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Abstract

We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, general-
ized Courant algebroids and Dirac structures. We establish an one—one correspondence between reducible Dirg
structures of the generalized Lie bialgebroid of a Jacobi manifaldA, E) for which 1 is an admissible function
and Jacobi quotient manifolds #f. We study Jacobi reductions from the point of view of Dirac structures theory
and we present some examples and applications.
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1. Introduction

The concept of @irac structureon a differentiable manifold/ was introduced by T. Courant and
A. Weinstein in[2] and developed by T. Courant [8]. Its principal aim is to present a unified frame-
work for the study of pre-symplectic forms, Poisson structures and foliations. More specifidaitgca
structureon M is a subbundle. ¢ TM @ T*M that is maximally isotropic with respect to the canonical
symmetric bilinear form oif M @ T*M and satisfies a certain integrability condition. In order to for-

* Corresponding author.
E-mail addressegetalido@uop.g(F. Petalidou)jmcosta@mat.uc.ftd.M. Nunes da Costa).

0926-2245/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.difge0.2005.06.003


http://www.elsevier.com/locate/difgeo
mailto:petalido@uop.gr
mailto:jmcosta@mat.uc.pt
http://dx.doi.org/10.1016/j.difgeo.2005.06.003

F. Petalidou, J.M. Nunes da Costa / Differential Geometry and its Applications 23 (2005) 282—-304 283

mulate this integrability condition, T. Courant defines a bilinear, skew-symmetric, bracket operation on
the spacd™ (TM @ T*M) of smooth sections df M & T*M which does not satisfy the Jacobi identity.
The nature of this bracket was clarified by Z.-J. Liu, A. Weinstein and P. Xu8hby introducing the
structure of aCourant algebroidon a vector bundleZ over M and by extending the notion of a Dirac
structure to the subbundldsc E. The most important example of Courant algebroid is the direct sum
A @ A* of a Lie bialgebroid A, A*) over a smooth manifold/ [22].

Alan Weinstein and his collaborators have studied several problems of Poisson geometry via Dirac
structures theory. Ifi19], Z.-J. Liu et al. establish an one—one correspondence between Dirac subbundles
of the doublel’ M @& T*M of the triangular Lie bialgebroidl' M, T*M, A) defined by a Poisson structure
A on M and Poisson structures on quotient manifoldg4fUsing this correspondence and the results
concerning the pull-backs Dirac structures under Lie algebroid morphisms, Z.-J. Liu constri&§ in
the Poisson reduction in terms of Dirac structures.

On the other hand, it is well known that the notionJafcobi manifold i.e., a differentiable man-
ifold M endowed with a bivector fielddt and a vector fieldE satisfying an integrability condition,
introduced by A. Lichnerowicz ifil7], is a rich geometrical notion that generalizes the Poisson, sym-
plectic, contact and co-symplectic manifolds. Thus, it is natural to research a simple interpretation of
Jacobi manifolds by means of Dirac structures. A first approach of this problem is presefi8@dl in
by A. Wade. Taking into account that to any Jacobi structuteE) on M is canonically associated
a generalized Lie bialgebroid structure GhM x R, T*M x R) [10], she considers the Whitney sum
EXM)=(TM x R) ® (T*M x R), introduces the notion af*(M)-Dirac structuresby extending the
Courant’s bracket to the spad&&l(M)) of smooth sections of*(M) and shows that the graph of
the vector bundle morphist, EY*:T*M x R — TM x R is a Dirac subbundle of*(M). But the
extended bracket does not end6W M) with a Courant algebroid structure. A second approach of the
problem is the one proposed by the second author and J. Clemente-Gallardo in the rec¢80pdpesy
introduce the notions ajeneralized Courant algebroifivhich is equivalent to the notion @ourant—

Jacobi algebroidndependently defined by J. Grabowski and G. Marmi@]hand ofDirac structure for

a generalized Courant algebroiahd give several connections between Dirac structures for generalized
Courant algebroids and Jacobi manifolds. We note that the constructi®®]ahcludes as particular
case the one of Wade and that the main example of generalized Courant algebraifl isvitre direct

sum of a generalized Lie bialgebroid ovr.

In the present work, by using the results mentioned above, we establish a reduction theorem of Jacobi
manifolds Theorem 5.2 It is well known that there are already several geometric and algebraic treat-
ments of the Jacobi reduction problem (see, for instaj®;26—28). But, it is an original goal of the
Dirac structures theory to describe Jacobi reduction and to construct a more general framework for the
study of the related problems concerning the projection of Jacobi structures and the existence of Jacobi
structures on certain submanifolds of Jacobi manifolds. Precisely, on the way to our principal result, we
construct an one to one correspondence between Dirac subbundles, satisfying a certain regularity condi-
tion, of the doubléT M x R) & (T*M x R), whereM is a Jacobi manifold, and quotient Jacobi manifolds
of M (Theorem 4.1% Also, the reduction theorenTieorem 5.2allows us to state sufficient conditions
under which a submanifol& of (M, A, E) inherits a Jacobi structure, that include as particular cases
the results presented jin,12].

The paper is organized as follows. In Secti@hand 3 we recall some basic definitions and results
concerning, respectively, Jacobi structures, generalized Lie bialgebroids and Dirac structures for gen-
eralized Courant algebroids. In Sectidrwe establish a correspondence between Dirac structures and
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guotient Jacobi manifoldsTheorem 4.1 Using this correspondence and the results for the pull-backs
Dirac structures by Lie algebroid morphisms, we prove, in Se&j@Jacobi reduction theoreri{eo-

rem 5.2 which is essentially the Reduction Theorem provefifi and independently if26]. Finally,

in Section6 we present some applications and examples.

Notation. In this paper,M is a C*-differentiable manifold of finite dimension. We denote By
andT*M, respectively, the tangent and cotangent bundles &ef (M, R) the space of all real’*°-
differentiable functions oM, 2% (M) the space of all differentiable-forms onM andX' (M) the space

of all differentiable vector fields oi . Also, we denote by the usual differential operator on the graded
space2(M) =P, , QK(M). For the Schouten bracket and the interior product of a form with a multi-
vector field, we use the convention of sign indicated by Kogk6l] (see alsg24]).

2. Jacobi structuresand generalized Lie bialgebroids

A Jacobi manifolds a differentiable manifolds equipped with a bivector fieldi and a vector field
E such that

[A,A]=—-2EAA and [E, A]=0,

where[, ] denotes the Schouten brack&?]. In this case (A, E) defines onC* (M, R) the internal
composition law, } 4 gy : C*(M,R) x C*(M,R) — C>*(M,R) given, for all f, g € C>*°(M,R), by

{f. g}a.e) = A3, 88) + (fdg — g8, E), (1)

which endowsC*>° (M, R) with a local Lie algebra structuif@4,17](or with a Jacobi algebra structure in
the terminology of J. Grabowski et 46,8]).

Let (M1, A1, E;) and(M>, Ay, E») be two Jacobi manifolds an#d : M1, — M, a differentiable map. If
Az andE; are projectable by on M, and their projections are, respectivety; andE», i.e., W, A; = A,
andv¥,E, = E,, then¥ : M; — M, is said to be @acobi morphisnor aa Jacobi mapWhenv : M; —
M is a diffeomorphism, the Jacobi structukes,, E1) and(A,, E») are said to bequivalent

A Lie algebroidover a smooth manifold/ is a vector bundled — M with a Lie algebra structure
[,]1on the spacd™(A) of the global cross sections df— M and a bundle map: A — T M, called the
anchor mapsuch that

1. the homomorphisma: (I"'(A),[,]) — (X(M),[,]), induced by the anchor map, is a Lie algebra
homomorphism;
2. forall f e C*(M,R)andforallX,Y € I'(A),

[X, fY]= fIX, Y]+ (a(X) f)Y.

We denote a Lie algebroid ovef by the triple(A, [, ], a). For more details see, for examp|&,21,24]
A trivial example of a Lie algebroid over a differentiable maniféitiis the triple(TM x R, [, ], 7);
forall (X, f), (Y,g) e '(TM x R) = X(M) x C*(M,R),
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andr :TM x R — T M is the projection on the first factor.

TheLie algebroid of a Jacobi manifoldM, A, E) is defined if13] as follows. We consider the vector
bundleT*M x R over M and the vector bundle morphis(a, E)*:T*M x R — TM x R given, for
any(a, f) e I'(T*M x R), by

(A, EY*((a, 1)) = (A*(@) + fE, — (o, E)).

On the spacd™ (T*M x R) = Q1(M) x C*(M, R) we define the Lie algebra bracKetl 4. ) given, for
all (&, f),(B,8) € '(T*M x R), by

[(. 1), (B. )]sy 1= (v ), ©)

where

Y i= Lt B — ﬁA#(ﬁ)a - 3(/‘(0‘, ,3)) + fLeB —gLpa —ip(a A B),
h:=—A(x,B)+ A(x,8g) — A(B,8f) + (fdg — gbf, E).

Then the triple(T*M x R, [, l(a.5), 7 o (A, E)¥) is a Lie algebroid oveM.

For a Lie algebroidA, [, ], a) over M, we denote byt* its dual vector bundle ove¥ and by \ A* =
PB,., /\* A* the graded exterior algebra df*. Sections ofA\ A* are calledA-differential forms(or A-
formg on M. There exists a graded endomorphigm™ (/\ A*) — I'(/\ A*), of degree 1, of the exterior
algebra ofA-forms, called thexterior derivative taking anA-k-form 5 to an A-(k + 1)-form dn such
that, forall X4, ..., Xy11 € I'(A),

k+1
dn(X, ..., XerD) = Y (=D Ma(Xi) - n(Xe, ..., X, ..o, Xeg)
i=1
+ Y DX X Xa L XL X X))
1<i<j<k+1
The Lie algebroid axioms of imply thatd is aC> (M, R)-multilinear superderivation of degree 1 such
thatd? = 0. Also, we denote by\ A = @, _, /\* A the graded exterior algebra df whose sections
are calledA-multivector fieldsThe Lie bracket on"(A) can be extended to the exterior algebra of
A-multivector fields and the result is a graded Lie bradkdt called theSchouten bracketf the Lie
algebroidA. Details may be found, for instance,[ih15,21]
Let (A,[,],a) be a Lie algebroid ovedt and¢ € I'(A*) be an 1-cocycle in the Lie algebroid coho-

mology complex with trivial coefficientgl0,21] i.e., for anyX,Y € I'(A),

(6. [X, Y1) =a(X)((¢,Y)) —a(¥)((., X)). 4)

We modify the usual representation of the Lie algedfaéA), [, ]) on the spac&€*> (M, R) by defining
anew representatiarf : I'(A) x C*(M,R) — C®(M,R) as

a®(X, f)=aX)f +(¢, X)f, VX, f)€T(A)x C¥(M,R). ®)

The resulting conomology operatat : I"'(/\ A*) — I'(/\ A*) of the new cohomology complex is called
the ¢-differentialof A and its expression in terms dfis

d*n=dn+¢ A, VneF</\kA*>. (6)
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d? allows us to define, in a natural way, theLie derivative byX € I"(A), L% : T'(\* A*) — T'(\" 4%,
as the commutator ef? and of the contraction by, i.e.,ﬁ‘ﬁ’( =d?oiy+ixod®. Itsexpression interms
of the usual Lie derivativ€y =d oiy +ix od is, foranyn F(/\k A%),

LYn=Lxn+ (¢, X)n. (7)

Using ¢ we can also modify the Schouten bracket on I"(/\ A) to the ¢-Schouten bracket, ]1* on
I'(/\ A). Itis defined, for allP € ' (\” A) andQ € I'(/\? A), by

[P, QI =[P, Q1+ (p —DP A(iyQ) + (=D"(g = D(is P) A O, (8)

whereiy Q can be interpreted as the usual contraction of a multivector field with an 1-form. We remark
that, whenp =g =1, [P, Q1 =[P, Q], i.e., the bracketg, ]* and[, ] coincide onI"(A). For a repre-
sentation of the differential calculus using thenodified derivative, Lie derivative and Schouten bracket,
see[10] and[7].

The notion ofgeneralized Lie bialgebroilas been introduced by D. Iglesias and J.C. MarreftGh
in such a way that a Jacobi manifold has a generalized Lie bialgebroid canonically associated and con-
versely. We consider a Lie algebroid,[,],a) over M and an 1-cocycle € I"'(A*) and we assume
that the dual vector bundlé* — M admits a Lie algebroid structucg, 1., a.) and that € I'(A) is an
1-cocycle in the Lie algebroid cohomology complex with trivial coefficientsAf, [, 1., a.). Then, we
say that:

Definition 2.1. The pair((A, ¢), (A*, W)) is a generalized Lie bialgebroid ovéf if, forall X, Y € I'(A)
andP € I"(/\” A), the following conditions hold:

d¥[X,Y1=[d)X, Y1’ +(X.d)Y)* and LY P+L}P=0, (9)

whered andLY are, respectively, th# -differential and theW -Lie derivative ofA*.

An equivalent definition of this notion was presentedihby J. Grabowski and G. Marmo under the
name ofJacobi bialgebroid Precisely, they define that:

Definition 2.2. The pair((A, ¢), (A*, W)) is a Jacobi bialgebroid ove¥, if for all P € I'(\” A) and
Qel'(A\"A),

dYip, Q1 =1dY P, 01 + (=1)P*[P,dY 1.

In the particular case where= 0 andW = 0, by the above two definitions we recover, respectively,
the notion ofLie bialgebroidintroduced by K. Mackenzie and P. Xu[iB2] and its equivalent definition
given by Yv. Kosmann-Schwarzbach|[itb].

Remark 2.3. The property of duality of a Lie bialgebroid is also verified in the case of a generalized Lie
bialgebroid: i.e., if((A, ¢), (A*, W)) is a generalized Lie bialgebroid ovéf, so is((A*, W), (A, ¢))
(see[7,10]). Consequently, conditions @efinition 2.1as well as oDefinition 2.2can be replaced by
their dual versions.

The fundamental results §f0], which will be used in the sequel, are the following theorems.
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Theorem 2.4. Let(M, A, E) be a Jacobi manifold. The7TM xR, [, 1,7, (0,1)), (T*M xR, [, l(a.E),
mo (A, E)* (—E,0))) is a generalized Lie bialgebroid ovex .

Theorem 2.5. Let ((A, ¢), (A*, W)) be a generalized Lie bialgebroid ovevl. Then the bracket
{,},:C®°(M,R) x C*(M,R) — C>*(M,R) given, for all f, g € C*°(M,R), by

{f’g}] = (dd)f’dr/g)s (10)

defines a Jacobi structure o¥f.

Corollary 2.6. Let(TM x R, [, ], 7, (0, 1), (T*M x R, [, lia.r), 7 o (A, E)*, (—E, 0))) be the gener-
alized Lie bialgebroid associated to a Jacobi manifaid, A, E). Then,

{f.ely={f.8Yap, VS geCT(M,R). (11)

Proof. Effectively, for all f, g € C*°(M, R),

; BdO £, dEO gy = (5, f), (—A*(Sg) — gE, (8g, E)))

= AGS.08) + (fog —e8f. E) 2 (f.g}apy. O

{f 8}

An important class of generalized Lie bialgebroids is the ongiahgular generalized Lie bialge-
broidsdefined, also i10,11}, as follows:

Definition 2.7. A generalized Lie bialgebroid( A, ¢), (A*, W)) is said to be a triangular generalized Lie
bialgebroid if there exist® e I'(/\? A) such tha{ P, P]* =0, a, = a o P*, W = — P*(¢) and the Lie
bracket[, ]. on I"(A*) is the bracket

[, Blp = E";,#(a)ﬂ - Lﬁ#(ﬁ)a —d*(P(a, B)), Ya,B el (AY). (12)

A characteristic example of triangular generalized Lie bialgebroid is the generalized Lie bialgebroid
of a Jacobi manifoldM, A, E) (Theorem 2.% where[(A, E), (A, E)]®Y =0 holds.

3. Generalized Courant algebroids and Dirac structures

The notion of generalized Courant algebroithas been introduced by the second author and
J. Clemente-Gallardo ifi30] and independently, under the name @burant—Jacobi algebroidby
J. Grabowski and G. Marmo if8]. In this section, we recall some basic facts concerning this notion
and its relation with Dirac and Jacobi structures.

Definition 3.1 [30]. A generalized Courant algebroid over a smooth manifdids a vector bundleE
over M equipped with: (i) a nondegenerate symmetric bilinear fgrm on the bundle, (ii) a skew-
symmetric brackef, ] on I'(E), (iii) a bundle mapo: E — T M and (iv) anE-1-form 6 such that, for
anyey, e; € I'(E), (0, [e1, e2]) = p(e1) (0, e2) — p(e2) (0, e1), Which satisfy the following relations:
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1. for anyey, es, e3€ I'(E),

[le1, 2], e3] + C.p.= DT (e1, €2, €3);
2. foranyey, ex € I'(E),

p(le1. e2l) = [pler). p(er)]: (13)
3. foranyey,e; e I'(E) and f € C*°(M, R),

le1, feal = flew, e2] + (p(e1) f)ea — (e1, e2)Df; (14)
4. foranyf, g € C*°(M,R),

(D’ f, D) =0;

5. foranye, ey, e, € I'(E),
p(e)(e1, e2) + (0, e)(ex, e2) = ([e, ex] + D’ (e, e1), €2) + (e, [e, e2] + D (e, e2)).

For anyeq, es, e3€ I'(E), T (e1, ez, €3) is the function on the base defined by

1
T(e1, €2, €3) = é([el, e2], e3) + C.p.

D, D :C>*(M,R) — I'(E) are the maps defined, for anye C>*(M,R), by Df = %ﬂ‘lp*af and
Df=Df + %fﬂ‘l(e), B being the isomorphism betwedn and E* defined by the nondegenerate
bilinear form(, ). In other words, for any € I' (E),

1 , 1
(Df,e)=§/)(6)f and (D f,e)=§(p(6)f+(9,e)f)-

The above definition is based on the original definition of Courant algebroid present&8] iny
Z.-J. Liu et al. while its equivalent definition proposed[8] is based on the alternative definition of
Courant algebroid given by D. Roytenberg&1]. Their equivalence is established[80].

By defining, for anye € I'(E), the first order differential operate¥ (¢) by

p’(e)=p(e) + (0, e), (15)
we have thaf13)is equivalen{30] to
P’ ([e1, e21) = [p” (), 0’ (e2)], (16)

where the bracket on the right-hand side is the Lie brafXet

Definition 3.2. A Dirac structure for a generalized Courant algebr@if] ) over M is a subbundle
L C E that is maximal isotropic und€r, ) and integrable, i.el’(L) is closed unde¥, ].

It is immediate from the above definition that a Dirac subbuddtef (E, 6) is a Lie algebroid under
the restrictions of the brackét] and of the anchop to I'(L). If 6 € I'(L*), then it is an 1-cocycle for
the Lie algebroid cohomology with trivial coefficients @, [, 1., ol.)-

We consider now a generalized Lie bialgebroid, ¢), (A*, W)) over M and we denote by its
vector bundle direct sum, i.eE; = A @ A*. On E there exist two natural nondegenerate bilinear forms,
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one symmetric, ) . and another skew-symmetric)_ given, for anye; = X1+ a1, e2=Xo+ax € E =
A @ A*, by

1
(e1,€2)r = (X1t a1, Xo+ o) = E((aL X2) % (a2, X1)). (17)

On I'(E), which is identified withI"(A) & I"(A*), we introduce the brackdlt | defined, for alle; =
X1+ay,eo=Xo+axe I'(E), by

IIel9 62]] = [[Xl + o1, X2 + a2]]
= ([X1. X21? 4+ L1, X2 — L), X1 —d} (e1,€2))

*ap

+ ([on 02l + L 02 — L5, 01+ d?(e1, €2)-). (18)
Finally, letp: E — T M be the bundle map given by=a + a., i.e., foranyX + « € E,
p(X + o) =a(X) +a.(a). (19)

The following result, which is proved if80], shows that the notion of generalized Courant algebroid
permits us to generalize the double construction for Lie bialgebrasDtidéeld double [5]) and Lie
bialgebroid418] to generalized Lie bialgebroids.

Theorem 3.3 [30]. If ((A, ¢), (A*, W)) is a generalized Lie bialgebroid ove¥, thenE = A & A*
endowed with([, ], (,)+, p) andé = ¢ + W € I'(E*) is a generalized Courant algebroid ovéf. The
operatorsD andD? are, respectivelyD = (d, + d)|com.r) andD? = (d¥ + d?)|com k) -

There are two important classes of Dirac structures for the generalized Courant algéhmjid=
(A® A*, ¢ + W) studied in[30].

The Dirac structure of the graph of an A-bivector field.et 2 be anA-bivector field and2#: A* — A
the associated vector bundle map. The grapf2bfs the maximal isotropic vector subbundle
L={Q2%«+a/ac A*

of (A® A*, (,),). LisaDirac structure fofA @ A*, ¢ + W) if and only if 2 satisfies the Maurer—Cartan
type equation:

1
Ve + Sle2, Q1Y =0.

Null Dirac structures. Let D C A be a vector subbundle ef and D+ c A* its conormal bundle, i.e.,
D ={a € A*/(a, X) =0, VX € D}. (20)

Then,L = D@ D+ is a Dirac structure fofA @ A*, ¢ + W) if and only if D and D+ are Lie subalgebroids
[21] of A and A*, respectively. It is clear that in this context, as in the context of a Lie bialgebroid,
L = D @ D* if and only if the skew-symmetric bilinear form, )_, defined onE = A @ A* by (17),
vanishes orl.. For this reasonL is said to be aull Dirac structure

A third important category of Dirac structures fQE, 9) = (A & A*, ¢ + W), also studied if30],
which generalizes both the above presented categories, is:
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Dirac structures defined by a characteristic paitnWe consider a paitD, §2) of a smooth subbundle
D c A and of anA-bivector fields2. We construct, following20], a subbundld. ¢ A & A* by setting:

L={X+ 2% +a/X € Danda € D'} = D & graph(2¥|p.). (21)

L is maximal isotropic with respect tq ). The pair(D, £2) is called thecharacteristic pair of Lwhile
the subbundleD = L N (A @ {0}), also denoted by = L N A, is called thecharacteristic subbundle
of L.

For simplicity, we will assume in the sequel that= L N A is of constant rank.

Moreover, sinceD+ may be considered as the dual bunte' D)* of the quotient bundlet /D, the
restricted vector bundle map*|,. can be seen as the bundle map associated #y/@nbivector field.
Hence, two pairgD,, £21) and(D, £2,) of a smooth subbundle and of @nbivector field determine the
same subbundIg Cc A & A* (given by(21)) if and only if

Di=D,=:D and £}(a)— 25@) eD, VaeD. (22)

Letpr:I"(/\ A) = I'(/\(A/D)) be the map on the spaces of sections, induced by the natural projection
A — A/D. In order to express that the projection under pr of aamultivector field 2 € I"(/\ A)
vanishes inl"(/\(A/D)), we write 2 = 0 (mod D). Thus, the second condition (22) can be written
as2; — 2> =0(mod D).

The conditions under which = D @ graph(£2¥|,.) is a Dirac subbundle ofA @ A*, ¢ + W) are
given by:

Theorem 3.4 [30]. Let L = D @ graph(2¥|,.) be a maximal isotropic subbundle af® A*. Then,L is
a Dirac structure for the generalized Courant algebroil & A*, ¢ + W) if and only if

() D is a Lie subalgebroid oAi;
(i) dY 2+ i, 2] =0 (modD);
(iii) D+ is integrable for the sum brackét ], + [, 1o, i.e., for alla, B € (DY), [a, Bls + [a, Bla €
I'(D1), wherel[, ], is the bracket determined aii(A*) by (12).

In the particular case whergA, ¢), (A*, W)) is a triangular generalized Lie bialgebroiD«fini-
tion 2.7), Theorem 3.4akes the following form:

Corollary 3.5[30]. Let((A, ¢), (A*, W), P) be a triangular generalized Lie bialgebroid arddc A &
A*, L = D @ graph(22¥| 1), a maximal isotropic subbundle @f & A* with a fixed characteristic pair
(D, £2). ThenL is a Dirac structure for the generalized Courant algebrol® A*, ¢ + W) if and only
if

(i) D is aLie subalgebroid oA;
(i) [P+ 2, P+ £2]? =0 (modD);
(i) foranyX e I'(D), L4(P + £2) =0 (mod D).
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4. Jacobi structuresand Dirac reducible subbundles

We consider a generalized Lie bialgebréid, [, 1, a, ¢), (A*, [, 1, a., W)) over M and we construct
the associated generalized Courant algeb¢adid A*, [, ], (,)+, p,0) overM, i.e.,[,] is determined
by (18), p = a + a, andd = ¢ + W. We introduce the notions aéducible Dirac structurdor (A &
A*[.], (,)+, p,6) and ofadmissible functiorf a Dirac structure fofA & A*, [, ], (,)+, p,60) in an
analog manner as in the case of a Dirac structure for a Lie bialgeld@jd

Definition 4.1. We say that a Dirac subbundlefor (A @ A*, [, ], (,)+, p, 0) is reducible if the image
a(D) of its characteristic subbunde = L N A by the anchor map defines a simple foliatiotF of M.
By the term “simple foliation”, we mean th&f is a regular foliation such that the spae® F is a nice
manifold and the canonical projectid — M /F is a submersion.

Definition 4.2. Let L be a Dirac subbundle faiA @ A*, [.], (,)+, p,0). We say that a functiorf €
C>(M,R) is L-admissible if there existg; € I'(A) such thatt; +d? f € I'(L).

Obviously, Y is unique up to a smooth section 6fN A. We denote byC7°(M, R) the set of all
L-admissible functions of (M, R).

Let L C A ® A* be a Dirac structure fofA & A*, [, ], (,)+, p,0). On C*(M,R) we define the
bracket{, }, by setting, for allf, g € C;°(M, R),

{fvg}L = Ioe(ef)g’ (23)
wheree; =Y, +d? f. An equivalent expression ¢23)is:

{f.gl=1(Ys,d8) +1{f g}y (24)

where{, }, is the bracke{10) of the Jacobi structure oM defined by the generalized Lie bialgebroid
structure((A, ¢), (A*, W)) over M. Effectively,

(f.8 B plepg= (@ +a¥) (Vs +d° ))g =a® (Y ;)g +a¥ (d* f)g
= (Y;,d%g) + (d® £.d¥ g) 2 (Y}, d%8) + {f. 8).

It is easy to check tha23) or equivalently(24) is well defined. In fact, ifY, =Y, + X, with X €
I'(L N A), is an other section oA such thate’f = Y} +d?f eI'(L), we have

(Yi,d%8)+{f. gty =Y+ X.d%) +{f. g}y ={f gl +(X.d"¢) ={[. g}v.

since,L being isotropic(X + 0, Y, + d%g); =04 (X,d%g) =0.
Proposition 4.3. The spac& (M, R) endowed with the brackét },, given by(23), is a Lie algebra.

Proof. We must prove thal'y°(M, R) is closed undef, }, and that{, }, is a bilinear, skew-symmetric
bracket which satisfies the Jacobi identity.
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Closeness of,}; in C{°(M,R). Let f,g € C;°(M,R) be two L-admissible functions. Then, there
existY;,Y, € I'(A) suchthat, =Y, +d? f,e, =Y, +d?g € I'(L). We consider the bracké¢, e,];
according tq18), its component i~ (A*) is:

[d f,d*g1Y + L3, d*g — L} d* f +d%(ey, ;).
We have[10],

[d? f.d?g)! = —Lfy d*g=—d®{d)" [.d°g) = —d’{g. [1, = d’{[.8}s
and, on the other hand,

LY.d°g— L3 d°f +d%(es, ep) =—d%(es, e)) = —d%(es,e) +d?(ef, e0)y =d* (Y, d%g).

=0

Thus,

24
[d* f.d* Q1Y + L3 d®g — L3 d* f +d®(es.eq)- =d*{f. g}y +d* (Y}, d*g) = d*{f. g}

which means thatf, g}, is anL-admissible function, i.e{f, g}, € C;°(M,R), and that we can take
[es el =eis.-

Bilinearity and skew-symmetry pf},. Itis obviousthaf, }, is bilinear. Also, for anyf € C;°(M, R),

we have(es,er) =04 (Yy,d? f) =0, s0{f, f}L @ (Y¢,d? f)+{f, £}, =0+ 0=0, which implies

the skew-symmetry of, }, .

Jacobi identity. By a straightforward, but long, calculation we get that, for gny, 2 € C;°(M, R), the
Jacobi identity holds:

{Fftg.m}, +{g. {h fi}, +{h {f g)}, =0
Hence,(C°(M,R), {,}.) is aLie algebra. O

In the particular case where the constant function 1 i&-aumissible functionC?° (M, R) equipped
with the usual product of functions " is an associative commutative algebra with unit &ng, is a first
order differential operator on each of its arguments. In faet,(F° (M, R) means that there exisi§ €
I'(A) such thatt; +d?1=Y1+ ¢ € I'(L). Then, for anyf, g € C°(M,R), f - g € C(M,R) since,
forYp, = fY,+gYr— fgYa€ I'(A), Yy +d?(fg) € I'(L). Moreover, for anyf, g, h € Ci°(M, R),

{f, ghy, B (v;,a? (gh)) +{f, gh},

= (Yy,gdh +hdg + gh¢) + g{f, h}s + h{f. g}, — gh{f 1},
= g((Yr.d®h) +{f. h},) + h((Ys,d?g) +{f. g}s) — gh((Yr. ¢) + {f. 1}))
= g{fihy +h{f g} —gh{f 1)L

and by the skew-symmetry ¢f }; we obtain the desired result. Consequently,

Theorem 4.4. If 1is an L-admissible function, the¢C7° (M, R), {, }.) is a Jacobi algebra.
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The above result generalizes the one of A. Wgg# for the £1(M)-Dirac structures.
In the following we will establish the characteristic equations of a Dirac structure (se€3)so,

Lemma 4.5. Let L be a Dirac structure fofA & A*,[,],(,)+,p,0), m:AD A*—> Aandw,: A D
A* — A* the natural projections from & A* onto A and A*, respectively. Thekkerw |, = LN A* and
kerw,|, =L NA. Also,

w(L)t=LNA* and w.(L)=(LNA" (25)

Proof. We denote by_,, A, andA? the fibers over € M of L, A andA*, respectively. It is clear that,
at each poink € M, kerew |, = L, N A* and kerw,|,, = L, N A,, thus dimkere |, ) = dim(L, N A%)
and dimkerw,|.,) = dim(L, N A,). Also, at each point € M, @ (L,)* = L, N A* andw,(L,) =

(L, N A,)*. Effectively, if a(x) € L, N A%, then 0+ a(x) € L,, thus, for anyY (x) + B(x) € L,, (0+
a(x), Y(x)+B(x))+ =04 (a(x), Y(x)) =0thatimplies that(x) € w (L,)*,i.e.,L,NA* C @ (L,)*,
and by a dimension count we conclude the equality. Analogously, we prove the second equgtin of
for the fibers overc. Since the above results hold at each pairt M, we get that the characteristic
equationg25)of L hold. O

Lemma 4.6. The constant functiofh is an L-admissible function if and only if, for ariy € I" (D),
(¢,Y)=0. (26)

Proof. In fact, if 1€ C;°(M,R), then there exist¥; € I'(A) such thatYs + d?1=Y1+ ¢ € I'(L).
Also, foreveryY e I'(D), Y +0e I'(L) and(L, (,),) is maximal isotropic. Thus, for any € I" (D),
(Y40, Y1+¢),. =0« (¢, Y) =0. Conversely, we suppose that, for ang I"(D), (¢, Y) = 0; thenwe
will prove that 1e C;°(M, R). Effectively, if 1 is not anL-admissible function, then, for ari§f € I"(A),

Y1+d?1 = Y1+ ¢ is not a section of., fact which implies thap is not a section ofr, (L) = (LNA)* =

D+. Therefore, there exists € I" (D) such that¢, Y) # 0; contradiction. O

Proposition 4.7. Let L ¢ A @ A* be a reducible Dirac structure fotA & A*, [,], (,)+, p,0) and F
the simple foliation of\/ defined by the distribution(D), D =L N A, on M. If 1 is an L-admissible
function, thenf € C7°(M, R) if and only if f is constant along the leaves &t

Proof. Let f be anL-admissible function, i.e., there exists € I'(A) such thatt; + d? f € I'(L), and
X € I'(a(D)) a section of the distribution(D). X € I'(a(D)) means that there exisise I' (D) such
thatX =a(Y) andY € I'(D) means that + 0 I"(L). SinceL is maximally isotropic,

(Y +0.Y,+d° ), =06 (d°£.Y) =04 (df.Y) + (. Y) =0 (8f.a(Y))=0
& (5£, X) =0,

By the last equation, which holds for at¥ye I' (a(D)), we get thatf is constant along the leaves of
F. Conversely, letf be a function onM constant along the leaves &, i.e., for anyX € I'(a(D)),
(8f, X) =0. But, X € I''(a(D)) means that there exist& e I" (D) such thatX = a(Y). Thus, for any
Xel(a(D)), X =a(Y)withY e I'(D),

(0f. X) =0 (8f.a(V)) =0 (df.Y) =0 (df + f$.Y) =0 (d*f.V) =0, @27)
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foranyY € I'(D). If f is notanL-admissible function, then, for arg e I"'(A), Z +d? f is not a section
of L. So0,d? f is not a section of,. (L) @ (L N A)*+ = D*. Therefore, there exist € I" (D) such that

(d® f,Y) # 0; contradiction. O
By the above study we conclude:

Theorem 4.8. Let L be a reducible Dirac subbundle faA & A*, [, ], (,)+, p,6). We suppose thét
is an L-admissible function. Theh induces a Jacobi structure oM /F defined by the Jacobi bracket
{,}L, which is given by23) or (24).

By applyingTheorem 4.80 the case of the generalized Lie bialgebroid defined by a Jacobi structure
(A, E) on M (Theorem 2.%we deduce:

Corollary 4.9. Let (M, A, E) be a Jacobi manifold(TM x R, [, ], 7, (0,1)), (T*M xR, [, la.g), 7 0
(A, E)*, (—E, 0))) the associated generalized Lie bialgebroid ahd reducible Dirac structure for the
generalized Courant algebroid7 M x R) & (T*M xR), [,], ()4, T +m o (A, E)*, (0,1) + (—E, 0)).
We suppose thdt is an L-admissible function. Theh induces a Jacobi structure oM /F, where F
is the foliation ofM defined by the distribution (D), D = L N (T M x R), which is exactly the Jacobi
structure defined by, }, .

Remark 4.10. In the context ofCorollary 4.9 the condition “1is an L-admissible functiohis equivalent

to the one ‘D has only sections of typeX, 0) with X € I'(T M)". In fact, according toLemma 4.6

1e C®(M, R) if and only if, for any(X, £) e I'(D), ((0,1), (X, f)) £ 0« f=0.

Taking into accounCorollary 2.6 Definition 4.2and(24), we can easily establish:
Proposition 4.11. Under the assumptions @orollary 4.9,
1. if L =graphA’, E")* is the graph of a7 M x R)-bivector field(A’, E') on M, thenC® (M, R) =
C>*(M,R) and, for all f, g € C°(M, R),

{f.ele =1/ g.en +{f & k) (28)
2. if L= D ® D is anull Dirac structure, therls°(M,R) = {f € C*(M,R)/(8f, f) € (D)} and,
forall f,g e C°(M,R),
{f: 8l =1/ 8la.E) (29)
3. if L =D @ graphA’, E")*| . is defined by a characteristic paiD, (A’, E')), thenC®(M,R) =
{f eC®(M,R)/(Sf, f) e F(DH)}and, forall f, g € C*(M,R),

{f.gle=1{fgn.en+1{f glap- (30)

In what follows, we will prove that in the context ofgéneralized Lie bialgebroids—Jacobi struc-
tures, as in the context of Lie bialgebroids—Poisson structufefl9], the converse result atorol-
lary 4.9also holds.
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Theorem 4.12. Let (M, A, E) be a Jacobi manifoldF a simple foliation ofM defined by a Lie sub-
algebroid D € TM x R that has only sections of typeX, 0) and (Ay,7, Ex,7) @ Jacobi structure
on the quotient manifold//F. Then(M/F, Ay, 7, En,7) defines a reducible Dirac structurg in
(TM xR)® (T*M x R) suchthatL N (TM xR) = D, 1€ C{°(M,R) and the Jacobi structure induced
by L on M /F, in the sense o€orollary 4.9, is the initially given(Ay,z, Ey, 7).

Proof. We make the proof in several steps.
First step Let D ¢ TM x R be a Lie subalgebroid aff M x R, [, ], =), which has only sections of
type (X, 0), such thatr (D) defines a simple foliatiosF of M and letD+ be its conormal bundle:

D ={(a,8) € T*M x R/((ex, g), (X, 0)) = (o, X) =0, V(X, 0) € D}
=x(D)t xR. (31)

We suppose that the quotient manifalty 7 is endowed with a Jacobi structufg ,;, 7, Ey/7) and we
denote byp: M — M /F the canonical projection.

Second stepMe keep under control the fact that M — M /F is not a Jacobi map by defining a
“difference” bracket, },: C*(M/F,R) x C*(M/F,R) — C>*(M,R) as follows:

{f.ghh=p"f. elmy7 —{P"f. P8} a.p), Vf.geC¥M/F,R). (32)

Obviously,{, }1 is a bilinear, skew-symmetric, first order differential operator on each of its arguments.
Thus,{, }; induces a skew-symmetric bilinear forért 1, E1) on T*(M/F) x R so that, for allf, g €
C*M/F,R),

{f.8l1=A1(8f,8g) + (g — g, En).
In turn, (Aq, E1) induces a vector bundle ma@,, E)*:T*(M/F) x R — T(M/F) x R. But,
T*(M/F) x R=n(D)* xR 2 pl and TM/F)x R=(TM/n(D)) x R=(TM x R)/D. Con-
sequently, we can consider that,, E1)*: D+ — (TM x R)/D.

Third step We denote by prT’M x R — (T M x R)/D the natural projection and we define a sub-
bundleL c (TM xR) & (T*M x R) by

L={(X. )+ (g € (TM xR) & D*/pr(X, f) = (A, ED*(a, §)}. (33)

By construction,L is maximally isotropic,C;*(M,R) = C*(M/F,R) and 1le C;°(M,R). Effec-
tively, by a straightforward calculation we show that, for aay= (X1, f1) + (@1, g1), e2 = (Xo, f2) +
(a2,82) €L, (e1,e2) =0 andf € C¥(M,R) & dOV f = (8f, /) e (DY =T (T*(M/F) xR) &
f € C®*(M/F,R). Obviously, 1e C*(M,R) since(0,1) € I'(D*) = I'(T*(M/F) x R). Also, by
Definition 4.2 f € C{°(M,R) if and only if there exists(Y;, ;) € I'(TM x R) such thate; =
(Y¢,0¢) + (8f, f) € I'(L). Hence, we have that'(L) is spanned by all the sections of the type;,
whereh € C*(M,R) and f € C;°(M, R). To verify the integrability ofL, it suffices to verify the close-
ness of the brackd, | for the sections of. of the forme; = (Y, ) + (8f, f) with f € C°(M, R),
since, according t¢14) and becausg is isotropic,

ley. hee] = hler.es] + (o(ep)h)es — (ef.eg) Dh
=hley, e.] + (,O(ef)h)eg,
foralles,e, € I'(L), with f, g € C;°(M,R), andh € C*°(M, R).
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Let f, g € C7°(M, R) be twoL-admissible functions. Sina&*(M,R) = C*(M/F,R), {f, glm/F €
CZO(M, R), i.e., there iiY{f,g}M/]__, (p{f,g}M/J-‘) € I'(TM x R) such thaTB{f’g}M/}_ = (Y{f,g}M/]-" @{f,g}M/y:)
+ (811, gtmyr. A S, g¥myF) € I'(L). We show that

{f.emr=0"(ep)g =2 {f. 8l (34)
Effectively,

(frgle=p"(epg = [(TOV + (o (A, EY)TEO)((Yr0p) + GOF. )]g

(Y +or+ A"Gf)+ fE—(8f. E))g

= (pr(Ys, ¢s) + the component ofY,, ¢;) on D)g + { f, g}(a.x)
= ((6g. 8). (A1, ED*(f, )+ {f. 8}ap)

= {f’g}l+ {f’g}(A,E)

= gimF.

On the other hand, sinde },# is a Jacobi bracket, thus it verifies the Jacobi identity, for Ay, i €
Cr(M,R)=C>*(M/F,R),

P (les. eg] — ergyur )t = p°(ley. eg])n — p” (efigyyyr )P

(16)
= [Pe(ef)’ ,09 (eg)]h - loe (e{.ﬂg}M/f)h

= p"(ep)(p’ (e)h) — p’(e) (" (ef)h) — p° (€151, 7)1

(34) {f {g. h}M/]:}M/]: {g’ {f’h}M/]:}M/]:_ {{f? g}M/]:’h}M/]:

= 0. (35)

From the proof ofProposition 4.3 we have that the component ¢/, e,] in I'(T*M x R) is
dOV{f, glmr, therefore ey, e,] — efg}M/f € I'(TM x R). So, (35) means thatp’([ey, e,] —

e(f.ehw,7) € I'(D). But p° ([er. ee] —eqre) ) = w® l)([[ef eg] — eir.) hayr) = [ef,e.] — e(f.elm/F and
I'(D) C I'(L). Consequentlyey, e;] — e(y.4),,» € I'(L) which implies[ey, e,] € I'(L), whence the
integrability of L.

For the constructed.,, L N (TM x R) = {(X, f) + (0,0) € (TM x R) & {(0,0)}/pr(X, f) =
(A1, ED# (0,00} = {(X, f) e TM x R/pr(X, f) = (0,0)} = D and the induced Jacobi structure on
M/F,inthe sense oforollary 4.9 is the initially given(Ay, 7, Ey 7) (see(34). O

Remark 4.13. The condition ‘D has only sections of type&, 0)” is indispensable in order to ensure that
the constant function 1 is abradmissible function for the constructéd In the opposite case, i.e., i}
has at least one section of tygg, 1) with f # 0, we will have that there exists at least one sectiob of
the section X, f), such that(0, 1), (X, f)) = f # 0 and, according tbemma 4.6this implies that 1 is
not anL-admissible function. HencéC (M, R), {, },) cannot be a Jacobi algebra afigft (M, R) does
not coincide withC> (M /F, R). Thus, for a Lie subalgebroid of T M x R that has at least one section
(X, f) with f % 0 we cannot construct a reducible Dirac subburddte (T M x R) & (T*M x R) which
induces, in the sense Gorollary 4.9 a Jacobi structure oM/ F.

In conclusion, we have proved:
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Theorem 4.14. Let (M, A, E) be a Jacobi manifold. There is a one—one correspondence between re-
ducible Dirac subbundles of the generalized Courant algebf@d x R) & (T*M xR), [, ], (,)+, 7+
wo(A, E),(0,1)+ (—E, 0)) for which1is an admissible function and quotient Jacobi manifalflsF

of M, whereF is a simple foliation off defined by a Lie subalgebroii ¢ TM x R that has sections
only of type(X, 0).

Remark 4.15. If, in the proof of Theorem 4.12p: (M, A, E) — (M/F, Ay,7, Em/F) is a Jacobi map,
then(A1, E1) = (0, 0). Hence, in this casd, = D @ D= is a null Dirac structure. Thus:

Corollary 4.16. A Lie subalgebroid> ¢ T M x R which has only sections of typ&, 0) defines a simple
foliation F of (M, A, E) suchthatp: (M, A, E) - (M/F, Ay, EuyF) is a Jacobi map if and only if
L=D®a® D",

Remark 4.17. In the case wher® = {(0, 0)}, a Jacobi structure oM /F = M is a new Jacobi structure
(A’, E’) on M and the constructedl is the graph o{lA’ — A, E' — E)*. Since, by constructiory, is a
Dirac subbundle ofTM x R) & (T*M x R), (A’ — A, E' — E) is a Jacobi structure o [30], fact
which implies that(A, E) and(A’, E’) are compatible Jacobi structures in the seng@%jt

A geometric interpretation o€orollary 3.5 In the context of this paragrapigorollary 3.5can be
formulated asLet (M, A, E) be a Jacobi manifold((TM x R, (0, 1)), (T*M x R, (—E, 0)), (A, E))
the associated triangular generalized Lie bialgebroid oy¢rand (A’, E') a (T M x R)-bivector field
such thatL = D @ graph((A’, E))#|p1) is a maximal isotropic subbundle ¢f M x R) @ (T*M x R)
with fixed characteristic pai(D, (A’, E")). ThenL is a Dirac structure for((TM x R) & (T*M x
R), (0,1) + (—E, 0)) if and only if

() D is aLie subalgebroid of M x R;

(i) [(A+A,E+E),(A+ A E+E)OY=0(modD);
(i) forany(X, f) € I'(D), Ly)(A+ A", E + E') =0 (modD).
If L =D ®graph((A’, E')*|p.) is areducible Dirac structure and 1 is Aradmissible function, after the
proofs of Theorems 4.@&nd4.12 we get that condition (iii) is equivalent to thet + A’, E + E’) can be
reducedto dTM x R)/D = (T (M /F) x R)-bivector field onM /F and the condition (ii) is equivalent
to the fact that the reduced bivector field is a Jacobi structurd pfi. Furthermore, byroposition 4.11
(case 3) we get that the induced Jacobi structurdfgiF is exactly the one defined by the bracket of
L-admissible functions. Consequently, it is the Jacobi structure induced/of by L in the sense of
Corollary 4.9

5. Dirac structures and Jacobi reduction

In this paragraph, we will establish a Jacobi reduction theorem in terms of Dirac structures. For its
proof, we need to adapt the results concerning the pull-back Dirac structures of a Lie bial20ftid
the pull-back Dirac structures for a generalized Lie bialgebroid.
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Proposition 5.1. Let (A1, ¢1) be a Lie algebroid over a differentiable manifold; with an 1-cocycle,

((Az, ¢2), (A%, Wo), P,) a triangular generalized Lie bialgebroid over a differentiable manifddd and

@ :A; — A, a Lie algebroid morphism of constant rank, which covers a surjective map between the
bases, such thab*(¢>) = ¢1. Then the following two statements are equivalent.

1. There exists a Dirac structure for the triangular generalized Lie bialgeb(oith, ¢1), (A%, 0), 0)
whose characteristic pair isker®, P;) and® (P;) = P».
2. ImP{CImo.

We note that, since : A; — A, is a Lie algebroid morphism such tha*(¢,) = ¢1 then, for any
Pel(A\"Ap)andQ e I'(\? Ay, @([P, Q1) =[®(P), 2(Q)]*.

Proof. According toCorollary 3.5 it suffices to show that the following two statements are equivalent.

1. There existd; € 1“(/\2 A1) such thatd (P,) = P, and

(a) kerd is a Lie subalgebroid ofi ;

(b) [0+ Py, 0+ P1]%t =0 (mod ker®) < [Py, P1]%t =0 (mod kerd);

(c) foranyX e I'(ker®), L2 (0+ P1) =0 (mod kerd) < L% (P1) =0 (mod kerd).
2. ImPfCImo.

Obviously, kerb is a Lie subalgebroid ofi; since, for allX, Y € I" (ker®),
(X, Y])=[P(X),®(Y)]=[0,01=0,

which means thatX, Y] € I"(ker®). On the other hand, the subbundle &er = {« € Al/{a, X) =
0,VX € ker@} of A] can be identified with the dual bund{e;/ ker®)* of A;/ker®. Also, kergp+ =
Im @*, where®*: A5 — A} is the dual map o . Effectively, it is clear that, In®* C ker®+ and, since
@ is of constant rank, dim I * = dimker®+, thus Im@* = ker®+ = (A1/ kerd®)*. Hence @*: A —
(A1/ ker®)* is a surjective map, i.e., for any, B, € I'((A1/ kerd)*), there existry, B € I’ (A3) such
that@, = @*(a2) and 1 = @*(B,). If there is someP; € F(/\Z(Al/ ker®)) which is @-related toP;,
i.e., ®(Py) = P,, then it should be defined, for ath, 81 € I'((A1/ kerd®)*), by

P1(a1, B1) = Pa(az, B2).

It is clear thatP; is well-defined if and only if ke@* C kerPf, or equivalently, if and only if Im°§ C

Im®. Let P; be an arbitrary representative 8f in F(/\ZAl). Sinced : A1 — A, is a Lie algebroid
morphism such thab*(¢,) = ¢1 and((Az, ¢2), (A3, W), P»,) is a triangular generalized Lie bialgebroid,
we have that

@ ([P, P1|”Y) = [@(Py), cD(Pl)]¢2 =[Py, P;]?? =0« [Py, P1]?* =0 (mod ker®).

Moreover, for anyX € I" (ker®),

@ (LY Py =@ (IX. PI™) = [@(X), 2(PD)]” =[0,0(P)]”? =0 ¢ L3P1=0(mod kerd).
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Consequently, there exisis 1“(/\2 A1) suchthatp (P,) = P, and(ker®, P;) defines a Dirac structure
for the triangular generalized Lie bialgebraidi1, ¢1), (A3,0),0) ifand only if ImPy CIm®. O

Reduction of Jacobi manifolds.Let (M, A, E) be a Jacobi manifoldy € M a submanifold of\/ and

i : N — M the canonical inclusion) c TM x R a Lie subalgebroid ofTM x R, [, ], 7) that has only
sections of typ&X, 0) andDo = DN (T N x R). We suppose thdd and D, define, respectively, a simple
foliation F of M and a simple foliatior#¥, of N and we denote by: M — M/F andpg: N — N/Fy
the canonical projections. Thus, we have the following commutative diagram:

Ne—t—sM
o
N/Fo—4~M/F

Since any leaf ofFy is a connected component of the intersection betwéeand some leaf ofF, we
can always suppose, under some clean intersection conditiory thgt#, — M/F is an immersion,
locally injective.

We consider. = D @ D+ and we suppose thdt is a null Dirac structure for the triangular gener-
alized Lie bialgebroid(TM x R, (0, 1)), (T*M x R, (—E, 0)), (A, E)). By the hypothesis oD, we
have thatL is also reducible and that 1 is dradmissible function. Then, b@orollary 4.9 we get that
L induces a Jacobi structutei =, Ey,7) on M/F and byCorollary 4.16andRemark 4.15we ob-
tainthatp: (M, A, E) — (M/F, Ay, Ey ) is a Jacobi map. We consider the triangular generalized
Lie bialgebroids((T (M /F) xR, (0, 1)), (T*(M/F) xR, (=Em;7,0)), (Ap;7, EmyF)) OverM/F and
((TN xR, (0,1)), (T*N x R, (0,0)), (0,0)) over N. We note that any functioff € C*(N, R) can be
seen as the image liy o i)* of a functionf € C*(M/F,R), i.e., f = (p o i)*f. SinceF is a regular
foliation, p has constant rank, thus the map i : N — M/F has also constant rank. Hence, the map
@:TN xR— T(M/F) x R=(TM x R)/D defined, for any X, f) e '(TN xR), f = (poi)*f
with f € C*(M/F,R), by

(X, f)=((poi):X. f), (37)

can be considered as a Lie algebroid morphism of constant rank such*ttatl) = (0, 1) and kerd =
D N (TN x R) = Dg. Therefore, byProposition 5.1there exists a pull-back Dirac structutg for the
triangular generalized Lie bialgebro{d” N x R, (0, 1)), (T*N x R, (0, 0)), (0, 0)) with characteristic
pair (Do, (Ay, Ey)) satisfying® (Ay, Ex) = (Auyr, EyyF) if and only if Im(Ay, 7, EM/;)# Clmo
holds onT (M /F) x R, i.e.,

I ((Amyr, Evyr)(DD) S {((p o)X, f)/X € [(TN) and f € C*(M/F,R)}. (38)

But, p: (M, A,E) — (M/F, Ay,r, En/F) being a Jacobi magAy, 7, Ex,7) = p«(A, E). Thus, on
the submanifoldv € M, by identifyingi,(T N) with T N, condition(38) is equivalent to

(A, EY¥ (DY) C TN xR+ D. (39)
On the other hand, sinde = (D) x {0}, D+ =7 (D)* x R, consequently39)is equivalent to

A¥(m(D)YY) S TN +7(D) and E|y eI (TN +nr(D)). (40)
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Also, sincelLg = Do ® graph( Ay, EN)#|D3 is a reducible Dirac structure gfTN x R) @ (T*N x
R), (0,1)+(0,0)) and 1e Cr (N, R), itinduces a Jacobi structutd v, r,, En,7,) oOn N /Fo (seeCorol-
lary 4.9 such that( Ay, 7, En,7,) = po«(An, Ey) (seeCorollary 3.5and its geometric interpretation).
By the above results and by the commutativity of the diagfa), we obtain:

(ApyF, Emyr) = @(An, Ey)
= ((poi)sAn,(poi)sEy)
= ((¢ 0 po)sAn. (¢ 0 po)<En)
= (¢« (Pox AN), ¢:(Po<EN))
= (0« ANy Fo» P ENy 7o)
= @u(ANnyFo, EnyFo)s (41)

which means thap : (N /Fo, An7y, Enyr) = (M/F, Ayyr, EmyF) is @ Jacobi map.
The above study led us to the following theorem:

Theorem 5.2 (Reduction Theorem of Jacobi manifoldsgt (M, A, E) be a Jacobi manifoldV C M a
submanifold oM/, D € TM x R a Lie subalgebroid ofTM x R, [, ], #) that has only sections of type
(X,00andDy= DN (TN x R). We suppose thdd and D, define, respectively, a simple foliatidhof
M and a simple foliatio¥y of N and thatL = D @ D+ is a reducible Dirac structure for the triangular
generalized Lie bialgebroid(TM x R, (0,1)), (T*M x R, (—E, 0)), (A, E)). Then, the following two
statements are equivalent.

1. There exists a Jacobi structu@ y,r,, En,r,) on N /Fg such that

P«(A, E) = (AN 7o EnyFo)-
2. A*(m(D)Y) C TN +n(D) holds onN andE|y € I'(TN + 7(D)).

Remarks5.3.

1. We remark that, in the context of the Reductidreorem 5.2the initial Jacobi manifoldM, A, E)
and the reduced Jacobi manifdly / 7o, A, 7. En,F,) are connected by means of the Jacobi man-
ifold (M/F, Ay, F, EmF) With two Jacobi maps.

2. ReductionTheorem 5.2holds for any reducible Dirac structufec (TM x R) & (T*M x R) having
a characteristic paifD, (A, E")), i.e.,L = D @ graph(A’, E')*|,1), such thatD has only sections
of type (X, 0), so 1e C{°(M, R). Effectively, byCorollary 4.9we get thatL induces a Jacobi struc-
ture (Ay, 7, Epy7) on M/F which is exactly the induced Jacobi structure by + A’, E 4 E')
(see the geometric interpretation @brollary 3.9. If (Ay,7, Ey/7) verifies(38) or, equivalently,
(A + A, E + E’) verifies(40), then, byProposition 5.1there exists a pull-back Dirac structutg
for (TN x R, (0,1)), (T*N x R, (0, 0)), (0, 0)) with characteristic paitDo, (Ay, Ey)) such that
@ (Ay, Ey) = (AmF, Ep 7). The reducible Dirac subbundlg, C (TN xR) @ (T*N x R) induces
a Jacobi structureAy, 7, En,x,) onN/Fy and

pos(An, En) = (An/ 7o Eny7o)-
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Applying the calculus of(41) to the relation(Ay,r, Ey/r) = @(An, Ey), we conclude that
¢:N/Fo— M/F is always a Jacobi map. But, the projectipnM — M/F is a Jacobi map if
and only if L is a null Dirac structure, fact which is equivalent(td’, E’) = 0 (mod D).

3. As we have mentioned in introduction, there are already several works treating the Jacobi reduction
problem. These results are, grosso-modo, equivalent to the ones established by the second authol
in [27] and, independently, by K. Mikami if26]. They establish a geometric reduction theorem for
Jacobi manifolds by extending the previous one proved by Marsden and Ratiu for Poisson manifolds
[25], without mentioning Dirac structures. Precisely, they prove:

Theorem 5.4. Let (M, A, E) be a Jacobi manifoldN a submanifold of\f and A a vector subbundle
of Ty M such that (i) A N TN defines a simple foliatiotFy of N; (ii) for any f, g € C*°(M, R) with
differentials§f and g, restricted toN, vanishing onA, the differentiald{ f, g}4. k), restricted ton,
vanishes onV. Then,(A, E) induces a unique Jacobi structud v, 7, En,r,) on N /Fy if and only if
A*(A+) C TN + A holds onN and E|y € I'(T N + A). The associated bracket 6fiy,x,, En;7,) ON
C*(N/Fo, R) is given, for anyfy, go € C*°(N/Fp, R) and any differentiable extensiornsof fyo po
and g of gg o po with differentialséf and g, restricted toN, vanish onA, by { fo, 80} A7y, Eny5y) ©
po=1{f 8g}a.p oi, wherepg: N — N/Fq is the canonical projection ant: N — M is the canonical
inclusion ofN into M.

We remark that the above theorem is slightly different fibneorem 5.2In Theorem 5.2ve suppose
that we have two simple foliations, a foliatioh of the initial phase spac¥ determined byr (D) and
a foliation Fy of the considered submanifoldl of M determined byt (Dg) = n(D) N TN, while in
Theorem 5.4ve only suppose that we have a subburdlief 7y M such thatA N TN defines a simple
foliation of N, also denoted byFy. But, in both theorems, the reducibility condition

A*(m(D)*") S TN + 7(D) holds onN andE|y € I'(TN + 7 (D))

is exactly the same. Thus, it is natural to agkhat is the advantage of using Dirac structures in the
study of Jacobi reduction problenThe answer can be founded in Remarks 1 and 2 of this paragraph. By
using reducible Dirac structures in this study, we establish the existence, not only, of a reduced Jacobi
manifold (N /Fo, An,7y En/7y), but also of a quotient Jacobi manifold? /F, Ay, 7, Em/7) Which

is always related withiN /Fo, An,7,, En;7,) by means of a Jacobi map; very important fact when we
treat reduction problems. On the other hand, this study, in this framework, allows us to investigate, in a
future paper, th®irac reduction problermand its relation with the one of Jacobi, Poisson and symplectic
structures.

6. Applicationsand examples
6.1. Jacobi submanifolds

From Theorem 5.2ve obtain sufficient conditions under which a Jacobi structureE) on a dif-
ferentiable manifoldM induces a Jacobi structure on a submanifvicof M. Effectively, under the

assumptions of the above mentioned theorenRgf= D N (TN x R) = {(0,0)} and (A, E)*(D*) <
TN x R + D holds onN, then there exists &' N x R)-bivector field (Ay, Exy) on N such that
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Lo= Do®graphAy, EN)#|D3 = graph Ay, Ey)*is areducible Dirac structure for the triangular gener-
alized Lie bialgebroid(TN x R, (0, 1)), (T*N x R, (0,0)),0) and®(Ay, Ey) = (AuyF, En7). But,
the fact “Lo = graph( Ay, Ex)* is Dirac for (TN x R, (0, 1)), (T*N x R, (0,0)), 0)" is equivalent to
the fact (Ay, Ey) is a Jacobi structure otV” (see Proposition 5.2 if80]) and

(Amyr, Emyr) = @(An, En) © p«(A,E) =(poi)(An, En)
& pu((A, E) —i(Ay, Ey)) = (0,0).

By the last equality we conclude either tHat, E) — i.(Ay, Exy) = (0,0) & (A, E) =i.(Ay, Ey),
i.e,i:(N,Ay,Ey) > (M, A, E)isaJacobi map, or that = i*ANJrZ’;:lXj/\Yj andE =i.Ey+ X,
whereX;, X e I'(m(D)), Y; e I'(TM), j =1,...,k, are convenient vector fields such that, A] =
—2E A A and[E, A] =0.

Particular cases

(a) WhenD = {(0, 0)}, thenD+ = T*M x R, and they verify the assumptionsBieorem 5.2Condition
Do=DN (TN x R) ={(0,0)} is automatically satisfied and the reducibility conditi@®) takes
the form

AHT*M)C TN onN andE|y € I'(TN),

which is exactly the condition given [d] and[23] for the submanifoldsv of (M, A, E) of the first
kind.

(b) WhenD = (A, E)Y*((TN x R)1), we have thatD has only sections of typeX, 0) if and only if
Ely e '(TN) and Dy = D N (TN x R) = {(0,0)} if and only if TN N A¥(TN+) = {0}. Thus,
under the assumptions

TNNA*(TNY)={0}onN andE|y € I'(TN), (42)

by a simple calculation we show thAt= A*(T N+) x {0} is a Lie subalgebroid ofT M xR, [, 1, )

if and only if A belongs to the ideal generated by the space of smooth sectidh¥ oflso, since
A*(AH(TNY)T) C TN andE|y € I'(TN), itis easy to prove thabt = (A*(TN+))* xR is a
Lie subalgebroid of 7*M x R, [, J(a.r), 7 o (A, E)¥).

Consequently, if42) holds andA belongs to the ideal generated by the space of smooth sections
of TN, then we have that the requirementsTdfeorem 5.2as the reducibility conditior§39) are
verified, thereforg A, E) induces a Jacobi structure ah We note that condition&2) are exactly
those given irff12].

6.2. Reduction of Jacobi manifolds with symmetry

Let (M, A, E) be a Jacobi manifolds a connected Lie group acting o by a Jacobi actiong
the Lie algebra ofG, G* the dual space of andJ: M — G* an Ad*-equivariant moment map for
the considering action. LdD be the vector subbundle @fM x R formed by the pairgX,,, 0), where
X is the fundamental vector field oM associated to an elemekite G, and D+ its conormal bundle
which isD+ = {X,; e TM/X € G}* x R. It is easy to check thab and D+ are Lie subalgebroids of
(TM xR, [,],7) and(T*M x R, [, .5, 7 o (A, E)¥), respectively. (FoD+, we take into account
that the action of; on M is a Jacobi action, thus, for any fundamental vector fiejgon M, Lx,, A =0
andLy, E = 0.) Consequentlyi, = D @ D+ is a Dirac subbundle a7 M x R) & (T*M x R), (0, 1) +
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(—E,0)). We suppose that 0 is a weakly regular value of the moment fagpence,N = J~1(0) is

a submanifold ofM and Do = D N (TN x R) = {(Xy,0)/X € Go}, wherely is the Lie algebra of
the isotropy subgroup of 0. Also, we suppose that(D) and (D) define, respectively, a simple
foliation F of M and a simple foliatior#, of N. Since,(A, E)*(D) C TN x R + D holds onN, from
the ReductiorTheorem 5.2ve get that(A, E) induces a Jacobi structure &%y F,. For more details,
se€g[9,26,28]
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