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Abstract

We prove an exponential inequality for positively associated and strictly stationary random variables
replacing an uniform boundedness assumption by the existence of Laplace transforms. The proof uses a
truncation technique together with a block decomposition of the sums to allow an approximation to
independence. We show that for geometrically decreasing covariances our conditions are fulfilled,
identifying a convergence rate for the strong law of large numbers.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main tools used for characterizing convergence rates in nonparametric estimation
has been convenient versions of Bernstein type exponential inequalities. There exist several
versions available in the literature for independent sequences of variables with assumptions of
uniform boundedness or some, quite relaxed, control on their (centered or noncentered) moments.
If the independent case is classical in the literature the treatment of dependent variables is more
recent. The extension to dependent variables was first studied considering m-dependence or
different mixing conditions. An exponential inequality for strong mixing variables eventually was
see front matter r 2005 Elsevier B.V. All rights reserved.
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proved in Carbon (1993) using the same type, as for the treatment of the independent case,
of assumptions on the variables, besides the strong mixing: uniformly bounded or some control
on the moments. Naturally, these latter extensions included some extra terms on the upper
bounds depending on the mixing coefficients. An account of the main results briefly described
before may be found in Bosq (1996). In another direction in controlling dependent variables,
Azuma (1967) proved a version of exponential inequalities are also available for martingale
differences supposing the variables to be uniformly bounded and, more recently, Lesigne
and Volný (2001) obtained an extension assuming only the existence of Laplace transforms.
Another dependence structure that has attracted the interest of probabilists and statisticians
is association, as introduced by Esary et al. (1967). For this dependence structure the idea
of asymptotic independence is not so explicitly stated as in mixing structures. For associated
random variables Birkel (1988) seems to have been the first author to prove some moment
inequalities. An exponential type inequality appeared much latter in Ioannides and Roussas
(1998) under the assumption of uniform boundedness and some convenient behaviour on the
covariance structure of the variables. The technique used in this latter reference was adapted in
Henriques and Oliveira (2002a) to prove almost sure consistency results in nonparametric
distribution function estimation, based on associated samples, with description of convergence
rates. In another direction, with a somewhat different method, exponential decay rates for
nonparametric density estimation, also based on associated samples, were proved in Henriques
and Oliveira (2002b). The present article presents an extension of the Ioannides and Roussas’s
(1998) inequality dropping the boundedness assumption, which is replaced by the existence of
Laplace transforms.
The article is organized as follows: Section 2 describes some auxiliary results and introduces

the truncated variables used to approximate the original variables, the corresponding tails and the
block decomposition of the sums; Section 3 studies the truncated part giving conditions on the
truncating sequence to enable the proof of an exponential inequality for these terms; Section 4
treats the tails left aside from the truncation and, finally, Section 5 summarizes the partial results
into a final theorem. As indicated, the proof technique consists on a truncation which is then
treated using a blocking decomposition of the sums, together with a control on the tails of the
distribution, achieved assuming the existence of Laplace transforms.
2. Definitions, preliminary results and notation

We say that the variables X 1;X 2; . . . are associated if, for every n 2 N and f ; g : Rn�!R

coordinatewise increasing

Covðf ðX 1; . . . ;X nÞ; gðX 1; . . . ;X nÞÞX0

whenever this covariance exists.
For associated variables there exist some general inequalities justifying the use of assump-

tions on the covariance structure. One of such inequalities, useful in the sequel, appears in
Dewan and Prakasarao (1999) and is a generalization of an earlier result by Newman (1980).
It states a version for generating functions of Newman’s (1984) inequality for characteristic
functions.



ARTICLE IN PRESS

P.E. Oliveira / Statistics & Probability Letters 73 (2005) 189–197 191
Lemma 2.1. Let W 1; . . . ;W n be associated random variables bounded by a constant M. Then, for

every y40

E ey
Pn

i¼1
W i

� �
�
Yn

i¼1

EðeyW i Þ

�����
�����py2enyM

X
1piojpn

CovðW i;W jÞ.

This inequality was used in Dewan and Prakasarao (1999) to prove an exponential convergence
rate for the nonparametric estimator of the density, but the method used to control all the terms
involved forced the authors to assume a condition that is unattainable for associated variables. In
fact, these authors assumed that 1=n

Pn
i¼1 CovðX 1;X iÞ converges to zero exponentially fast. Now,

for associated variables, all the covariances are nonnegative so that, at best, the seriesP1

i¼1 CovðX 1;X iÞ is convergent with positive limit, and, in such case, 1=n
Pn

i¼1 CovðX 1;X iÞ

converges to zero at the rate n�1: That is, only a polynomial decrease rate may be satisfied. The
inequality stated in Lemma 2.1 was later used in Henriques and Oliveira (2002b) to prove a
version of an exponential rate for the kernel estimator for the density, avoiding the difficulties just
described.

We quote next a general lemma used to control some of the terms appearing in the course of
proof.

Lemma 2.2 (Devroye, 1991). Let W be a centred random variable. If there exist a; b 2 R such that
PðapWpbÞ ¼ 1; then, for every l40;

EðelW Þp exp
l2ðb � aÞ2

8

� �
.

Next we introduce the notation that will be used throughout the text. Let cn; nX1; be a
sequence of nonnegative real numbers such that cn�!þ1 and, given the random variables
X n; nX1; define, for each i; nX1;

X 1;i;n ¼ � cnIð�1;�cnÞðX iÞ þ X iI½�cn;cn
ðX iÞ þ cnIðcn;þ1ÞðX iÞ,

X 2;i;n ¼ ðX i � cnÞIðcn;þ1ÞðX iÞ; X 3;i;n ¼ ðX i þ cnÞIð�1;�cnÞðX iÞ, ð1Þ

where IA represents the characteristic function of the set A. For each nX1 fixed, the variables
X 1;1;n; . . . ;X 1;n;n are uniformly bounded, thus they may be treated using Lemma 2.1. Note that, for
each nX1 fixed, all these variables are monotone transformations of the initial variables X n: This
implies that an association assumption is preserved by this construction.

The proof of an exponential inequality will use, besides the truncation introduced before, a
convenient decomposition of the sums into blocks. This block decomposition is the mean to an
approximation to independence technique on the truncated variables. The tails will be treated
directly using Laplace transforms.
Consider a sequence of natural numbers pn such that, for each nX1; pnon=2 and define rn as

the greatest integer less or equal to n=2pn : Define then, for q ¼ 1; 2; 3; and j ¼ 1; . . . ; 2rn

Y q;j;n ¼
Xjpn

l¼ðj�1Þpnþ1

ðX q;l;n � EðX q;l;nÞÞ. (2)
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Finally, for each q ¼ 1; 2; 3; and nX1; define

Zq;n;od ¼
Xrn

j¼1

Y q;2j�1;n; Zq;n;ev ¼
Xrn

j¼1

Y q;2j;n,

Rq;n ¼
Xn

l¼2rnpnþ1

ðX q;l;n � EðX q;l;nÞÞ. (3)

The proof of the main result is now divided into the control of the bounded terms,
corresponding to the index q ¼ 1; and the control of the nonbounded terms that correspond to the
indices q ¼ 2 and 3.
3. Controlling the bounded terms

From definitions (1) and (2) it is obvious that jY 1;j;njp2pncn; j ¼ 1; . . . ; rn: This enables us to
use Lemma 2.2 to control the Laplace transform of these variables. A straightforward application
of this lemma produces the following upper bounds.

Lemma 3.1. Let X 1;X 2; . . . be random variables. If Y 1;j;n; j ¼ 1; . . . ; 2rn are defined by (2) then, for

every l40

Yrn

j¼1

EðelY 1;2j�1;nÞp expðl2npnc2nÞ,

Yrn

j¼1

EðelY 1;2j;nÞp expðl2npnc2nÞ.

As it was done in Ioannides and Roussas (1998) and Henriques and Oliveira (2002a,b) we will
be interested in controlling the differences between the Laplace transform of a sum of variables
and what we would have if the variables were independent. These are the terms appearing in the
left side of the inequalities stated in the previous lemma. This control is achieved by summing the
odd indexed terms on one side and the even indexed terms on the other side, as was done in
Henriques and Oliveira (2002b).

Lemma 3.2. Let X 1;X 2; . . . be strictly stationary and associated random variables. On account of

definitions (1), (2) and (3), and for every l40

EðelZ1;n;odÞ �
Yrn

j¼1

EðelY 1;2j�1;nÞ

�����
�����p l2n

2
elncn

Xð2rn�1Þpn

j¼pnþ2

CovðX 1;X jÞ (4)

and analogously for the term corresponding to Z1;n;ev:
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Proof. According to (3) and the fact that the variables defined in (1) are associated we have, from
a direct application of Lemma 2.1

EðelZ1;n;odÞ �
Yrn

j¼1

EðelY 1;2j�1;nÞ

�����
�����pl2rnpne

2lrnpncn

X
1pjoj0prn

CovðY 1;2j�1;n;Y 1;2j0�1;nÞ. (5)

As 2rnpnpn the factors in front of the summation and the exponent are bounded above by the
quantities figuring in (4), so we are left with the sum of the covariances to deal with. Using the
stationarity of the variables it follows that:

X
1pjoj0prn

CovðY 1;2j�1;n;Y 1;2j0�1;nÞ ¼
Xrn�1

j¼1

ðrn � jÞCovðY 1;1;n;Y 1;2j�1;nÞ.

A further invocation of the stationarity implies that

CovðY 1;1;n;Y 1;2j�1;nÞ ¼
Xpn�1

l¼0

ðpn � lÞCovðX 1;1;n;X 1;2jpnþlþ1;nÞ

þ
Xpn�1

l¼1

ðpn � lÞCovðX 1;lþ1;n;X 1;2jpnþ1;nÞ

ppn

Xð2jþ1Þpn

l¼ð2j�1Þpnþ2

CovðX 1;1;n;X 1;l;nÞ. ð6Þ

We now analyze the covariances using the Hoeffding formula (see, for example, Lemma 2 in
Lehmann (1966))

CovðX 1;i;n;X 1;j;nÞ ¼

Z
R2

PðX 1;i;n4u;X 1;j;n4vÞ � PðX 1;i;n4uÞPðX 1;j;n4vÞdudv. (7)

According to the truncation made in (1), it easily follows that the integrand function vanishes
outside the square ½�cn; cn


2: Moreover, for u; v 2 ½�cn; cn
 we may replace, in the integrand
function, the variables X 1;i;n and X 1;j;n by X i and X j; respectively, so that

CovðX 1;i;n;X 1;j;nÞ ¼

Z
½�cn;cn


2

PðX i4u;X j4vÞ � PðX i4uÞPðX j4vÞdudv

p
Z
R2

PðX i4u;X j4vÞ � PðX i4uÞPðX j4vÞdudv ¼ CovðX i;X jÞ

due to the nonnegativity of the latter integrand function, as follows from the association of the
original variables. Inserting this into the inequalities stated earlier, (5) and (6), the lemma
follows. &

We may now prove an exponential inequality for the sum of odd indexed or even indexed terms.
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Lemma 3.3. Let X 1;X 2; . . . be strictly stationary and associated random variables. Suppose that

n

p2nc4n
exp

n

pncn

� � X1
j¼pnþ2

CovðX 1;X jÞpC0o1. (8)

Then, for every e 2 ð0; 1Þ;

P
1

n
jZ1;n;odj4

e
9

� �
pð1þ 36C0Þ exp �

ne2

162pnc2n

� �
(9)

and analogously for Z1;n;ev:

Proof. Applying Markov’s inequality and using the previous lemma we find that, for every l40;

P
1

n
jZ1;n;odj4

e
9

� �
p

l2n
2

exp lncn � ln
e
9

� � Xð2rn�1Þpn

j¼pnþ2

CovðX 1;X lÞ þ exp l2npnc2n � ln
e
9

� �
. (10)

Optimizing the exponent in the last term of this upper bound we find l ¼ e=18pnc2n; so that this
exponent becomes equal to �ne2=162pnc2n: Replacing this choice of l into the first term of the
upper bound and taking into account (13) it follows that

P
1

n
jZ1;n;odj4

e
9

� �
p36C0 exp �

ne2

18pnc2n

� �
þ exp �

ne2

162pnc2n

� �

pð1þ 36C0Þ exp �
ne2

162pnc2n

� �
: &

To complete the treatment of the bounded terms it remains to control the sum corresponding to
the indices following 2rnpn; that is, R1;n:

Lemma 3.4. Let X 1;X 2; . . . be strictly stationary associated variables and suppose that

n

cn

�!þ1. (11)

Then, on account of definition (3), for n large enough and every e40; we have PðjR1;nj4neÞ ¼ 0:

Proof. As R1;n ¼
Pn

l¼2rnpnþ1
ðX 1;l;n � EðX 1;l;nÞÞ it follows that jR1;njp2ðn � 2rnpnÞcnp2cn; accord-

ing to the construction of the sequences rn and pn: Now PðjR1;nj4neÞpPð24ne=cnÞ and, using
(11), this is zero for n large enough. &

In order to prove the almost sure convergence of 1=n
Pn

i¼1 ðX 1;i;n � EðX 1;i;nÞÞ and identify a
convergence rate we will allow e in the previous lemmas to depend on n in such a way as to define
a convergent series in the upper bound. Assume that, for some a40 (we will need to be more
precise on the choice of a; but that will become apparent later),

en ¼ 9
ffiffiffi
2

p apn log n

n

� �1=2

cn. (12)
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Tracing back the proof of Lemma 3.3, this choice of en means that the optimizing value of l would
now be l ¼ 1=

ffiffiffi
2

p
cnða log n=npnÞ

1=2: Inserting these expressions in (10) and repeating the
arguments would lead to the following result.

Lemma 3.5. Let X 1;X 2; . . . be strictly stationary and associated random variables. Suppose that for
some a40;

log n

pnc2n
exp

an log n

2pn

� �1=2
 ! X1

j¼pnþ2

CovðX 1;X jÞpC0o1. (13)

Then, for en as in (12), we have

P
1

n
jZ1;n;odj4

en

9

� �
p 1þ

4

a
C0

� �
expð�a log nÞ, (14)

and analogously for Z1;n;ev:

As for the term R1;n; it is treated exactly as in Lemma 3.4. Repeating the arguments used in that
lemma we would be left with the term Pð24nen=cnÞ: But nen=cn�ðnpn log nÞ1=2�!þ1; so the
argument of Lemma 3.4 still applies.
We may now state a theorem summarizing the partial results described in the lemmas of this

section.

Theorem 3.6. Let X 1;X 2; . . . be strictly stationary and associated variables satisfying (13) for some
a40: On account of definitions (1), (2) and (3) it follows that, for every en as in (12) and n large

enough,

P
1

n

Xn

i¼1

ðX 1;i;n � EðX 1;i;nÞÞ

�����
�����4 en

3

 !
p2 1þ

4

a
C0

� �
expð�a log nÞ. (15)

Proof. It suffices to write

P
1

n

Xn

i¼1

ðX 1;i;n � EðX 1;i;nÞÞ

�����
�����4e

 !
pP

1

n
jZ1;n;odj4

e
3

� �
þ P

1

n
jZ1;n;evj4

e
3

� �
þ P jR1;nj4

ne
3

� �

and apply the previous lemmas. &

Note that the result just proved implies the convergence to zero of the upper bound in (15) but
implies the almost sure convergence to zero of 1=n

Pn
i¼1 ðX 1;i;n � EðX 1;i;nÞÞ only if we may choose

a41:
4. Controlling the unbounded terms

The variables X 2;i;n and X 3;i;n are associated but not bounded, even for fixed n. This means that
Lemma 2.1 may not be applied to the sum of such terms. But we may note that these variables
depend only on the tails of the distribution of the original variables. So, by controlling the
decrease rate of these tails we may prove an exponential inequality for sums of X 2;i;n or X 3;i;n: For
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this control we will not make use of the block decomposition of the sums
Pn

i¼1 ðX q;i;n � EðX q;i;nÞÞ

as the condition derived would be exactly the same as the one obtained with a direct treatment
(the upper bound derived would be the same, up to the multiplication by a constant).
We have, for q ¼ 2; 3; recalling that the variables are identically distributed

P
Xn

i¼1

ðX q;i;n � EðX q;i;nÞÞ

����� 4ne

 !
pnPðjX q;1;n � EðX q;1;nÞj4eÞp

n

e2
VarðX q;1;nÞp

n

e2
EðX 2

q;1;nÞ.

Lemma 4.1. Let X 1;X 2; . . . be strictly stationary random variables such that there exists d40
satisfying supjtjpd Eðe

tX 1ÞpMdoþ1: Then, on account of definition (1), for t 2 ð0; d
;

P
Xn

i¼1

ðX q;i;n � EðX q;i;nÞÞ

�����
�����4ne

 !
p

2Mdne
�tcn

t2e2
; q ¼ 2; 3. (16)

Proof. According to the inequality stated before this lemma it remains to control EðX 2
q;1;nÞ: Let us

fix q ¼ 2; the other possible choice being treated analogously. We will set F ðxÞ ¼ PðX 14xÞ: Now,
using Markov’s inequality it follows that, for t 2 ð0; dÞ; F ðxÞpe�txEðetX 1ÞpMde

�tx: Writing the
mathematical expectation as a Stieltjes integral and integrating by parts we find

EðX 2
2;1;nÞ ¼ �

Z
ðcn;þ1Þ

ðx � cnÞ
2 F ðdxÞ ¼

Z þ1

cn

2ðx � cnÞFðxÞdxp2Md
e�tcn

t2

from which the lemma follows. &

Note that for this step the association of the variables is irrelevant.
5. Strong convergence and rates

This section summarizes the results obtained earlier. In addition, we show that for
geometrically decreasing covariances the assumptions made are fulfilled. In this case we also
find explicitly the convergence rate that follows.

Theorem 5.1. Let X 1;X 2; . . . be strictly stationary and associated random variables satisfying (13)
for some a40: Suppose that en is as in (12) and there exists d4a satisfying supjtjpd Eðe

tX 1ÞpMdoþ

1: Then, on account of definitions (1), (2) and (3), for n large enough,

P
1

n

Xn

i¼1

ðX i � EðX iÞÞ

�����
�����4e

 !
p 2 1þ

4

a
C0

� �
þ

2Mdn
2

9a3pn log
3 n

 !
expð�a log nÞ. (17)

Proof. Separate the sum in the left of (17) into three terms, apply (15) and (16) with en=3 in place
of e for the latter. Then choose t ¼ a and cn ¼ log n in (16), so that the exponents are equal, and
recalculate en for this choice of cn: &

Notice that this result requires some extra assumptions on the choice of a in order to derive the
almost sure convergence with rate e�1n �n1=2=p

1=2
n log3=2 n:
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Suppose now that CovðX 1;X nÞ ¼ r0r
n; for some r040 and r 2 ð0; 1Þ: Then (13) may be

rewritten as

r0r
pnpC0 exp �

an log n

2pn

� �1=2
 !

pn log n

or equivalently, as

pn logrp�
a n log n

2pn

� �1=2

þ log
C0pn log n

r0

� �
.

This leads to the choice pn�n1=3 log1=3 n and a42 log2 r: Then, the largest order term in the upper
bound of (17) behaves like n5=3�a=log10=3 n; so we should choose a48

3
: The convergence rate that

follows is of order n1=3=log5=3 n: This convergence rate is somewhat slower than the rate obtained
in Ioannides and Roussas (1998) where a rate n1=3=log2=3 n was proved. But, in this latter reference
the authors considered uniformly bounded variables so they needed no truncation. Here we used a
truncation of the variables using the sequence log n which is responsible for our slower
convergence rate.
If we suppose that the covariances decrease polynomially the inequality just derived is not

strong enough to identify a convergence rate. In fact, in this case we would be led to a choice of pn

behaving like n= log n and this would mean that the corresponding en would not converge to zero.
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Carbon, M., 1993. Une nouvelle inégalité de grandes deviations. Applications. Publ. IRMA Lille 32, XI.

Devroye, L., 1991. Exponential inequalities in nonparametric estimation. In: Roussas, G. (Ed.), Nonparametric

Functional Estimation and Related Topics. Kluwer Academic Publishers, Dordrecht, pp. 31–44.

Dewan, I., Prakasa Rao, B.L.S., 1999. A general method of density estimation for associated random variables.

J. Nonparametric Statist. 10, 405–420.

Esary, J.D., Proschan, F., Walkup, D.W., 1967. Association of random variables, with applications. Ann. Math.

Statist. 38, 1466–1474.

Henriques, C., Oliveira, P.E., 2002a. Convergence rates for the estimation of two-dimensional distribution functions

under association and estimation of the covariance of the limit empirical process. Pré-Publicac- ões do Departamento
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