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Abstract

We present convergence results and error estimates concerning the numerical approximation of a
class of bone remodeling models, that are elastic adaptive rod models. These are characterized by an
elliptic variational equation, representing the equilibrium of the rod under the action of applied loads,
coupled with an ordinary differential equation with respect to time, describing the physiological
process of bone remodeling. We first consider the semi-discrete approximation, where only the space
variables are discretized using the standard Galerkin method, and then, applying the forward Euler
method for the time discretization, we focus on the fully discrete approximation.
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Résumé

On présente des résultats de convergence et d’estimation d’erreur concernant I'approximation
numérique d’'une classe de modeles de remodelage des os, et qui correspondent a une classe de
modéles de poutres en élasticité adaptative. Ces modéles sont caracterisés par une équation varia-
tionnelle elliptique, réprésentant I'équilibre d’'une poutre sous I'action des forces appliquées, couplée
avec une équation differentielle par raport au temps, décrivant le processus biologique de remode-
lage d’'un os. On considére tout d'abord I'approximation semi-discréte, en discrétisant les variables
spatiales et en utilisant une méthode de Galerkin standard, puis on applique la méthode d’Euler pour
la discrétisation en temps, et finalement on analyse I'approximation discréte compléte.
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1. Introduction

In this paper we analyze the numerical approximation of a class of bone remodeling
models, which are elastic adaptive rod models. The theory of adaptive elasticity describes
the physiological process of bone remodeling and was introduced by Cowin and Hegedus
[4,12] (cf. also Cowin and Nachlinger [5], and Monnier and Trabucho [13], for uniqueness
and existence results, respectively, for three-dimensional adaptive elasticity problems). We
consider in this paper a class of models that corresponds to the class of simplified adaptive
elastic rod models derived in Figueiredo and Trabucho [8] (see also Figueiredo, Leal and
Pinto [9,10]) and that can be mathematically justified by the asymptotic expansion method
(cf. also Trabucho and Viano [14] for an explanation of the mathematical modeling of elas-
tic rods with the asymptotic expansion method). More exactly, the class of models treated
in this paper (cf. problem (2)) consists of a system of two coupled problems, the first one
corresponds to generalized Bernoulli-Navier elastic equilibrium equations and describes
the equilibrium of a rod, that is subjected to external applied loads, and the second problem
is an ordinary differential equation with respect to time, which models the physiological
process of bone remodeling. The unknown of this system is thegaih, whereu is a
vector field and/ a scalar field, such thaix, ¢) represents the equilibrium displacement at
the pointx of the rod and time, andd (x, ) is the change in volume fraction of the elastic
material at the point of the rod and time. Moreoveru depends od andd depends om.

More preciselyy is the solution of a variational problem of elliptic type, whose associated
bilinear and linear forms (the linearity understood with respeat)tdepend nonlinearly
ond. The other unknowr is the solution of the ordinary differential equation with re-
spect to time, which depends anThe major difficulty of this class of models is just this
interdependence of the two unknownandd. Nevertheless we are able to overcome this
difficulty, using convenient mathematical tools, in order to derive the theoretical results
concerning the numerical approximation of this class of models.

We first consider the semi-discrete approximation of (2) (cf. problem (18)) where only
the space variables are discretized. Denoting the space discretization parameter and by
(up, dy) the solution of the semi-discrete approximation we prove thgatd;) converges
to (v, d), whenh — 07, in appropriate functional spaces of Sobolev type involving time
(cf. Theorem 3.4). Then, we consider the fully discrete approximation (cf. problem (47)),
using a numerical scheme to approximate the remodeling rate equation of the semi-discrete
approximation. Because of the structure of this class of models we choose the forward
Euler method, but we notice that other explicit one-step or multistep methods could also
be used to approximate the remodeling rate equation. Denotinzg;lby;l) the solution of
the fully discrete approximation problem at timefor a finite number of time nodes,
withi =0,..., N(At), whereAt is the time discretization parameter, we prove that the
errorsu(., ;) — uﬁl andd(.,t) — d,’; converge to zero, as — 0™ and Ar — 0T, for all
i=0,..., N(Ar), in appropriate Sobolev spaces (cf. Theorem 4.3).
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To reach the two principal convergence results, established in Theorems 3.4 and 4.3, we
essentially prove error estimates #oF u;, anduy(.,t;) — u’h which are generalizations
of Céa’s lemma (cf. Theorems 3.2 and 4.1), that together with the integral Gronwall’s
inequality and the error estimates of the forward Euler's method enable to deduce error
estimates forl — dj, andd;, (., ) — d,i (cf. Theorems 3.3 and 4.2).

Finally we briefly explain the contents of the paper. In Section 2 we introduce some
notations and define the class of bone remodeling models. In Section 3 we prove the theo-
retical results for the semi-discrete approximation problem. In Section 4 we introduce the
fully discrete approximation and prove more error estimates and convergence results. We
also present some conclusions and future work.

2. Definition and properties of the class of models
2.1. Notations

Let w be an open, bounded and connected subs&?pfvith a boundaryw regular
enough. We denote b the set occupied by a cylindrical adaptive elastic rod, in its ref-
erence configuration, with lengih > 0 and cross-section, that is$2 = @ x [0, L] C R3.
Moreover we define the three selts= dw x 10, L[ (wheredw is the boundary ofv),
I'n=a x {0} andI'y, = @ x {L}, which represent, respectively, the lateral boundary and
the two extremities of2. We assume that the rod is subjected to the action of external
forces ons2 andI" U Ip U I';. We also denote by = (x1, x2, x3) a generic element a2
and we assume that the coordinate systémx1, x2, x3) is a principal system of inertia
associated with the rof2. Consequently, axi®x3 passes through the centroid of each
sectionw x {x3} and we have x1dw = [ x2dw = [ x1x2dw =0.

The setC™(£2) stands for the space of real functiomstimes continuously differen-
tiable in £2. The spacesV4(£2) and W24 (§2) = L4(£2) are the usual Sobolev spaces,
wheregq is a real number satisfyingg ¢ < co andm is a positive integer.

The set,

R:{UGR3:v=a+b/\x, a,beR3}, (1)

where A is the cross product ifR3, is the set of infinitesimal rigid displacements. We
denote byf W4 (£2)]3/R the quotient space induced by the &in the Sobolev space
[W4(2)]°.

Throughout the paper, the Latin indiceg, &, , ... belong to the s€ftl, 2, 3}, the Greek
indicesa, 8, i, ... vary in the set{1, 2} and the summation convention with respect to
repeated indices is employed, that is, for examgle;, = Z?zl a;b;.

Let T > 0 be a real parameter and we denotetlthe time variable in the interval
[0, T]. If V is a topological vectorial space, the §8t([0, T']; V) is the space of functions
g:t€[0,T] — g(t) € V, such thatg is m times continuously differentiable with respect
tor. If V is a Banach space we dendté ¢ o,7).v) the usual norm irC" ([0, T1; V).
Moreover, given a functiog(x, ) defined inf2 x [0, T] we denote by its partial deriv-
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ative with respect to time, b§, ¢ andasg its partial derivatives with respect g andxs,

thatis,¢ = 5%, dug = 75 anddzg = 7£.

2.2. Aclass of adaptive elastic rod models

In this paper we consider a class of bone remodeling models that correspond to the
simplified adaptive elastic rod model derived in Figueiredo and Trabucho [8], for the case
of a linear remodeling rate equation (cf. formulas (71)—(74) and (90) in [8]). For a rod
represented by the s& = & x [0, L] in its reference configuration this class of models is
defined as follows:

[ Find (u, d) such that
u=(u1,uzu3): 2 x[0,T]—>R3 and d:2 x[0,T] — R,
u(.,t)yeVv,
aqg(u,v)=Lg(v), VYveV,
d = c(d)es3(u) + b(d), in2x(0,T),
| d(x,0) =n(x), in 2.

)

This problem (2) can be mathematically justified by the asymptotic expansion method as
in Figueiredo and Trabucho [8]. It consists of a system of two nonlinear coupled problems,
the variational equatioa, (1, v) = Ly (v) representing the equilibrium equations of the
rod (that are generalized Bernoulli-Navier elastic equilibrium equations), and the ordinary
differential equation with respect to timé= c(d)es3(u) + b(d), that is the remodeling
rate equation and expresses the process of bone remodeling, due to external stimulus.
The unknowns of the model (2) are the vector field, ¢), corresponding to the dis-
placement of the point of the rod£2 at timet, and the scalar field(x, t) that is the
measure of change in volume fraction of the elastic material (from a reference volume
fraction denoted in the sequel ly) at (x, #). The unknown displacementis the solution
of the variational inequality and depends @nthe unknownd depends om and is the
solution of the ordinary differential equation of parabolic type, that is the remodeling rate
equation. In particula#zz(u) = d3uz is a component of the linear strain teng@t) whose
components are defined by (u) = %(&-uj + 0ju;).
On the other hand, the data of the model (2) are the following: the Spa¢admissible
displacements, the bilinear formy(.,.): V x V — R and the linear fornL;(.): V — R,
that depend on the unknowh and represent the elastic equilibrium equations and the
external forces acting on the rod, respectively, the initial value of the change in volume
fraction n(x) = d(x, 0), and the coefficients(d) and b(d) which are material coeffi-
cients depending upon the change in volume fractioVe will describe next in detalil
all these data of the model (2). The spacef admissible displacements is the quotient
spaceV = V(£2)/R, whereV (£2) is the space of Bernoulli-Navier displacements defined
by:

V(82) = {v e [W22(10, L[)]? x WE2(2): eqp(v) = e35(v) =0}, ()

or equivalently,
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V(82) = {v = (v1, vz, v3) € [W22(10, L1) | x W2(2): va(x) = v (x3),

v3(x) = v3(x3) — Xad3vq (x3), v3 € WH2(10, L[)}. 4

The bilinear forma, (., .) is defined:

ad(z,v)=/ ! e33(z)e33(v)d2, Vz,veV, )
J b3333(d)

whereess(v) = d3v3 = d3v3 — X033V, aNdb3333(d) is a material coefficient that depends
ond (in fact it is an element of the matrig;;x(d)) which is the inverse of the ma-
trix composed of the three-dimensional elastic coefficients of the2pds explained in
Figueiredo and Trabucho [8], formulas (47)—(48)). Moreover we assume that

_ 1 —
Ocemng Y mx yied vielo.T]. (6)
b3333(d(x, 1))

wherec™ andc™@ are strictly positive constants. The linear fofm(.) is defined for all
veV by:

Ld(v)Z/V(§O+Ps(d))ﬁvid9+/gividr+ / hiv; d(IoU I'L). (7)
2 r rour,

The scalaw is the density of the full elastic material, which is supposed to be a constant,
&o is the reference volume fraction of the elastic material (already mentioned immediately
after the definition of the problem (2)) that belongsdd(2), f = (fi), g = (gi) and

h = (h;) are, respectively, the density of body loads and normal tractions on the lateral
boundaryl” and on the two extremitiesy U I';, of the rods2, and finallyP,(.) is a trun-

cation operator. Moreover we assume that the resultant of the system of applied forces is
null for rigid displacements, that is, for amy= (v;) in R,

/)/(§0+77;7(d))f,-v,-d9—i—/gividl"—i— / hiv;d(IoUTIp) =0, in[0,T]. (8)
2 r ur;

We suppose that & ég‘i” < &o(x) < E™ < 1, for all x € £2, and the truncation operator

P, is of classC! and satisfies & /2 < (£9 + P.(d))(x) < 1 for all x € 2, wheree > 0

is a small parameter. We also assume that C1([0, T'), g; € C1([0, T]; Wi=1/P-r(I))

andh; € C1([0, T]; WiYP-P(Iy U I7)), with p > 3. These regularity hypotheses on the
forces are necessary to obtain existence results (cf. Theorem 2.1 in Figueiredo and Tra-
bucho [8] and also Theorem 1 in Monnier and Trabucho [13]). Finally, we suppose that
the initial valued(x, 0) = n(x) of the change in volume fraction verifiese C%(£2) and

the material coefficients(d) andb(d) appearing in the second term of the remodeling
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rate equation are continuously differentiable with respeatamd that there exist positive
constants:, co, ¢3, ¢4, Such that, for alk € 2 and for allz € [0, T']:

}c(d(x,t))| <ec1, |b(d(x,t))| < e, ’c’(d(x,t))| < c3, |b’(d(x,t))| <cs, (9)

wherec’(.) andd’(.) are the derivatives of the scalar functiartg andb(.).
We also notice that we have the following Korn's type inequality in the space
V =V (£2)/R (cf. Ciarlet [1] or Valent [15])

Jc > 0: < c||e33(v) ||i2(9), YveV, (10)

2
” v”[wl,Z(Q)]S

where

2
less®)]| 72, = MeasW) 193031125 ¢, + ( / X3 dw) 19a3vall?2g ) (11)

w

and mea&v) is the measure of the set Then, we conclude thdess(.)|l 2, is @ norm
in the spacé/, equivalent to the usual norm inducedirby |. ||y 1.2()3- SO in the sequel
and for allv € V, we denote byjv|y the norm|less(v)ll 2, O equivalently the norm
lvlljw1z2cey3- Moreover,V is a Hilbert space with the norifess(.) [l .2, - In addition, for
eachd, the bilinear forma,(., .) is continuous and elliptic iV (these two properties of
a(.,.) are also a consequence of the condition (6) imposed on the coefitgignatd)),
that is, for allz andv in V:

|aa (z, v)] < ™ ez3@) | 2 €330 [ 125y = ™Izl vIIvllv (continuity)
aq(v,v) = ™" ez3(v) “im) =cMNjy)2  (ellipticity).

12)

The existence and uniqueness of solution of the class of bone remodeling models de-
fined by (2) is established in Theorem 3.5 of Figueiredo and Trabucho [8]. The proof of
existence relies on Schauder’s fixed point theorem together with the Cauchy—Lipschitz—
Picard theorem (used to solve the remodeling rate equation, for a fixed displacement), the
Lax—Milgram lemma (that is necessary to guarantee the existence of solution of the varia-
tional equation, for a fixed change of volume fraction) and regularity results. The proof of
uniqueness is based on arguments similar to those of Cowin and Nachlinger [5]. The next
theorem summarizes this statement of existence and uniqueness.

Theorem 2.1(Solution of (2)) We assume that, for each fixégdthe unique solutior of
the equilibrium problem,

Findi(.,t) € V, such thata;(ii, v) = L;(v), Yv e V, (13)
has components with the regularify, (., ) € W32(10, L[) and iis(., 1) € W22(10, L[),
for anyr € [0, T] (which implies thati(., 1) € W%2(£2)). Then, there exists a unique pair

(u, d) solution of problen{2), verifying

ueCH[0,T];V) and deC([0,T];CO(2)). (14)
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3. Semi-discrete approximation

In this section we prove error estimates and convergence results for the semi-discrete
approximation of (2), where only the space variables are discretized using the standard
Galerkin method.

We consider first the spade= W22(£2) N V, which is a real separable Hilbert space,
endowed with the inner product, .)y defined by:

(u, v)y = (e33(u), €33(v)) ;2 + (B3¢33(1), B3€33(V)) 12y (15)

for anyu andv in Y, and where(., .) 2 is the usual inner product ih2(£2).

We introduce a family{V;} of finite dimensional subspaces &f, whereh > 0 is a
space discretization parameter and djm= n(h) — oo, ash — 0. We assume thélt,
is smooth enough, and such that, for any elentemt, vi,2, vi3) in Vj, with vy3 = vp3 —
X 03Upe, WE have:

vhe € W32(10,L[) and wuz e W22(10, L[), (16)

and consequently, c Y = W22(£2) N V. Moreover we also assume that this fan{il, }
has the following approximation property (meaning théf., Vs is dense iny for the
norm||.|ly, induced by the inner product, .)y):

YoeY, FHopln=o, vh€Vi: |lv—uplly >0, whenh — OF. (17)
The semi-discrete approximation of problem (2) is defined by:

[ Find (uy, dj) such that
up = (up1, upo, up3) - 2 x [0, T] — R3 and dy: 2 x[0,T] - R,
up(.,t) € Vp,
ag, (up, vp) = Ly, (vp), Yvp € Vy,
dy = c(dp)esa(un) +b(dp), in 2 x(0,T),
| dn(x,0) =np(x), in 2.

(18)

By Theorem 2.1 and assuming the regularity (16prc Y = W22(£2) NV, there exists
a unique solution of problem (18).

Theorem 3.1.We suppose that the initial conditions of proble(23 and (18) verify
lmn = nllL2(2) — 0ash — 0". Then the solutionu,,, d,) of problem(18) satisfies

Elé > 0: ”Mh ”CO([O,T];V) < E, Vh > 0, (19)
3¢ >0 dnllcogo,ry; 122y <€ VA >0, (20)

where¢ and¢ are constants independent/ofandz.
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Proof. Takingvy = uy in (18) we obtairag, (up, up) = Lg, (up). Then, due to the condi-
tion 0 < /2 < (0 + P (dn))(x) < 1, the continuity ofL,, (.) and the uniform ellipticity

of aq, (., .) independently of, cf. (12), we obtain, for each the following norm estimate
from below and from above,

cmin”bth(wl)”%/ <ag, (up, up) < cHuh(.,t)”V, (21)

where ¢ is a constant independent &f and . This implies thatu;, is bounded in
CO([0, T1; V), because from (21) we deduce that

c
chin

””h”CO(IO,T];V) <é= (22)

Taking now the integral with respect to time in the remodeling rate equation of problem
(18) we get:

t

dp(x,1) =/[C(dh)€33(uh)+b(dh)]ds+77h(x)~ (23)
0

But by (21)—(22)leas(un)llcoqo,7):12(2)) 1S bounded from above by a constant and
by (9) the sequences of material coefficierigl,) and b(d,) are also bounded in
CO([0, T1; L3(£2)), thus we have that

”dh(’t)” LZ(Q) < c+ ”r)h”Lz(Q)’ (24)

with ¢ a constant independentbfnd:. But asy;, is bounded inL2(2), the latter estimate
clearly implies the estimate (20), and the proof is complets.

The next theorem provides an estimate from above for the éuyor u)(.,¢) in the
norm of the spac#, which is fundamental for further proofs in this paper.

Theorem 3.2.We suppose that the initial conditions of problef@3 and (18) verify
Imn — nllp2() —> 0ash — 0". Then, there exists a constantindependent ok and ¢,
such that, for each € [0, T'], the first components of the solutions of probl¢#)snd (18)
satisfy

| Gun —wy(..1) “V <cffut, )= “V +[dn = D). ) HL2(:2)(1+ ”633(”}1)”00(5))]’
Yv, € Vi (25)

Proof. The theorem is essentially a consequence of the first Strang lemma (which is a
generalization of Céa’s lemma, cf. Ciarlet [2,3]) which yields:
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[Lg, (up(.,t) —vp) — La(up(.,t) —vp)]
lun(., ) —vplly

R B | T P

lag, (p, up (., ) —vg) — aq(vp, up(., 1) —vp)]

+
lun(..1) —vally

}, Vo € Vg, (26)

with ¢ > 0 a constant independentfands. We analyse now the consistency errors,

[Lg, (up(.,t) —vp) — La(up(., 1) —vp)|

, 27
lun(., ) —vnlly 7)
and
|aq, (n, un(., 1) —vp) — aq(vp, up(., 1) — vp)| (28)
lun(.,t) —vpllv '
Using the mean value theorem for the operdpmwe deduce that
[Laywn) = Latw)] = | [ 7 (Petdi) = Puta) S
Q
gC”(dh _d)('at)”LZ(_Q)”wh“V’ VYwy € Vp, (29)

wherec is another strictly positive constant, independent @inds and depending orf,
y andP,. Therefore, considering, = u;(.,t) — vy, we have for each, the consistency
error estimate for the loads,

[La, (up(.,t) —vp) — La(up(., 1) — vp)|
lun(.,t) —vplly

<ef@n =D 2 (30)

We remark now thaess(vy,) € CO(£2), for any v, € Vj. In fact d3v,3 and dssvse belong

to the spacew-2(10, L[), because of the regularity hypotheses described in (16), and
the inclusionW¥2(10, L[) c €°([0, L)) is continuous. Thus, using this property, and the
mean value theorem for the scalar functi@gss(.), we immediately deduce the following
estimate:

|ag, (v wi) — aa (v, wy)| e33(vp)e33(wp)

- [ o~ )
N J b33zadp)  b3zzxd)

i|e33(vh)€33(wh)

_ / |:b3333(d) — b3333(dp)
J b3333(d))b3333(d)

< CH (dh - d)( ) t) ||L2(Q) ||€33(Uh) ”CO(S_Z) ”wh ” Vs th [S Vha (31)
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wherec is another strictly positive constant, independent ahd:. So, consideringy;, =
up(., 1) —vp

laa, (Wp, up (., 1) —vp) — aqg(p, up(., 1) —vp)l
lup (., 1) —vplly

<cfdn =)D 20 lezs@n) | coq)-
(32)
Gathering estimates (26), (30) and (32) we obtain (25).

As a consequence of Theorem 3.2 we prove now an estimate, in the norm of the space
L2(£2), for the error(dy, — d)(.,1).

Theorem 3.3.We suppose that the initial conditions of problef@3 and (18) verify

Imn — nllL2(e) > 0ash — 0". Then, there exist constants and c,, independent of

h andt, such that, for each € [0, T'], the second components of the solutions of problems
(2) and (18) satisfy

[ = D) 2y < (a M@ o) = vl + s =l
% (1+02(2+ He33(vh)H00(5)))TeTCZ(Z-H‘esS(vh)Hco(ﬁ))7 Yoy, € V. (33)

Proof. Subtracting the two remodeling rate equations and integrating in time, we have:

t

(dp —d)(x,1) = /[(C(dh) — c(d))ess(up) + c(d)e3a(up — u) + b(dy) — b(d)] ds
0
+ (i —n)- (34)

Using the mean value theorem for the scalar functignsanda(.), and Theorem 3.1, we
have that

[ = .0 2oy <l =1l 22
t

w2 [Tl =9 g + L~ )], ], @9
0

where¢ > 0 is a constant independentiofind:z. Using the estimate (25) we get:
l@h — ). 0 2

< [56TZI€1[1§%<]||M(. ) = vy, A+l = 77||L2(.rz>]

t
+/|| (dp = ) (., 9)|| 1) (¢ + c(1+ [lessn) | o)) A5, Yun € Vi (36)
0
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Applying now the integral Gronwall’s inequality (cf. Evans [7, p. 625]) we have the
estimate (33), with the constant = ¢c andc, = maxc, éc}. O

Using again the estimates (25) and (33) the following convergence holds for the semi-
discrete approximation of (2).

Theorem 3.4.We suppose that the initial conditions of proble@$ and (18) verify

Imn — nllp2(e) — 0, ash — 0*. Then the solutionsu, d) and (uy,, d;) of problems(2)
and (18) verify.

||I/i - Mh”cO([O’T];V) d O, ash — O+, (37)

||d — dh ”Cl([O,T];LZ(_Q)) — 0, ash — 0+. (38)

Proof. We first note that the space of polynomials: [0, T] — V,

() =al +ait+---+alt", (39)
with afl e Vy, foralli =0,...,n, andn a positive integer, is dense in the spd¥eY)
defined by:

W) ={veL?([0,T1;Y): ve L0, T1; ¥}, (40)

where Y’ is the dual of the spac& and L2([0, T']; X), with X =Y or X = Y/, de-
notes the space of functions+ — v(r) € X, equipped with the normjv|l .20, 71.x) =

(fOT lv(®)[12)Y2. This statement is a consequence of the assumption (17) which estab-
lishes that J,. o Vi is dense inY and a property oW (Y) (cf. Haslinger, Miettinen and
Panagiotopoulos [11, p. 17, Remark 1.3]).

So, asu belongs toW (Y), there exists a sequence of polynomiis} converging
strongly tox in W (Y). Moreover since the embedding(Y) c C°([0, T']; Y) is continu-
ous (cf. Haslinger, Miettinen and Panagiotopoulos [11, p. 17, Proposition 1.4]) we have:

le = pallcogo,ry.v) = 0. ash — 0%, (41)
and hence

lu — prllcogo,ry,vy — O, ash — 0%, (42)
In addition, for eacht, es3(pi(?)) = 93pn3(t) — xod33pna(t), Where dzp,3(t) and
933phe (1) are in the spac&1-2(10, L[), which is continuously embedded @ ([0, L]).

Consequently, the sequeneg(py,) is bounded inC([0, T1; C°(£2)), because from (41),

Jc > 0: ||Ph||c0([o,T];y) <c, (43)
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and

”633([711) ||C0([0,T];C0(§)) < C1||€33(Ph) ||Co([0,T];Wl*2(.Q)) g CZ”ph ”CO([O,T];Y)’ (44)

with ¢1 andc; two constants independentiofind:. Therefore, taking;, = py (., t), firstly

in (33) and then in (25), we obtain the aimed convergence result8(i®, 7'; L3(£2)) for
{dn} and inCO([0, T; V) for the sequencéu;}. Using this latter convergences and the
equality,

(dy — d)(x, 1) = (c(dn) — c(d))esa(un) + c(d)ess(un — u) + b(dy) — b(d), (45)

we obtain as well the convergence{df,} to d in C1([0, T]; L?(£2)), ash — 0t. O

4. Fully discrete approximation

In this section we describe the fully discrete approximation of problem (2) and we prove
also some error estimates and convergence results.

We divide the intervalO, T'] into N = N (At) intervals of lengthAz, whereAr tends to
zero asN (At) — +o0, and

O=n<h<---<ti<tiyr1<---<ty=T, (46)

where{z;} is the sequence of discretization time nodessmndz; 1+ Az, fori =0,..., N.

We seek an approximatic(mﬁl, d;'l) at nodey; to the solution(uy,, dj,) of problem (18), and
therefore an approximation to the exact solutiand) of problem (2). In order to obtain
(u}, d) we consider a numerical scheme to approximate the remodeling rate equation,
such that, for each time nodgthe change in volume fractiody, (., ¢;) is replaced by its
approximationd,i and consequently introducing; in the variational inequality of (18)
up(.,t;) is substituted by the approximatiqu. Since the remodeling rate equation is

an ordinary differential equation and due to the structure of the model (2) we choose the
forward Euler method to approximate this equation. Then, the fully discrete approximation
of problem (2) is defined by:

Givendy =.d,?’A,, determine:? € V;, byad,?(ug, vn) = Lyo(on). Yon € Vi,

and find(uj,, d;), fori =1,..., N such that
ul € Vi, (47)
ad;‘l (u;l, vp) = Ld;‘l (vy), Vv, eV,
djy = d "t + [e(d), Hesau), Y +b(d) DAL

We remark thaﬂ,? = d}?,m is an approximation of the initial valug, = d;,(., 0) (cf. (18))

and may depend on the time discretization paramgtefwe can also choos@{m = Np,
which is independent ohr).
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We notice that other explicit one-step or multistep methods, like Runge—Kutta methods
or Adams—Bashford methods, for example, could also be used to approximate the remod-
eling rate equation. We believe that, the theoretical convergence analysis, that we carry out
in this section for the discrete problem (47), can also apply if the forward Euler method is
replaced by one of the above mentioned explicit methods.

We shall show in this section that the solution of the fully discrete problem (47) approx-
imates the exact solution of problem (2).

In order to present a preliminary result, we introduce first some notations concerning the
semi-discrete variational equation of (18), thatdg,(us, vy) = Ly, (vs), for all v, € V.
Denoting byn (k) the dimension of the spadg, and by{goh}”(h) a basis ofV;,, thenVj, is
isometrically isomorphic t&®”™ . This isomorphism associates to eaghe V;, a vector
o = (), that is

n(h)
h
v=Y v = o= e R (48)
Hence, insertingu;, = Z(hl) uk(ph and v, = "(h) vk(ph in the variational equation

aq, (up, vp) = Lg, (vy), we obtain that this varlatlonal equation is equivalent to the fol-
lowing matrix equation:

up = (I,tk)n(h) e R*M: Ag,iip = Fy, . (49)

The solutioni, depends on (that is, for eactk, u; depends on), A4, is a symmetric
and positive definite matrix of order(h) and Fy, is a vector withn (k) components, both
depending orl,. More exactly, we have:

n . 1
Ag, = (aq, (‘wa ¢£z))k(1h=)1 with ag, (ﬁolﬁ’ ‘pi) 2/ 33((p;’(l)e33(¢ll’l) ds2, (50)

— €
b3333(dp)
2
and

Fa, = (La, (¢f))} ) with
La,(¢}) = / v (8o + Pe(dn)) frpk d2 + / gregpdI + / hegk d(IoU Iy). (51)
2

r roury,

Proposition 4.1.We suppose th 3333((1} =r 4+ O(h), wherer is a scalar function, such
thatr is independent df, 0 < |r| < ¢ with ¢ > 0 a constant, and () is a term of ordet:
(cf. Monnier and Trabuch{l3], formulas(6) and (2), for a justification of this condition
on the material coefficientssss(dy)). In addition we also assume that, for eakththe
sequence of basis functiofs;} verifies

Jc > 0: H(pﬁ ||Y <ec¢, Vh>0, (52)
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wherec is independent ot and . Then, the sequence of solutiofag },-o of the semi-
discrete variational equation;, (up, vi) = Lg, (v) (cf. (18)), verifies

Jeco > 0O: ||uh||co([o,r];y) < co, (53)
and consequently

3e1> 0 [eas@n) | coo.7:co@y) < €1 (54)
with ¢g andc; two different constants independentioindz.
Proof. We remark that the solution of Eq. (49) is equal to:
iy = Ay Fqg, e R"®. (55)

But, because of (51)—(52), the components of the veljpare bounded from above by a

constant independent bf and, also because of the hypothesi%gﬁs(d—m, any matrix norm

of A;hl is bounded from above by a constant independent dherefore, any component

of the vectori;, is bounded from above by a constant independent &onsequently the

sequencéuy },~o verifies (53), sincer, = Z(:h{ uk¢’;, the condition (52) is verified and

up € CY[0,T1;Y) (this regularity ofuy, is a consequence of the existence theorem, as ex-
plained in the sentence immediately after the semi-discrete formulation (18)). Moreover,
for eachi > 0, e33(up) € CO([0, T1; CO(£2)), because of the regularity hypothesis (16) re-
quired to the spac®, and also because the spa&&2(10, L[) is continuously embedded

in the spac& (10, L[). Consequently we have:

” 6‘33(14},) H CO([O,T];CO(ﬁ)) g c1 H 633(1/1}1) “ CO([O,T]; Wl,Z(Q)) < C2||Mh ” CO([O,T]; Y)s (56)
with ¢1 andc; strictly positive constants independentioénd¢, which proves (54). O
We prove now two preliminary norm estimates.

Theorem 4.1.There exist constantg > O andcz > 0, independent ot ands;, such that,
the first components, andu;, of the solutions of problen(d8) and (47) verify.

il <ea. (57)
w1y —ul]), < calunC. ) = val,,

+ “dh( ) ti) - d;, || Lz(.Q) (1 + H€33(Uh) |’Co(§))]v V'Uh € V/’l’ (58)

forall i =0,1,..., N and for all h > 0. Moreover, assuming the hypothesis of Proposi-
tion 4.1, then, there exists a constart> 0, such that, the estima{é8) becomes

||uh('a fi) — “ZHV < C3Hdh(- 1) _dliz ”LZ(_Q)- (59)
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Proof. The result (57) can be proven in the same way as in Theorem 3.1. We can also
repeat the arguments used in Theorem 3.2 for the two following problems:

un € Vo aqy, (up, vp) = L, (vp),  Yvu € Vi, (60)

u;l e Vy: ad;'l (u;,, vh) = Ld;'l(vh), Yv, € Vp, (61)

considering the time = #; in problem (60). Consequently we obtain the estimate (25),
wherer is replaced by;, u by uy, u, by uj, d by d,, andd,, by d;, that is:

lunC 1) —up |y <c[unt. ) — vy
+ ”dh(' i) = d;; ||L2(.Q)(1+ ||e33(vh)||co(§))]’ Vup € Vi (62)

Assuming the hypothesis of Proposition 4.1, and takipg= u;(., #;) in estimate (62),
then the property (54) is verified, and we have (591

Theorem 4.2.We assume the hypotheses of Proposiidn Then, there exists a constant

¢ > 0, independent of andy;, such that, the second componainandd;; of the solutions
of problemg18) and (47) verify, foralli =0, 1, ..., N and for allh > 0,

. o ecti—to) _ 1
||dh( , ti) — d;t HLZ(.Q) < eL(tl ‘o) ||77h - d}?”LZ(Q) + g(AI)fi (63)

whereg(.) is a scalar function independent bf that tends to zero aa+ — 0.
Proof. We first introduce, for the forward Euler method, the ea’,pbetweenih andd;'l:
¢, () = dy(x, 1;) = dj, (x), (64)
and the corresponding consistency eﬂjgr
ey (x) =dp(x, ti41) — dp(x, ;) — ALF (i, dp(x, 17)), (65)
where
F(ti,dn(. 1)) = c(dn(.. 11))ess(un (., ) + b(dn (., ;). (66)
From (64)—(66) and (47) we have that
et =l + At[F(t, dn (.. 1)) — F (11, d})] + &) (67)

Using the definition (66) we obtain the following estimate:
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| F (@, dn (1)) — F(a, dliz)HLz(.Q) < |b(dn( 1)) = b(“’i)”ﬂ(.@)
+ [ [e(dn(.. 1)) — c(dy) Jesa(u}) ”LZ(.Q)

+ |le(dn(.. 1)) eza(un(. . ;) — MZ)HLz(Q)a (68)

therefore applying the mean value theorem to the scalar fundtionandc(.) and Theo-
rem4.1, we get:

| F(ti.du( 1)) = F(’i’d;z)”LZ(Q) <cldi 1) —dj ||L2(.Q) +eal|un(. 1) — u lv

<.t~ ©

where the last inequality is a consequence of (59)and, ¢ are different strictly positive
constants independentbfandy;, foralli =0, 1, ..., N. We also conclude, from (69), that
F(z,.) is Lipschitz continuous with respect to the second argument avtre Lipschitz
constant. From (67) and (69) we have:

HeZHHLZ(Q) < A+ At ”eéz “LZ(Q) + ”S;l ”LZ(Q)' (70)
Moreover due to the definition @f,'l we clearly have:

fit1

el (x) = / [dh(x,5) —dy(x, ;)] ds, (71)

t
so we get the following bound from above frbfh lL2¢2)

fig1
lei]l 200 < max1]||dh(.,s)—dh(.,tl-)”Lz(mf1ds<g(At)At, (72)

SE[ti i1
t

where g(At) is independent ofr and converges to 0 as\+ — 0T, because
d, € CO([0, T1; L2(£2)) andd, converges tal in CO([0, T1; L2(£2)).

Using (70) and (72) we can argue, for instance, as in Crouzeix and Mignot [6, p. 76],
and we directly obtain (63). We repeat here this argument for convenience of the reader. It
relies on the following lemma (whose proof is immediate by inductioh) because of the
inequality 14+ x < e, for all x € R):

Lemma. Letd; > 0anda; > 0 be two sequences of real numbers, such that

Ois1 < (L+cAf)b +ai, Vi=0, (73)
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wherec > 0is a positive constant andy; =1, 11 — 1;, then

i—1
6; < eC(fi*tO)QO + Z e ti—tjt1) aj, Viz 0. (74)
j=0

Consideringd; = ||}, [l 2oy ande; = ||}, [l 12y We may apply (74) to (70) and also
using (72) we obtain:

i-1 litt

leill 2y < €T el o) + g (AN YT / 1ds
/=0 7

i—1 fiv

<D 20+ 3 2 (AD / oCli=5) g

Jj=0 tj

. eclti—=to) _ 1
< g0 ||62”L2(9) + g(At)f, (75)

and the proof is complete.
We are able now to conclude the following convergence result:

Theorem 4.3.We suppose that the initial conditioms n, and d,? = d}?,m of problems
(2), (18)and (47) verify [[n — nall 22y — O and [ns — d}ll 2y — 0 ash — 0 and
At — 0T, Moreover, we assume the hypotheses of Propos#tienThen, the solutions
(u,d) and(u;, d;) of problemg(2) and (47) satisfy

i, AiiL“m(ogz%vliw-’m—uz Iv)=o (79)
. . l _
hlLrTC]J+ AJ@O*'(Oan](V [a¢...t ~dj Lz(m) =0. (77)

Proof. Itis a trivial consequence of the following triangular norm inequalities:

.t = ”h”v Jut i —unCoid [y + Jun o) =]y,

i (78)
ld (.t - ”LZ(.Q) ldC..ti) = dnc.. tl)||L2(Q)+||dh( i) thLZ(Q)

and Theorems 3.4 and 4.1-4.23
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5. Conclusion and future work

We have proved theoretical error estimates and convergence results for the approxima-
tion of a class of bone remodeling models, that consists of a quasi-static system coupling
a variational equation, of elliptic type, with an ordinary differential equation with respect
to time. We have used a Galerkin method for the space discretization and a forward Euler
method for the time discretization. The structure of this class of models enables the use
of the integral Gronwall’'s inequality and a generalization of Céa’s lemma, which are the
fundamental mathematical tools for the proofs presented in this paper. The choice of an
explicit method, as the forward Euler method, to approximate the remodeling rate equa-
tion, is also suggested by the structure of this class of models.

We observe that we could have considered in (2) a remodeling rate equation depending
nonlinearly oness(u), that is (cf. Figueiredo and Trabucho [8], formula (74)):

. 1
d = ———e33(u)eas(u) + c(d)ezz(u) + b(d), (79)
b3333(d)

which is an equation that seems to be more suitable to represent the remodeling rate
process, from the mechanical view-point, even in the case of small strains (cf. Hegedus
and Cowin [12]). In fact, all the convergence and error estimates results presented in this
paper can also be derived for this type of nonlinear remodeling rate equation; the nonlinear
term ng(d)€33(u)633(u) in (79) only originates more complicated calculus.

Moreover we intend to do some numerical experiments in order to confirm the theoret-

ical convergence results presented in this paper.
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