
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f ⊗ IV ⊗ · · · ⊗ IV + IV ⊗ f ⊗ · · · ⊗ IV + · · · + IV ⊗ IV ⊗ · · · ⊗ f.

The derivation associated with f commutes with Tε [4, Section 3.2]. Hence,∧mV

is an invariant subspace of the derivation associated with f . Let D(f ) denote the
restriction of the derivation associated with f to ∧mV . Dias da Silva and Hamidoune
proved (see [1]) that

deg(PD(f )) � min{p,m(deg(Pf )−m)+ 1}. (2)

Since σ(D(f )) = ∧mσ(f ), Dias da Silva and Hamidoune obtained (1) from (2),
considering linear operators of simple structure.

Using the same method we are going to obtain a lower bound for the cardinality
of s∧k (A) that generalizes (1). We will prove that, in certain conditions, for M ∈ N,

|s∧k (A)| � min

{
M,

⌊
m(|A| −m)

k

⌋
+ 1

}
, (3)

where, for x ∈ R, �x� denotes the greatest integer less than or equal to x.
For k = 1 we can take M = p and the lower bound given by (3) is just (1).
Suppose V0, V1, . . . , Vm−1 are finite dimensional vector spaces over F and, for

i = 0, 1, . . . , m− 1, fi is a linear operator on Vi . For ω ∈ Qk,m let

δω(f0, f1, . . . , fm−1) = g0 ⊗ g1 ⊗ · · · ⊗ gm−1,

where

gi =
{
fi if i ∈ Im(ω)

IVi
if i /∈ Im(ω)

, i = 0, 1, . . . , m− 1,

and consider the linear operator on V0 ⊗ V1 ⊗ · · · ⊗ Vm−1

sk(f0, f1, . . . , fm−1) =
∑

ω∈Qk,m

δω(f0, f1, . . . , fm−1).

In [2] Dias da Silva and Godinho established a lower bound for the degree of
the minimal polynomial of sk(f0, f1, . . . , fm−1). They have proved that, in certain
conditions,

deg(Psk(f0,f1,...,fm−1)) � min

{⌊
p

k

⌋
,

⌊∑m−1
i=0 deg(Pfi

)−m

k

⌋
+ 1

}
.

Since the mapping from Qk,m into the set of elements of �m,2 with weight k, that to
each ω ∈ Qk,m assigns β defined by

β(i) =
{

1 if i ∈ Im(ω)

0 if i /∈ Im(ω)
, i = 0, 1, . . . , m− 1,

is a bijection, we have that, for all v0 ∈ V0, . . . , vm−1 ∈ Vm−1,

sk(f0, f1, . . . , fm−1)(v0 ⊗ v1 ⊗ · · · ⊗ vm−1)

=
∑

β∈�m,2

w(β)=k

f
β(0)
0 (v0)⊗ · · · ⊗ f

β(m−1)
m−1 (vm−1).
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Let V0 = V1 = · · · = Vm−1 = V and f0 = f1 = · · · = fm−1 = f . It is easy to
prove that, for all v0, . . . , vm−1 ∈ V ,

sk(f, f, . . . , f )(v0 ∧ v1 ∧ · · · ∧ vm−1)

=
∑

β∈�m,2

w(β)=k

f β(0)(v0) ∧ · · · ∧ f β(m−1)(vm−1).

Therefore ∧mV is an invariant subspace of sk(f, . . . , f ). We denote by s∧k (f ) the
restriction of sk(f, . . . , f ) to ∧mV . For example,

s∧1 (f )(v0 ∧ v1 ∧ · · · ∧ vm−1) =
m−1∑
i=0

v0 ∧ · · · ∧ vi−1 ∧ f (vi) ∧ vi+1 ∧ · · · ∧ vm−1

and

s∧m(f )(v0 ∧ v1 ∧ · · · ∧ vm−1) = f (v0) ∧ f (v1) ∧ · · · ∧ f (vm−1).

The linear operator s∧1 (f ) is just the restriction of the derivation associated with
f to ∧mV , D(f ). Following [1,2] we are going to obtain a lower bound for the
degree of the minimal polynomial of s∧k (f ) that generalizes (2). We will prove that,
in certain conditions, for M ∈ N,

deg(Ps∧k (f )) � min

{
M,

⌊
m(deg(Pf )−m)

k

⌋
+ 1

}
. (4)

This will be done in Section 3. In Section 4 we will show that, for some linear
operators, f , we have σ

(
s∧k (f )

) = s∧k (σ (f )). Using this fact, from (4) we will ob-
tain (3). In order to do this we need to introduce some combinatorial definitions and
results. This will be done in Section 2.

2. Combinatorial results

Most definitions in this section can be found in [3] or [6].
Let r be a non-negative integer. We say that µ = (µ0, µ1, . . . , µt ) is an improper

partition of r if µ0, µ1, . . . , µt are non-negative integers and
∑t

i=0 µi = r .
We say that λ = (λ0, λ1, . . . , λt ) is a partition of r if λ0 � λ1 � · · · � λt are

non-negative integers and
∑t

i=0 λi = r . If λ is a partition of r we write λ � r . If k

and t are positive integers then (kt ) denotes the partition of kt , (k, k, . . . , k︸ ︷︷ ︸
t

).

The length of a partition λ, &(λ), is the number of its non-zero terms and its
weight, w(λ), is the sum of its terms.

Let s be a positive integer. By Pr,s we denote the set of partitions of r with length
at most s. We write the elements of Pr,s as s-tuples.
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Consider λ = (λ0, λ1, . . . , λt ) � r . To λ there corresponds a Young diagram, [λ],
which consists of r boxes displayed in &(λ) rows, the ith row consisting of λi−1
boxes, for i = 1, . . . , &(λ). The conjugate partition of λ is the partition of r ,

λ′ =
(
λ′0, λ′1, . . . , λ′λ0−1

)
,

where λ′j is the number of boxes in the (j + 1)th column of [λ].
A Young tableau associated with [λ], or λ-tableau, is obtained from [λ] by filling

in the boxes with the integers 0, 1, . . . , r − 1 bijectively. A generalized Young tab-
leau associated with [λ], or generalized λ-tableau, is obtained from [λ] by filling in
the boxes with non-negative integers, repetitions allowed. Suppose t is the greatest
integer appearing in a generalized Young tableau, Q. The type of Q is the improper
partition of r , µ = (µ0, µ1, . . . , µt ) where µi is the number of i’s in Q. A general-
ized Young tableau is said to be semistandard if the integers are non-decreasing along
each row and strictly increasing down each column. Mainly we will be interested in
Young tableaux whose types are partitions.

Example 1. The generalized Young tableau, associated with [(5, 3, 2, 1)],
0 0 0 1 3
1 1 2
2 3
4

is semistandard and of type (3, 3, 2, 2, 1).

Let λ and µ be two partitions of r . T0
λ,µ denotes the set of semistandard general-

ized λ-tableaux of type µ. The Kostka number, Kλ,µ, is the cardinality of T0
λ,µ. The

aim of this section is to present two lemmas on Kostka numbers.
Let ν ∈ Pr,m and λ ∈ Pr+k,m. We write ν→

k
λ if there exists β ∈ �m,2, with

weight k, such that λ = ν + β, where the + sign stands for the usual addition of
m-tuples. In the next lemma we prove that, for λ � k(t + 1), the number of semi-
standard generalized λ′-tableaux of type (kt+1) equals the number of semistandard
generalized ν′-tableaux of type (kt ), when ν runs over the set{

ν ∈ Pkt,m : ν→
k

λ

}
.

Lemma 1. Let t be a positive integer and suppose λ ∈ Pk(t+1),m. Then∑
ν ∈Pkt,m

ν→
k

λ

Kν′,(kt ) = Kλ′,(kt+1).



16 C. Caldeira / Linear Algebra and its Applications 401 (2005) 11–27

Proof. Let ν ∈ Pkt,m and suppose ν→
k

λ. There exists β ∈ �m,2 such that w(β) =
k and λ = ν + β.

Let Q be a generalized semistandard ν′-tableau of type (kt ). Suppose we add k

new boxes filled with t to the tableau Q in the following way: for i = 0, 1, . . . , m− 1
we add a new box at the end of column i + 1 if and only if β(i) = 1. Since λ = ν + β

we have{
β(i) = 0
β(i + 1) = 1

⇒ νi > νi+1, i = 0, 1, . . . , m− 2

and {
β(i) = 1
i > ν′0 = &(ν)

⇒ β(ν′0) = · · · = β(i − 1) = 1, i = 0, 1, . . . , m− 1.

Then we obtain a semistandard generalized λ′-tableau of type (kt+1). Denote by
�(Q) this tableau. We have thus defined a mapping

� :
•⋃

ν ∈Pkt,m

ν→
k

λ

T0
ν′,(kt ) −→T0

λ′,(kt+1)

Q �−→ �(Q)

where ∪̇ stands for disjoint union. It is obvious that � is injective. Let us prove that
it is also surjective.

Let Q1 be a generalized semistandard λ′-tableau of type (kt+1). Consider β ∈
�m,2 defined by β(i) = 1 if and only if in the (i + 1)th column of Q1 there is a box
filled with t , for i = 0, 1, . . . , m− 1. Then the weight of β equals the number of
boxes filled with t in Q1, which is k.

Consider the m-tuple ν = (ν0, ν1, . . . , νm−1) defined by

νi = λi − β(i), i = 0, 1, . . . , m− 1.

For i = 0, 1, . . . , m− 1, if β(i) = 1 then λi > 0. It follows that νi � 0, for all i.
Since integers increase along each row in tableau Q1, we have

(β(i) = 1 ∧ λi = λi+1)⇒ β(i + 1) = 1.

Then, for i = 0, 1, . . . , m− 2,

νi − νi+1 = (λi − λi+1)+ (β(i + 1)− β(i)) � 0.

From w(β) = k we have also that w(ν) = w(λ)− w(β) = k(t + 1)− k = kt .
Then ν ∈ Pkt,m and ν→

k
λ.

Let Q be the semistandard generalized Young tableau obtained from Q1 by de-
leting the boxes filled with t . Then Q is associated with [ν′], is of type (kt ) and
�(Q) = Q1. �
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Consider t ∈ N and let q and r be the unique non-negative integers such that
kt = qm+ r and r � m− 1. Define

µ(k,t) = (m, . . . , m︸ ︷︷ ︸
q

, r) � kt.

Lemma 2. Let t and µ(k,t) be as before. Then

Kµ(m−k,t),((m−k)t ) = Kµ(k,t),(kt ).

Proof. Suppose kt = qm+ r , where q and r are non-negative integers and r �
m− 1. Then

µ(k,t) = (m, . . . , m︸ ︷︷ ︸
q

, r) and µ(m−k,t) = (m, . . . , m︸ ︷︷ ︸
t−q−1

, m− r).

LetQ be a generalized semistandardµ(k,t)-tableau of type (kt ). For i=1, 2, . . . , m
let Ci be the set of integers lying in the ith column of Q. Then

|Ci | =
{
q + 1 if 1 � i � r

q if r + 1 � i � m
, for i = 1, . . . , m.

Consider the sets defined by

C′i = {0, 1, . . . , t − 1} \ Cm−i+1, i = 1, 2 . . . , m.

For i = 1, 2, . . . , m,

|C′i | =
{
t − q if 1 � i � m− r

t − q − 1 if m− r + 1 � i � m

=
(
µ(m−k,t)

)′
i−1

.

Then we can consider the generalized µ(m−k,t)-tableau obtained by filling the boxes
in the ith column with the elements of C′i in a increasing way from top to bottom, for
all i from 1 up to m. We denote by �1(Q) this tableau. For j ∈ {0, 1, . . . , t − 1},

j ∈ C′i ⇔ j /∈ Cm−i+1.

Since Q is of type (kt ) it follows that �1(Q) is of type ((m− k)t ).
By construction, integers strictly increase down each column in �1(Q). Sup-

pose that there is at least one row along which integers do not increase. Let s ∈
{1, . . . , t − q} denote the index of the first row for which this happens. There exists
i ∈ {1, . . . , m− 1} such that the boxes in row s, columns i, i + 1 are filled with a

and b, respectively, and a > b. Then

|C′i ∩ {0, 1, . . . , b}| = s − 1 and |C′i+1 ∩ {0, 1, . . . , b}| = s.

It follows that

|Cm−i+1 ∩ {0, 1, . . . , b}| = b − s + 2
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and

|Cm−i ∩ {0, 1, . . . , b}| = b − s + 1,

but this is absurd because Q is semistandard.
Thus we have defined a map �1 :T0

µ(k,t),(kt )
−→T0

µ(m−k,t),((m−k)t )
.

Now let Q′ be a generalized semistandard µ(m−k,t)-tableau of type ((m− k)t ).
For i = 1, . . . , m let C′i be the set of integers lying in the ith column of Q′.

For i = 1, . . . , m define

Ci = {0, 1, . . . , t − 1} \ C′m−i+1,

and let �2(Q
′) be the generalized µ(k,t)-tableau obtained by filling the boxes in the

ith column with the elements of Ci in a increasing way from top to bottom, for i =
1, . . . , m. As we have done to �1(Q), it can be proved that �2(Q

′) is semistandard
and of type (kt ).

Hence we have defined another map, �2 :T0
µ(m−k,t),((m−k)t )

−→T0
µ(k,t),(kt )

, such
that �2 ◦�1 = Id and �1 ◦�2 = Id . The result follows. �

3. Main result

For a basis B = {e0, e1, . . . , en−1} of a finite dimensional vector space V and
v =∑n−1

i=0 aiei ∈ V the support of v with respect to the basis B is the set

suppBv = {ei ∈ B : ai /= 0}.
Let g be a linear operator on V and let v ∈ V . The cyclic subspace of v associated

with g is the subspace of V ,

Cg(v) = 〈gi(v) : i ∈ N ∪ {0}〉.
Recall that σ(g) is the spectrum of g. We will use the following results

Theorem 1. Let g be a linear operator on vector space V . Then

deg(Pg) = max
v∈V dimCg(v).

Theorem 2. If g is a simple structure linear operator then

|σ(g)| = deg(Pg).

Let k, m and p be as before. Let f be a linear operator on V and let v ∈ V .
For s a non-negative integer and ν ∈ Ps,m,

∧
f ν(v) denotes the vector

f νm−1(v) ∧ f νm−2+1(v) ∧ · · · ∧ f ν0+m−1(v).
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The aim of the next lemma and the next proposition is to write the image of
v ∧ f (v) ∧ · · · ∧ f m−1(v) by (s∧k (f ))t (t ∈ N) as a linear expansion of vectors of
the form

∧
f ν(v).

Lemma 3. Let t ∈ N and v ∈ V . For λ ∈ Pkt,m,

s∧k (f )
(∧

f λ(v)
)
=

∑
µ∈Pk(t+1),m

λ→
k

µ

∧
f µ(v).

Proof

s∧k (f )
(∧

f λ(v)
)
=

∑
β ∈�m,2
w(β)= k

m−1∧
j=0

f λm−j−1+j+β(j)(v)

=
∑

γ ∈�m,2
w(γ )= k

m−1∧
j=0

f λm−j−1+j+γ (m−j−1)(v)

=
∑

µ∈Pk(t+1),m
λ→

k
µ

m−1∧
j=0

f µm−j−1+j (v)

=
∑

µ∈Pk(t+1),m
λ→

k
µ

∧
f µ(v). �

Proposition 1. Let t ∈ N and v ∈ V . Then

(s∧k (f ))t (v ∧ f (v) ∧ · · · ∧ fm−1(v)) =
∑

ν∈Pkt,m

Kν′,(kt )
∧

f ν(v).

Proof. The proof is by induction on t . For t = 1, and from the previous lemma, it
remains to prove that, for ν ∈ Pk,m,

Kν′,(k) =
{

0 if (0, 0, . . . , 0)�

k
ν

1 if (0, 0, . . . , 0)→
k

ν
. (5)

Let ν ∈ Pk,m. If k = 1 then ν = (1, 0, . . . , 0) and (5) holds.
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Suppose k � 2. Since k � m, if (0, 0, . . . , 0)�

k
ν then ν0 � 2 and Kν′,(k) = 0. If

(0, 0, . . . , 0)→
k

ν, then ν = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

), ν′ = (k) and Kν′,(k) = 1.

Let t � 1 and suppose the result holds for t . Then (Lemmas 3 and 1)

(s∧k (f ))t+1(v ∧ f (v) ∧ · · · ∧ f m−1(v))

=
∑

ν∈Pkt,m

Kν′,(kt )
∑

µ∈Pk(t+1),m
ν→

k
µ

∧
f µ(v)

=
∑

µ∈Pk(t+1),m




∑
ν ∈Pkt,m

ν→
k

µ

Kν′,(kt )



∧

f µ(v)

=
∑

µ∈Pk(t+1),m

Kµ′,(kt+1)

∧
f µ(v). �

Consider t ∈ N and let q and r be the unique non-negative integers such that
kt = qm+ r and r � m− 1. Define

λ(k,t) = (q + 1, . . . , q + 1︸ ︷︷ ︸
r

, q, . . . , q︸ ︷︷ ︸
m−r

) � kt.

Then

(λ(k,t))′ = (m, . . . , m︸ ︷︷ ︸
q

, r) = µ(k,t).

Proposition 2. Let f be a linear operator on V, v ∈ V and n = dimCf (v). Sup-
pose that k � m < p and let M ∈ N. If

Kµ(k,t),(kt ) /≡ 0 (mod p), f or t = 1, . . . ,M − 1,

then

dimCs∧k (f )(v ∧ f (v) ∧ · · · ∧ fm−1(v)) � min

{
M,

⌊
m(n−m)

k

⌋
+ 1

}
.

Proof. From the hypothesis {v, f (v), . . . , f n−1(v)} is a basis of Cf (v). Then (see
[4]) {

m−1∧
i=0

f α(i)(v) : α ∈ Qm,n

}
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is a basis of ∧mCf (v). Since the map{
ν ∈

⋃
s∈N0

Ps,m : ν0 � n−m

}
→ Qm,n

ν = (ν0, ν1, . . . , νm−1) �→ (νm−1, νm−2 + 1, . . . , ν1 +m− 2, ν0 +m− 1)

is a bijection, it follows that

B =
{∧

f ν(v) : ν ∈
⋃
s∈N0

Ps,m and ν0 � n−m

}

is a basis of ∧mCf (v).

Let t ∈
{

1, . . . ,min
{
M − 1,

⌊
m(n−m)

k

⌋}}
.

If r = 0, λ(k,t)
0 = q = kt

m
� n−m.

If r /= 0, λ(k,t)
0 = q + 1 < kt

m
+ 1 � n−m+ 1. Then, in both cases,∧

f λ(k,t)

(v) ∈ B.

From Proposition 1 we have

(s∧k (f ))t (v ∧ f (v) ∧ · · · ∧ fm−1(v)) =
∑

ν∈Pkt,m

Kν′,(kt )
∧

f ν(v).

Let ν ∈ Pkt,m. If ν0 � n−m then
∧

f ν(v) ∈ B.
Suppose

ν0 � n−m+ 1. (6)

There exist mn elements in F, aij , i = 0, 1, . . . , m− 1, j = 0, 1, . . . , n− 1 such
that

f νm−i−1+i (v) =
n−1∑
j=0

aij f
j (v). (7)

From (6) and (7), it follows that
∧

f ν(v) is a linear expansion of elements in B of
the form

∧
f ξ (v), where

ξ ∈
kt−1⋃
s=0

Ps,m and ξ0 � n−m.

Then (s∧k (f ))t (v ∧ f (v) ∧ · · · ∧ f m−1(v)) is a linear expansion of vectors from the
family{∧

f ξ (v) : ξ ∈
kt⋃
s=0

Ps,m and ξ0 � n−m

}

and the coefficient of
∧

f λ(k,t)
(v) in this linear expansion is Kµ(k,t),(kt ) /≡ 0 (mod p).
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Define λ(k,0) = (0, 0, . . . , 0︸ ︷︷ ︸
m

). Then

(s∧k (f ))0(v ∧ f (v) ∧ · · · ∧ f m−1(v))= v ∧ f (v) ∧ · · · ∧ f m−1(v)

=
∧

f λ(k,0)
(v).

Hence we have constructed min
{
M,

⌊
m(n−m)

k

⌋
+ 1

}
partitions,

λ(k,t), t = 0, 1, . . . ,min
{
M − 1,

⌊m(n−m)

k

⌋}
,

such that∧
f λ(k,t)

(v) ∈ suppB(s∧k (f ))t (v ∧ f (v) ∧ · · · ∧ f m−1(v))

and

& > t ⇒
∧

f λ(k,&)

(v) /∈ suppB(s∧k (f ))t (v ∧ f (v) ∧ · · · ∧ f m−1(v)),

for &, t = 0, 1, . . . ,min
{
M − 1,

⌊
m(n−m)

k

⌋}
.

Then{
(s∧k (f ))t (v ∧ f (v) ∧ · · · ∧ f m−1(v)) : 0 � t � min

{
M − 1,

⌊
m(n−m)

k

⌋}}
is a linearly independent set and the result follows. �

Corollary 1. Let f be a linear operator on V . Suppose that k � m < p and let
M ∈ N. If

Kµ(k,t),(kt ) /≡ 0 (mod p), for t = 1, . . . ,M − 1,

then

deg(Ps∧k (f )) � min

{
M,

⌊
m(deg(Pf )−m)

k

⌋
+ 1

}
.

Proof. Let v ∈ V be such that deg(Pf ) = dimCf (v). Since deg(Ps∧k (f )) is the max-
imum of the dimensions of s∧k (f )-cyclic subspaces (Theorem 1), the result follows
from Proposition 2. �

Corollary 2. Let f be a linear operator on V and suppose that m < p. Then

deg(Ps∧m(f )) � deg(Pf )−m+ 1.

Proof. Since µ(m,t) = (mt ), Kµ(m,t),(mt ) = 1 for all t ∈ N and the result follows
from Corollary 1. �
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Corollary 3. Let f be a linear operator on V and suppose that m < p. For k ∈
{1, m− 1},

deg
(
Ps∧k (f )

)
� min

{
p,

⌊
m(deg(Pf )−m)

k

⌋
+ 1

}
.

Proof. Let t ∈ N. From Lemma 2, Kµ(m−1,t),((m−1)t ) = Kµ(1,t),(1t ) and this number
is the number of semistandard Young tableaux associated with [µ(1,t)]. It is well
known (see [6]) that this number divides t ! Then, for t � p − 1, Kµ(1,t),(1t ) /≡ 0
(modp). �

If k = 1 the lower bound of Corollary 3 is the lower bound obtained by Dias da
Silva and Hamidoune in [1]. This lower bound is attained at least if f is of simple
structure and its distinct eigenvalues are in arithmetic progression.

In the next example we show that, if p is “big enough”, for every n ∈ N there
exists a linear operator f such that deg(Pf ) = n and the lower bound of Corollary 1
is attained.

Example 2. Let n ∈ N and let V be an n-dimensional vector space over F. Let f
be a linear operator on V such that Pf = Xn and suppose

Kµ(k,t),(kt ) /≡ 0 (mod p), for t = 1, . . . ,

⌊
m(n−m)

k

⌋
.

There exists (see [5]) a basis {e0, e1, . . . , en−1} of V such that

f (e0) = 0 and f (ej ) = ej−1, j = 1, . . . , n− 1.

The set B1 =
{∧m−1

i=0 eα(i) : α ∈ Qm,n

}
is a basis of ∧mV .

Let α ∈ Qm,n. Then
m(m− 1)

2
� w(α) � (2n−m− 1)m

2
.

By induction on t it is easy to prove that (s∧k (f ))t (
∧m−1

i=0 eα(i)) is a linear

expansion of vectors of the form
∧m−1

i=0 eβ(i), for β ∈ Qm,n such that w(β) =
w(α)− kt .

Let b = ⌊
m(n−m)

k

⌋+ 1. Suppose β ∈ Qm,n is such that

m−1∧
i=0

eβ(i) ∈ suppB1
(s∧k (f ))b

(
m−1∧
i=0

eα(i)

)
.

Then

w(β)= w(α)− kb,

� (2n−m− 1)m

2
−m(n−m)− 1,

= m(m− 1)

2
− 1
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and this is a contradiction. Hence

(s∧k (f ))b

(
m−1∧
i=0

eα(i)

)
= 0, ∀α ∈ Qm,n.

It follows that

deg(Ps∧k (f )) � b =
⌊
m(n−m)

k

⌋
+ 1

and, from Corollary 1, equality holds.

4. Additive theory

Let A be a finite non-empty subset of the field F. In this section we obtain, from
Corollary 1, a lower bound for the cardinality of s∧k (A) that generalizes (1).

The purpose of next two lemmas is to show that s∧k (A) is the spectrum of s∧k (f )

for some linear operator f .

Lemma 4. Let A = {a0, a1, . . . , an−1} be a finite non-empty subset of the field F,

where n = |A|. Suppose k � m < p. Then, for α ∈ Qm,n,

sk(aα(0), aα(1), . . . , aα(m−1)) =
∑

β ∈ �m,2
w(β) = k

m−1∏
i=0

a
β(i)

α(i) .

Proof. For α ∈ Qm,n,

sk(aα(0), aα(1), . . . , aα(m−1))=
∑

ω∈Qk,m

k−1∏
j=0

a(α◦ω)(j)

=
∑

ω∈Qk,m

∏
i∈Im(ω)

aα(i).

Since the mapping from Qk,m into the set of elements of �m,2 with weight k that to
each ω ∈ Qk,m assigns θ(ω) defined by

θ(ω)(i) =
{

1 if i ∈ Im(ω)

0 if i /∈ Im(ω)
, i = 0, 1, . . . , m− 1,
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is a bijection, we have that,

sk(aα(0), aα(1), . . . , aα(m−1))=
∑

ω∈Qk,m

m−1∏
i=0

θ(ω) (i)=1

aα(i)

=
∑

β ∈�m,2

w(β)= k

m−1∏
i=0

β(i)= 1

aα(i)

=
∑

β ∈�m,2

w(β)= k

m−1∏
i=0

a
β(i)

α(i) . �

Lemma 5. Let f be a simple structure linear operator on V, such that |σ(f )| =
n = dimV . Then s∧k (f ) is of simple structure and

σ(s∧k (f )) = s∧k (σ (f )).

Proof. Suppose σ(f ) = {a0, a1, . . . , an−1} and let {e0, e1, . . . , en−1} be a basis of
V such that f (ei) = aiei , i = 0, 1, . . . , n− 1.
Then

{∧m−1
i=0 eα(i) : α ∈ Qm,n

}
is a basis of ∧mV and, for α ∈ Qm,n we have,

s∧k (f )

(
m−1∧
i=0

eα(i)

)
=

∑
β ∈�m,2

w(β)=k

m−1∧
i=0

f β(i)(eα(i))

=
∑

β ∈�m,2

w(β)=k

m−1∧
i=0

(a
β(i)

α(i) eα(i))

=




∑
β ∈�m,2

w(β)=k

m−1∏
i=0

a
β(i)

α(i)




m−1∧
i=0

eα(i)

= sk
(
aα(0), . . . , aα(m−1)

)m−1∧
i=0

eα(i).

This proves the lemma. �
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Corollary 4. Let A be a finite non-empty subset of the field F. Suppose k � m < p

and let M ∈ N. If

Kµ(k,t),(kt ) /≡ 0 (mod p), for t = 1, . . . ,M − 1,

then

|s∧k (A)| � min

{
M,

⌊
m(|A| −m)

k

⌋
+ 1

}
.

Proof. Let f be a linear operator of simple structure on F|A|, such that σ(f ) = A.
Since the degree of the minimal polynomial of a simple structure linear operator
equals the number of its distinct eigenvalues (Theorem 2), the result follows from
Corollary 1 and Lemma 5. �

From Corollaries 2 and 3 we obtain

Corollary 5. Let A be a finite non-empty subset of the field F and suppose m < p.
Then

|s∧m(A)| � |A| −m+ 1.

Corollary 6. Let A be a finite non-empty subset of the field F. Let k ∈ {1, m− 1}
and suppose m < p. Then

|s∧k (A)| � min

{
p,

⌊
m(|A| −m)

k

⌋
+ 1

}
.

If k = 1 the lower bound of Corollary 6 is the lower bound for | ∧m A| obtained
by Dias da Silva and Hamidoune in [1] and that lower bound is attained, at least, if
A is an arithmetic progression. The lower bound of Corollary 4 is attained, at least,
in the special cases of the next examples.

Example 3. If m = |A|, then for all k ∈ {1, . . . , m},

∣∣s∧k (A)
∣∣ = 1 =

⌊m(|A| −m)

k

⌋
+ 1.

Example 4. Suppose m = 3, k = 2, p > 3 and A = {a0, a1, a2, a3}, where a1 =
−a0, a3 = −a2 and |A| = 4.

s2(X0, X1, X2) = X0X1 +X0X2 +X1X2.

Since

Q3,4 = {(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)},
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the elements of s∧2 (A) are

s2(a0, a1, a2) = a0a1 + a0a2 + a1a2 = −a2
0,

s2(a0, a1, a3) = a0a1 + a0a3 + a1a3 = −a2
0,

s2(a0, a2, a3) = a0a2 + a0a3 + a2a3 = −a2
2

and

s2(a1, a2, a3) = a1a2 + a1a3 + a2a3 = −a2
2 .

Then

|s∧2 (A)| = 2 = min

{
p,

⌊
3(4− 3)

2

⌋
+ 1

}
.

Example 5. If k = m, |A| = m+ 1 and 0 ∈ A, then the lower bound is attained.

Although the lower bound established in Corollary 4 generalizes (case k = 1) the
lower bound (1), there appears to be a major difference in equality cases. If k = 1,
for all n ∈ N satisfying n � |F|, there exists A ⊆ F such that |A| = n and

|s∧1 (A)| = | ∧m A| = min{p,m(|A| −m)+ 1},
that is, such that the lower bound in Corollary 4 is attained. It is sufficient to consider
a set A which is an arithmetic progression.

For 1 < k < m we were unable to prove a similar result.
If k = m a similar result does not hold, as shown in next example.

Example 6. If p = +∞, m = k = 2 and |A| = 4 then

∣∣s∧2 (A)
∣∣ > 3 =

⌊
2(|A| − 2)

2

⌋
+ 1 .
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