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Abstract

We present convergence results and error estimates concerning the numerical approxima
class of bone remodeling models, that are elastic adaptive rod models. These are characteriz
elliptic variational equation, representing the equilibrium of the rod under the action of applied
coupled with an ordinary differential equation with respect to time, describing the physiolo
process of bone remodeling. We first consider the semi-discrete approximation, where only th
variables are discretized using the standard Galerkin method, and then, applying the forwar
method for the time discretization, we focus on the fully discrete approximation.
 2005 Elsevier SAS. All rights reserved.

Résumé

On présente des résultats de convergence et d’estimation d’erreur concernant l’approx
numérique d’une classe de modèles de remodelage des os, et qui correspondent à une
modèles de poutres en élasticité adaptative. Ces modèles sont caracterisés par une équat
tionnelle elliptique, réprésentant l’équilibre d’une poutre sous l’action des forces appliquées, c
avec une équation differentielle par raport au temps, décrivant le processus biologique de r
lage d’un os. On considère tout d’abord l’approximation semi-discrète, en discrétisant les va
spatiales et en utilisant une méthode de Galerkin standard, puis on applique la méthode d’Eu
la discrétisation en temps, et finalement on analyse l’approximation discrète complète.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In this paper we analyze the numerical approximation of a class of bone remo
models, which are elastic adaptive rod models. The theory of adaptive elasticity des
the physiological process of bone remodeling and was introduced by Cowin and He
[4,12] (cf. also Cowin and Nachlinger [5], and Monnier and Trabucho [13], for unique
and existence results, respectively, for three-dimensional adaptive elasticity problem
consider in this paper a class of models that corresponds to the class of simplified a
elastic rod models derived in Figueiredo and Trabucho [8] (see also Figueiredo, Le
Pinto [9,10]) and that can be mathematically justified by the asymptotic expansion m
(cf. also Trabucho and Viãno [14] for an explanation of the mathematical modeling of
tic rods with the asymptotic expansion method). More exactly, the class of models t
in this paper (cf. problem (2)) consists of a system of two coupled problems, the firs
corresponds to generalized Bernoulli–Navier elastic equilibrium equations and des
the equilibrium of a rod, that is subjected to external applied loads, and the second p
is an ordinary differential equation with respect to time, which models the physiolo
process of bone remodeling. The unknown of this system is the pair(u, d), whereu is a
vector field andd a scalar field, such thatu(x, t) represents the equilibrium displacemen
the pointx of the rod and timet , andd(x, t) is the change in volume fraction of the elas
material at the pointx of the rod and timet . Moreoveru depends ond andd depends onu.
More precisely,u is the solution of a variational problem of elliptic type, whose associ
bilinear and linear forms (the linearity understood with respect tou) depend nonlinearly
on d . The other unknownd is the solution of the ordinary differential equation with r
spect to time, which depends onu. The major difficulty of this class of models is just th
interdependence of the two unknownsu andd . Nevertheless we are able to overcome t
difficulty, using convenient mathematical tools, in order to derive the theoretical re
concerning the numerical approximation of this class of models.

We first consider the semi-discrete approximation of (2) (cf. problem (18)) where
the space variables are discretized. Denoting byh the space discretization parameter and
(uh, dh) the solution of the semi-discrete approximation we prove that(uh, dh) converges
to (u, d), whenh → 0+, in appropriate functional spaces of Sobolev type involving t
(cf. Theorem 3.4). Then, we consider the fully discrete approximation (cf. problem (
using a numerical scheme to approximate the remodeling rate equation of the semi-d
approximation. Because of the structure of this class of models we choose the fo
Euler method, but we notice that other explicit one-step or multistep methods coul
be used to approximate the remodeling rate equation. Denoting by(ui

h, d
i
h) the solution of

the fully discrete approximation problem at timeti , for a finite number of time nodesti ,
with i = 0, . . . ,N(�t), where�t is the time discretization parameter, we prove that
errorsu(. , ti) − ui

h andd(. , ti) − di
h converge to zero, ash → 0+ and�t → 0+, for all

i = 0, . . . ,N(�t), in appropriate Sobolev spaces (cf. Theorem 4.3).



1796 I.M.N. Figueiredo / J. Math. Pures Appl. 84 (2005) 1794–1812

4.3, we
s
wall’s

error

some
e theo-
ce the
lts. We

ref-

and
rnal

a
ch

-
s,

e
e

to

l
s
ct
To reach the two principal convergence results, established in Theorems 3.4 and
essentially prove error estimates foru − uh anduh(. , ti) − ui

h, which are generalization
of Céa’s lemma (cf. Theorems 3.2 and 4.1), that together with the integral Gron
inequality and the error estimates of the forward Euler’s method enable to deduce
estimates ford − dh anddh(. , ti) − di

h (cf. Theorems 3.3 and 4.2).
Finally we briefly explain the contents of the paper. In Section 2 we introduce

notations and define the class of bone remodeling models. In Section 3 we prove th
retical results for the semi-discrete approximation problem. In Section 4 we introdu
fully discrete approximation and prove more error estimates and convergence resu
also present some conclusions and future work.

2. Definition and properties of the class of models

2.1. Notations

Let ω be an open, bounded and connected subset ofR
2, with a boundary∂ω regular

enough. We denote byΩ the set occupied by a cylindrical adaptive elastic rod, in its
erence configuration, with lengthL > 0 and cross-sectionω, that isΩ = ω × [0,L] ⊂ R

3.
Moreover we define the three setsΓ = ∂ω × ]0,L[ (where∂ω is the boundary ofω),
Γ0 = ω × {0} andΓL = ω × {L}, which represent, respectively, the lateral boundary
the two extremities ofΩ . We assume that the rod is subjected to the action of exte
forces onΩ andΓ ∪ Γ0 ∪ ΓL. We also denote byx = (x1, x2, x3) a generic element ofΩ
and we assume that the coordinate system(O,x1, x2, x3) is a principal system of inerti
associated with the rodΩ . Consequently, axisOx3 passes through the centroid of ea
sectionω × {x3} and we have

∫
ω

x1 dω = ∫
ω

x2 dω = ∫
ω

x1x2 dω = 0.
The setCm(Ω) stands for the space of real functionsm times continuously differen

tiable inΩ . The spacesWm,q(Ω) andW0,q (Ω) = Lq(Ω) are the usual Sobolev space
whereq is a real number satisfying 1� q � ∞ andm is a positive integer.

The set,

R = {
v ∈ R

3: v = a + b ∧ x, a, b ∈ R
3}, (1)

where∧ is the cross product inR3, is the set of infinitesimal rigid displacements. W
denote by[Wm,q(Ω)]3/R the quotient space induced by the setR in the Sobolev spac
[Wm,q(Ω)]3.

Throughout the paper, the Latin indicesi, j, k, l, . . . belong to the set{1,2,3}, the Greek
indicesα,β,µ, . . . vary in the set{1,2} and the summation convention with respect
repeated indices is employed, that is, for example,aibi = ∑3

i=1 aibi .
Let T > 0 be a real parameter and we denote byt the time variable in the interva

[0, T ]. If V is a topological vectorial space, the setCm([0, T ];V ) is the space of function
g : t ∈ [0, T ] → g(t) ∈ V , such thatg is m times continuously differentiable with respe
to t . If V is a Banach space we denote‖.‖Cm([0,T ];V ) the usual norm inCm([0, T ];V ).
Moreover, given a functiong(x, t) defined inΩ × [0, T ] we denote bẏg its partial deriv-
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ative with respect to time, by∂αg and∂3g its partial derivatives with respect toxα andx3,
that is,ġ = ∂g

∂t
, ∂αg = ∂g

∂xα
and∂3g = ∂g

∂x3
.

2.2. A class of adaptive elastic rod models

In this paper we consider a class of bone remodeling models that correspond
simplified adaptive elastic rod model derived in Figueiredo and Trabucho [8], for the
of a linear remodeling rate equation (cf. formulas (71)–(74) and (90) in [8]). For a
represented by the setΩ = ω × [0,L] in its reference configuration this class of models
defined as follows:



Find (u, d) such that

u = (u1, u2, u3) :Ω × [0, T ] → R
3 and d :Ω × [0, T ] → R,

u(. , t) ∈ V,

ad(u, v) = Ld(v), ∀v ∈ V,

ḋ = c(d)e33(u) + b(d), in Ω × (0, T ),

d(x,0) = η(x), in Ω.

(2)

This problem (2) can be mathematically justified by the asymptotic expansion meth
in Figueiredo and Trabucho [8]. It consists of a system of two nonlinear coupled prob
the variational equationad(u, v) = Ld(v) representing the equilibrium equations of t
rod (that are generalized Bernoulli–Navier elastic equilibrium equations), and the ord
differential equation with respect to timėd = c(d)e33(u) + b(d), that is the remodeling
rate equation and expresses the process of bone remodeling, due to external stimu

The unknowns of the model (2) are the vector fieldu(x, t), corresponding to the dis
placement of the pointx of the rodΩ at time t , and the scalar fieldd(x, t) that is the
measure of change in volume fraction of the elastic material (from a reference vo
fraction denoted in the sequel byξ0) at (x, t). The unknown displacementu is the solution
of the variational inequality and depends ond ; the unknownd depends onu and is the
solution of the ordinary differential equation of parabolic type, that is the remodeling
equation. In particulare33(u) = ∂3u3 is a component of the linear strain tensore(u) whose
components are defined byeij (u) = 1

2(∂iuj + ∂jui).
On the other hand, the data of the model (2) are the following: the spaceV of admissible

displacements, the bilinear formad(. , .) :V × V → R and the linear formLd(.) :V → R,
that depend on the unknownd and represent the elastic equilibrium equations and
external forces acting on the rod, respectively, the initial value of the change in vo
fraction η(x) = d(x,0), and the coefficientsc(d) and b(d) which are material coeffi
cients depending upon the change in volume fractiond . We will describe next in detai
all these data of the model (2). The spaceV of admissible displacements is the quotie
spaceV = V (Ω)/R, whereV (Ω) is the space of Bernoulli–Navier displacements defi
by:

V (Ω) = {
v ∈ [

W2,2( ]0,L[ )]2 × W1,2(Ω) : eαβ(v) = e3β(v) = 0
}
, (3)

or equivalently,
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V (Ω) = {
v = (v1, v2, v3) ∈ [

W2,2( ]0,L[ )]2 × W1,2(Ω) : vα(x) = vα(x3),

v3(x) = v3(x3) − xα∂3vα(x3), v3 ∈ W1,2( ]0,L[ )}. (4)

The bilinear formad(. , .) is defined:

ad(z, v) =
∫
Ω

1

b3333(d)
e33(z)e33(v)dΩ, ∀z, v ∈ V, (5)

wheree33(v) = ∂3v3 = ∂3v3 − xα∂33vα andb3333(d) is a material coefficient that depen
on d (in fact it is an element of the matrix(bijkl(d)) which is the inverse of the ma
trix composed of the three-dimensional elastic coefficients of the rodΩ , as explained in
Figueiredo and Trabucho [8], formulas (47)–(48)). Moreover we assume that

0< cmin � 1

b3333(d(x, t))
� cmax, ∀x ∈ Ω, ∀t ∈ [0, T ], (6)

wherecmin andcmax are strictly positive constants. The linear formLd(.) is defined for all
v ∈ V by:

Ld(v) =
∫
Ω

γ
(
ξ0 +Pε(d)

)
fivi dΩ +

∫
Γ

givi dΓ +
∫

Γ0∪ΓL

hivi d(Γ0 ∪ ΓL). (7)

The scalarγ is the density of the full elastic material, which is supposed to be a con
ξ0 is the reference volume fraction of the elastic material (already mentioned immed
after the definition of the problem (2)) that belongs toC1(Ω), f = (fi), g = (gi) and
h = (hi) are, respectively, the density of body loads and normal tractions on the l
boundaryΓ and on the two extremitiesΓ0 ∪ ΓL of the rodΩ , and finallyPε(.) is a trun-
cation operator. Moreover we assume that the resultant of the system of applied fo
null for rigid displacements, that is, for anyv = (vi) in R,

∫
Ω

γ
(
ξ0 +Pη(d)

)
fivi dΩ +

∫
Γ

givi dΓ +
∫

Γ0∪ΓL

hivi d(Γ0 ∪ ΓL) = 0, in [0, T ]. (8)

We suppose that 0< ξmin
0 � ξ0(x) � ξmax

0 < 1, for all x ∈ Ω , and the truncation operato
Pε is of classC1 and satisfies 0< ε/2 � (ξ0 + Pε(d))(x) � 1 for all x ∈ Ω , whereε > 0
is a small parameter. We also assume thatfi ∈ C1([0, T ]), gi ∈ C1([0, T ];W1−1/p,p(Γ ))

andhi ∈ C1([0, T ];W1−1/p,p(Γ0 ∪ ΓL)), with p > 3. These regularity hypotheses on t
forces are necessary to obtain existence results (cf. Theorem 2.1 in Figueiredo a
bucho [8] and also Theorem 1 in Monnier and Trabucho [13]). Finally, we suppos
the initial valued(x,0) = η(x) of the change in volume fraction verifiesη ∈ C0(Ω) and
the material coefficientsc(d) andb(d) appearing in the second term of the remode
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rate equation are continuously differentiable with respect tod and that there exist positiv
constantsc1, c2, c3, c4, such that, for allx ∈ Ω and for allt ∈ [0, T ]:∣∣c(d(x, t)

)∣∣ � c1,
∣∣b(

d(x, t)
)∣∣ � c2,

∣∣c′(d(x, t)
)∣∣ � c3,

∣∣b′(d(x, t)
)∣∣ � c4, (9)

wherec′(.) andb′(.) are the derivatives of the scalar functionsc(.) andb(.).
We also notice that we have the following Korn’s type inequality in the sp

V = V (Ω)/R (cf. Ciarlet [1] or Valent [15])

∃c > 0: ‖v‖2
[W1,2(Ω)]3 � c

∥∥e33(v)
∥∥2

L2(Ω)
, ∀v ∈ V, (10)

where

∥∥e33(v)
∥∥2

L2(Ω)
= meas(ω)‖∂3v3‖2

L2(0,L)
+

(∫
ω

x2
α dω

)
‖∂33vα‖2

L2(0,L)
, (11)

and meas(ω) is the measure of the setω. Then, we conclude that‖e33(.)‖L2(Ω) is a norm
in the spaceV , equivalent to the usual norm induced inV by ‖.‖[W1,2(Ω)]3. So in the seque
and for allv ∈ V , we denote by‖v‖V the norm‖e33(v)‖L2(Ω) or equivalently the norm
‖v‖[W1,2(Ω)]3. Moreover,V is a Hilbert space with the norm‖e33(.)‖L2(Ω). In addition, for
eachd , the bilinear formad(. , .) is continuous and elliptic inV (these two properties o
a(. , .) are also a consequence of the condition (6) imposed on the coefficientb3333(d)),
that is, for allz andv in V :∣∣ad(z, v)

∣∣ � cmax
∥∥e33(z)

∥∥
L2(Ω)

∥∥e33(v)
∥∥

L2(Ω)
= cmax‖z‖V ‖v‖V (continuity),

ad(v, v) � cmin
∥∥e33(v)

∥∥2
L2(Ω)

= cmin‖v‖2
V (ellipticity).

(12)

The existence and uniqueness of solution of the class of bone remodeling mod
fined by (2) is established in Theorem 3.5 of Figueiredo and Trabucho [8]. The pro
existence relies on Schauder’s fixed point theorem together with the Cauchy–Lips
Picard theorem (used to solve the remodeling rate equation, for a fixed displaceme
Lax–Milgram lemma (that is necessary to guarantee the existence of solution of the
tional equation, for a fixed change of volume fraction) and regularity results. The pro
uniqueness is based on arguments similar to those of Cowin and Nachlinger [5]. Th
theorem summarizes this statement of existence and uniqueness.

Theorem 2.1(Solution of (2)). We assume that, for each fixedd̂ , the unique solution̂u of
the equilibrium problem,

Find û(. , t) ∈ V, such thata
d̂
(û, v) = L

d̂
(v), ∀v ∈ V, (13)

has components with the regularityûα(. , t) ∈ W3,2( ]0,L[ ) and û3(. , t) ∈ W2,2( ]0,L[ ),
for any t ∈ [0, T ] (which implies that̂u(. , t) ∈ W2,2(Ω)). Then, there exists a unique pa
(u, d) solution of problem(2), verifying:

u ∈ C1([0, T ];V )
and d ∈ C1([0, T ];C0(Ω))

. (14)
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3. Semi-discrete approximation

In this section we prove error estimates and convergence results for the semi-d
approximation of (2), where only the space variables are discretized using the st
Galerkin method.

We consider first the spaceY = W2,2(Ω) ∩ V , which is a real separable Hilbert spa
endowed with the inner product(. , .)Y defined by:

(u, v)Y = (
e33(u), e33(v)

)
L2(Ω)

+ (
∂3e33(u), ∂3e33(v)

)
L2(Ω)

, (15)

for anyu andv in Y , and where(. , .)L2(Ω) is the usual inner product inL2(Ω).
We introduce a family{Vh} of finite dimensional subspaces ofV , whereh > 0 is a

space discretization parameter and dimVh = n(h) → ∞, ash → 0+. We assume thatVh

is smooth enough, and such that, for any element(vh1, vh2, vh3) in Vh, with vh3 = vh3 −
xα∂3vhα , we have:

vhα ∈ W3,2( ]0,L[ ) and vh3 ∈ W2,2( ]0,L[ ), (16)

and consequentlyVh ⊂ Y = W2,2(Ω)∩V . Moreover we also assume that this family{Vh}
has the following approximation property (meaning that

⋃
h>0 Vh is dense inY for the

norm‖.‖Y , induced by the inner product(. , .)Y ):

∀v ∈ Y, ∃{vh}h>0, vh ∈ Vh: ‖v − vh‖Y → 0, whenh → 0+. (17)

The semi-discrete approximation of problem (2) is defined by:




Find (uh, dh) such that

uh = (uh1, uh2, uh3) :Ω × [0, T ] → R
3 and dh :Ω × [0, T ] → R,

uh(. , t) ∈ Vh,

adh
(uh, vh) = Ldh

(vh), ∀vh ∈ Vh,

ḋh = c(dh)e33(uh) + b(dh), in Ω × (0, T ),

dh(x,0) = ηh(x), in Ω.

(18)

By Theorem 2.1 and assuming the regularity (16) onVh ⊂ Y = W2,2(Ω) ∩ V , there exists
a unique solution of problem (18).

Theorem 3.1. We suppose that the initial conditions of problems(2) and (18) verify
‖ηh − η‖L2(Ω) → 0 ash → 0+. Then the solution(uh, dh) of problem(18)satisfies:

∃ĉ > 0: ‖uh‖C0([0,T ];V ) � ĉ, ∀h > 0, (19)

∃c̄ > 0: ‖dh‖C0([0,T ];L2(Ω)) � c̄, ∀h > 0, (20)

whereĉ and c̄ are constants independent ofh and t .
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Proof. Takingvh = uh in (18) we obtainadh
(uh,uh) = Ldh

(uh). Then, due to the cond
tion 0< ε/2 � (ξ0 + Pε(dh))(x) � 1, the continuity ofLdh

(.) and the uniform ellipticity
of adh

(. , .) independently ofh, cf. (12), we obtain, for eacht , the following norm estimate
from below and from above,

cmin
∥∥uh(. , t)

∥∥2
V

� adh
(uh,uh) � c

∥∥uh(. , t)
∥∥

V
, (21)

where c is a constant independent ofh and t . This implies thatuh is bounded in
C0([0, T ];V ), because from (21) we deduce that

‖uh‖C0([0,T ];V ) � ĉ = c

cmin
. (22)

Taking now the integral with respect to time in the remodeling rate equation of pro
(18) we get:

dh(x, t) =
t∫

0

[
c(dh)e33(uh) + b(dh)

]
ds + ηh(x). (23)

But by (21)–(22)‖e33(uh)‖C0([0,T ];L2(Ω)) is bounded from above by a constant a
by (9) the sequences of material coefficientsc(dh) and b(dh) are also bounded i
C0([0, T ];L2(Ω)), thus we have that

∥∥dh(. , t)
∥∥

L2(Ω)
� c + ‖ηh‖L2(Ω), (24)

with c a constant independent ofh andt . But asηh is bounded inL2(Ω), the latter estimate
clearly implies the estimate (20), and the proof is complete.�

The next theorem provides an estimate from above for the error(uh − u)(. , t) in the
norm of the spaceV , which is fundamental for further proofs in this paper.

Theorem 3.2. We suppose that the initial conditions of problems(2) and (18) verify
‖ηh − η‖L2(Ω) → 0 ash → 0+. Then, there exists a constantc, independent ofh and t ,
such that, for eacht ∈ [0, T ], the first components of the solutions of problems(2) and(18)
satisfy:

∥∥(uh − u)(. , t)
∥∥

V
� c

[∥∥u(. , t) − vh

∥∥
V

+ ∥∥(dh − d)(. , t)
∥∥

L2(Ω)

(
1+ ∥∥e33(vh)

∥∥
C0(Ω)

)]
,

∀vh ∈ Vh. (25)

Proof. The theorem is essentially a consequence of the first Strang lemma (whic
generalization of Céa’s lemma, cf. Ciarlet [2,3]) which yields:
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∥∥(uh − u)(. , t)
∥∥

V
� c

[∥∥u(. , t) − vh

∥∥
V

+ |Ldh
(uh(. , t) − vh) − Ld(uh(. , t) − vh)|

‖uh(. , t) − vh‖V

+ |adh
(vh,uh(. , t) − vh) − ad(vh,uh(. , t) − vh)|

‖uh(. , t) − vh‖V

]
, ∀vh ∈ Vh, (26)

with c > 0 a constant independent ofh andt . We analyse now the consistency errors,

|Ldh
(uh(. , t) − vh) − Ld(uh(. , t) − vh)|

‖uh(. , t) − vh‖V

, (27)

and

|adh
(vh,uh(. , t) − vh) − ad(vh,uh(. , t) − vh)|

‖uh(. , t) − vh‖V

. (28)

Using the mean value theorem for the operatorPε we deduce that

∣∣Ldh
(wh) − Ld(wh)

∣∣ =
∣∣∣∣∣
∫
Ω

γ
(
Pε(dh) −Pε(d)

)
f wh

∣∣∣∣∣
� c

∥∥(dh − d)(. , t)
∥∥

L2(Ω)
‖wh‖V , ∀wh ∈ Vh, (29)

wherec is another strictly positive constant, independent ofh andt and depending onf ,
γ andPε. Therefore, consideringwh = uh(. , t) − vh, we have for eacht , the consistency
error estimate for the loads,

|Ldh
(uh(. , t) − vh) − Ld(uh(. , t) − vh)|

‖uh(. , t) − vh‖V

� c
∥∥(dh − d)(. , t)

∥∥
L2(Ω)

. (30)

We remark now thate33(vh) ∈ C0(Ω), for anyvh ∈ Vh. In fact ∂3vh3 and∂33vhα belong
to the spaceW1,2( ]0,L[ ), because of the regularity hypotheses described in (16),
the inclusionW1,2( ]0,L[ ) ⊂ C0([0,L]) is continuous. Thus, using this property, and
mean value theorem for the scalar functionb3333(.), we immediately deduce the followin
estimate:

∣∣adh
(vh,wh) − ad(vh,wh)

∣∣ =
∣∣∣∣∣
∫
Ω

[
1

b3333(dh)
− 1

b3333(d)

]
e33(vh)e33(wh)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ω

[
b3333(d) − b3333(dh)

b3333(dh)b3333(d)

]
e33(vh)e33(wh)

∣∣∣∣∣
� c

∥∥(dh − d)(. , t)
∥∥

L2(Ω)

∥∥e33(vh)
∥∥

C0(Ω)
‖wh‖V , ∀wh ∈ Vh, (31)
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wherec is another strictly positive constant, independent ofh andt . So, consideringwh =
uh(. , t) − vh

|adh
(vh,uh(. , t) − vh) − ad(vh,uh(. , t) − vh)|

‖uh(. , t) − vh‖V

� c
∥∥(dh − d)(. , t)

∥∥
L2(Ω)

∥∥e33(vh)
∥∥

C0(Ω)
.

(32)

Gathering estimates (26), (30) and (32) we obtain (25).�
As a consequence of Theorem 3.2 we prove now an estimate, in the norm of the

L2(Ω), for the error(dh − d)(. , t).

Theorem 3.3. We suppose that the initial conditions of problems(2) and (18) verify
‖ηh − η‖L2(Ω) → 0 as h → 0+. Then, there exist constantsc1 and c2, independent o
h and t , such that, for eacht ∈ [0, T ], the second components of the solutions of probl
(2) and (18)satisfy:

∥∥(dh − d)(. , t)
∥∥

L2(Ω)
�

(
c1T max

t∈[0,T ]
∥∥u(. , t) − vh

∥∥
V

+ ‖ηh − η‖L2(Ω)

)
× (

1+ c2
(
2+ ∥∥e33(vh)

∥∥
C0(Ω)

))
T eT c2(2+‖e33(vh)‖

C0(Ω)
)
, ∀vh ∈ Vh. (33)

Proof. Subtracting the two remodeling rate equations and integrating in time, we ha

(dh − d)(x, t) =
t∫

0

[(
c(dh) − c(d)

)
e33(uh) + c(d)e33(uh − u) + b(dh) − b(d)

]
ds

+ (ηh − η). (34)

Using the mean value theorem for the scalar functionsc(.) andb(.), and Theorem 3.1, w
have that∥∥(dh − d)(. , t)

∥∥
L2(Ω)

� ‖ηh − η‖L2(Ω)

+ ĉ

t∫
0

[∥∥(dh − d)(. , s)
∥∥

L2(Ω)
+ ∥∥(uh − u)(. , s)

∥∥
V

]
ds, (35)

whereĉ > 0 is a constant independent ofh andt . Using the estimate (25) we get:∥∥(dh − d)(. , t)
∥∥

L2(Ω)

�
[
ĉcT max

t∈[0,T ]
∥∥u(. , t) − vh

∥∥
V

+ ‖ηh − η‖L2(Ω)

]

+
t∫ ∥∥(dh − d)(. , s)

∥∥
L2(Ω)

(
ĉ + ĉc

(
1+ ∥∥e33(vh)

∥∥
C0(Ω)

))
ds, ∀vh ∈ Vh. (36)
0
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Applying now the integral Gronwall’s inequality (cf. Evans [7, p. 625]) we have
estimate (33), with the constantc1 = ĉc andc2 = max{ĉ, ĉc}. �

Using again the estimates (25) and (33) the following convergence holds for the
discrete approximation of (2).

Theorem 3.4. We suppose that the initial conditions of problems(2) and (18) verify
‖ηh − η‖L2(Ω) → 0, ash → 0+. Then the solutions(u, d) and (uh, dh) of problems(2)
and (18)verify:

‖u − uh‖C0([0,T ];V ) → 0, ash → 0+, (37)

‖d − dh‖C1([0,T ];L2(Ω)) → 0, ash → 0+. (38)

Proof. We first note that the space of polynomialsph : [0, T ] → Vh,

ph(t) = a0
h + a1

ht + · · · + an
htn, (39)

with ai
h ∈ Vh, for all i = 0, . . . , n, andn a positive integer, is dense in the spaceW(Y)

defined by:

W(Y) = {
v ∈ L2([0, T ];Y )

: v̇ ∈ L2([0, T ];Y ′)}, (40)

where Y ′ is the dual of the spaceY and L2([0, T ];X), with X = Y or X = Y ′, de-
notes the space of functionsv : t → v(t) ∈ X, equipped with the norm‖v‖L2([0,T ];X) =
(
∫ T

0 ‖v(t)‖2
X)1/2. This statement is a consequence of the assumption (17) which e

lishes that
⋃

h>0 Vh is dense inY and a property ofW(Y) (cf. Haslinger, Miettinen and
Panagiotopoulos [11, p. 17, Remark 1.3]).

So, asu belongs toW(Y), there exists a sequence of polynomials{ph} converging
strongly tou in W(Y). Moreover since the embeddingW(Y) ⊂ C0([0, T ];Y) is continu-
ous (cf. Haslinger, Miettinen and Panagiotopoulos [11, p. 17, Proposition 1.4]) we h

‖u − ph‖C0([0,T ];Y) → 0, ash → 0+, (41)

and hence

‖u − ph‖C0([0,T ];V ) → 0, ash → 0+. (42)

In addition, for eacht , e33(ph(t)) = ∂3ph3(t) − xα∂33phα(t), where ∂3ph3(t) and

∂33phα(t) are in the spaceW1,2( ]0,L[ ), which is continuously embedded inC0([0,L]).
Consequently, the sequencee33(ph) is bounded inC0([0, T ];C0(Ω)), because from (41)

∃c > 0: ‖ph‖C0([0,T ];Y) � c, (43)
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∥∥e33(ph)
∥∥

C0([0,T ];C0(Ω))
� c1

∥∥e33(ph)
∥∥

C0([0,T ];W1,2(Ω))
� c2‖ph‖C0([0,T ];Y), (44)

with c1 andc2 two constants independent ofh andt . Therefore, takingvh = ph(. , t), firstly
in (33) and then in (25), we obtain the aimed convergence results inC0([0, T ];L2(Ω)) for
{dh} and inC0([0, T ];V ) for the sequence{uh}. Using this latter convergences and t
equality,

(ḋh − ḋ)(x, t) = (
c(dh) − c(d)

)
e33(uh) + c(d)e33(uh − u) + b(dh) − b(d), (45)

we obtain as well the convergence of{dh} to d in C1([0, T ];L2(Ω)), ash → 0+. �

4. Fully discrete approximation

In this section we describe the fully discrete approximation of problem (2) and we
also some error estimates and convergence results.

We divide the interval[0, T ] into N = N(�t) intervals of length�t , where�t tends to
zero asN(�t) → +∞, and

0 = t0 < t1 < · · · < ti < ti+1 < · · · < tN = T , (46)

where{ti} is the sequence of discretization time nodes andti = ti−1+�t , for i = 0, . . . ,N .
We seek an approximation(ui

h, d
i
h) at nodeti to the solution(uh, dh) of problem (18), and

therefore an approximation to the exact solution(u, d) of problem (2). In order to obtain
(ui

h, d
i
h) we consider a numerical scheme to approximate the remodeling rate equ

such that, for each time nodeti the change in volume fractiondh(. , ti) is replaced by its
approximationdi

h and consequently introducingdi
h in the variational inequality of (18

uh(. , ti) is substituted by the approximationui
h. Since the remodeling rate equation

an ordinary differential equation and due to the structure of the model (2) we choo
forward Euler method to approximate this equation. Then, the fully discrete approxim
of problem (2) is defined by:

Givend0
h = d0

h,�t , determineu0
h ∈ Vh by ad0

h
(u0

h, vh) = Ld0
h
(vh), ∀vh ∈ Vh,

and find(ui
h, d

i
h), for i = 1, . . . ,N such that


ui

h ∈ Vh,

adi
h
(ui

h, vh) = Ldi
h
(vh), ∀vh ∈ Vh,

di
h = di−1

h + [c(di−1
h )e33(u

i−1
h ) + b(di−1

h )]�t.

(47)

We remark thatd0
h = d0

h,�t is an approximation of the initial valueηh = dh(. ,0) (cf. (18))

and may depend on the time discretization parameter�t (we can also choosed0
h,�t = ηh,

which is independent of�t).
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We notice that other explicit one-step or multistep methods, like Runge–Kutta me
or Adams–Bashford methods, for example, could also be used to approximate the
eling rate equation. We believe that, the theoretical convergence analysis, that we ca
in this section for the discrete problem (47), can also apply if the forward Euler meth
replaced by one of the above mentioned explicit methods.

We shall show in this section that the solution of the fully discrete problem (47) ap
imates the exact solution of problem (2).

In order to present a preliminary result, we introduce first some notations concerni
semi-discrete variational equation of (18), that is,adh

(uh, vh) = Ldh
(vh), for all vh ∈ Vh.

Denoting byn(h) the dimension of the spaceVh and by{ϕk
h}n(h)

k=1 a basis ofVh, thenVh is
isometrically isomorphic toRn(h). This isomorphism associates to eachvh ∈ Vh a vector
v̂h = (vk)

n(h)
k=1, that is

vh =
n(h)∑
k=1

vkϕ
k
h ⇒ v̂h = (vk)

n(h)
k=1 ∈ R

n(h). (48)

Hence, insertinguh = ∑n(h)
k=1 ukϕ

k
h and vh = ∑n(h)

k=1 vkϕ
k
h in the variational equatio

adh
(uh, vh) = Ldh

(vh), we obtain that this variational equation is equivalent to the
lowing matrix equation:

ûh = (uk)
n(h)
k=1 ∈ R

n(h): Adh
ûh = Fdh

. (49)

The solutionûh depends ont (that is, for eachk, uk depends ont), Adh
is a symmetric

and positive definite matrix of ordern(h) andFdh
is a vector withn(h) components, both

depending ondh. More exactly, we have:

Adh
= (

adh

(
ϕk

h,ϕl
h

))n(h)

k,l=1 with adh

(
ϕk

h,ϕl
h

) =
∫
Ω

1

b3333(dh)
e33

(
ϕk

h

)
e33

(
ϕl

h

)
dΩ, (50)

and

Fdh
= (

Ldh

(
ϕk

h

))n(h)

k=1 with

Ldh

(
ϕk

h

) =
∫
Ω

γ
(
ξ0 +Pε(dh)

)
fkϕ

k
h dΩ +

∫
Γ

gkϕ
k
h dΓ +

∫
Γ0∪ΓL

hkϕ
k
h d(Γ0 ∪ ΓL). (51)

Proposition 4.1.We suppose that 1
b3333(dh)

= r +O(h), wherer is a scalar function, such
that r is independent ofh, 0< |r| � c with c > 0 a constant, andO(h) is a term of orderh
(cf. Monnier and Trabucho[13], formulas(6) and (2), for a justification of this condition
on the material coefficientb3333(dh)). In addition we also assume that, for eachk, the
sequence of basis functions{ϕk

h} verifies:

∃c > 0: ∥∥ϕk
∥∥ � c, ∀h > 0, (52)
h Y
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wherec is independent ofk and h. Then, the sequence of solutions{uh}h>0 of the semi-
discrete variational equationsadh

(uh, vh) = Ldh
(vh) (cf. (18)), verifies:

∃c0 > 0: ‖uh‖C0([0,T ];Y) � c0, (53)

and consequently

∃c1 > 0: ∥∥e33(uh)
∥∥

C0([0,T ];C0(Ω))
� c1, (54)

with c0 andc1 two different constants independent ofh and t .

Proof. We remark that the solution of Eq. (49) is equal to:

ûh = A−1
dh

Fdh
∈ R

n(h). (55)

But, because of (51)–(52), the components of the vectorFdh
are bounded from above by

constant independent ofh, and, also because of the hypothesis on1
b3333(dh)

, any matrix norm

of A−1
dh

is bounded from above by a constant independent ofh. Therefore, any componen
of the vectorûh is bounded from above by a constant independent ofh. Consequently the
sequence{uh}h>0 verifies (53), sinceuh = ∑n(h)

k=1 ukϕ
k
h, the condition (52) is verified an

uh ∈ C1([0, T ];Y) (this regularity ofuh is a consequence of the existence theorem, as
plained in the sentence immediately after the semi-discrete formulation (18)). More
for eachh > 0, e33(uh) ∈ C0([0, T ];C0(Ω)), because of the regularity hypothesis (16)
quired to the spaceVh and also because the spaceW1,2( ]0,L[ ) is continuously embedde
in the spaceC0( ]0,L[ ). Consequently we have:∥∥e33(uh)

∥∥
C0([0,T ];C0(Ω))

� c1
∥∥e33(uh)

∥∥
C0([0,T ];W1,2(Ω))

� c2‖uh‖C0([0,T ];Y), (56)

with c1 andc2 strictly positive constants independent ofh andt , which proves (54). �
We prove now two preliminary norm estimates.

Theorem 4.1.There exist constantsc1 > 0 andc2 > 0, independent ofh and ti , such that,
the first componentsuh andui

h of the solutions of problems(18)and (47)verify:

∥∥ui
h

∥∥
V

� c1, (57)∥∥uh(. , ti) − ui
h

∥∥
V

� c2
[∥∥uh(. , ti) − vh

∥∥
V

+ ∥∥dh(. , ti) − di
h

∥∥
L2(Ω)

(
1+ ∥∥e33(vh)

∥∥
C0(Ω)

)]
, ∀vh ∈ Vh, (58)

for all i = 0,1, . . . ,N and for all h > 0. Moreover, assuming the hypothesis of Propo
tion 4.1, then, there exists a constantc3 > 0, such that, the estimate(58)becomes:∥∥uh(. , ti) − ui

h

∥∥
V

� c3
∥∥dh(. , ti) − di

h

∥∥
L2(Ω)

. (59)
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Proof. The result (57) can be proven in the same way as in Theorem 3.1. We ca
repeat the arguments used in Theorem 3.2 for the two following problems:

uh ∈ Vh: adh
(uh, vh) = Ldh

(vh), ∀vh ∈ Vh, (60)

ui
h ∈ Vh: adi

h

(
ui

h, vh

) = Ldi
h
(vh), ∀vh ∈ Vh, (61)

considering the timet = ti in problem (60). Consequently we obtain the estimate (
wheret is replaced byti , u by uh, uh by ui

h, d by dh, anddh by di
h, that is:

∥∥uh(. , ti) − ui
h

∥∥
V

� c
[∥∥uh(. , ti) − vh

∥∥
V

+ ∥∥dh(. , ti) − di
h

∥∥
L2(Ω)

(
1+ ∥∥e33(vh)

∥∥
C0(Ω)

)]
, ∀vh ∈ Vh. (62)

Assuming the hypothesis of Proposition 4.1, and takingvh = uh(. , ti) in estimate (62)
then the property (54) is verified, and we have (59).�
Theorem 4.2.We assume the hypotheses of Proposition4.1. Then, there exists a consta
c > 0, independent ofh andti , such that, the second componentsdh anddi

h of the solutions
of problems(18)and (47)verify, for all i = 0,1, . . . ,N and for allh > 0,

∥∥dh(. , ti) − di
h

∥∥
L2(Ω)

� ec(ti−t0)
∥∥ηh − d0

h

∥∥
L2(Ω)

+ g(�t)
ec(ti−t0) − 1

c
, (63)

whereg(.) is a scalar function independent ofh, that tends to zero as�t → 0.

Proof. We first introduce, for the forward Euler method, the errorei
h betweendh anddi

h:

ei
h(x) = dh(x, ti) − di

h(x), (64)

and the corresponding consistency errorεi
h,

εi
h(x) = dh(x, ti+1) − dh(x, ti) − �tF

(
ti , dh(x, ti)

)
, (65)

where

F
(
ti , dh(. , ti )

) = c
(
dh(. , ti)

)
e33

(
uh(. , ti)

) + b
(
dh(. , ti)

)
. (66)

From (64)–(66) and (47) we have that

ei+1
h = ei

h + �t
[
F

(
ti , dh(. , ti )

) − F
(
ti , d

i
h

)] + εi
h. (67)

Using the definition (66) we obtain the following estimate:
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t

. 76],
der. It
∥∥F
(
ti , dh(. , ti )

) − F
(
ti , d

i
h

)∥∥
L2(Ω)

�
∥∥b

(
dh(. , ti)

) − b
(
di
h

)∥∥
L2(Ω)

+ ∥∥[
c
(
dh(. , ti)

) − c
(
di
h

)]
e33

(
ui

h

)∥∥
L2(Ω)

+ ∥∥c
(
dh(. , ti)

)
e33

(
uh(. , ti) − ui

h

)∥∥
L2(Ω)

, (68)

therefore applying the mean value theorem to the scalar functionsb(.) andc(.) and Theo-
rem 4.1, we get:

∥∥F
(
ti , dh(. , ti )

) − F
(
ti , d

i
h

)∥∥
L2(Ω)

� c1
∥∥dh(. , ti) − di

h

∥∥
L2(Ω)

+ c2
∥∥uh(. , ti) − ui

h

∥∥
V

� c
∥∥dh(. , ti) − di

h

∥∥
L2(Ω)

, (69)

where the last inequality is a consequence of (59) andc1, c2, c are different strictly positive
constants independent ofh andti , for all i = 0,1, . . . ,N . We also conclude, from (69), tha
F(t, .) is Lipschitz continuous with respect to the second argument withc the Lipschitz
constant. From (67) and (69) we have:

∥∥ei+1
h

∥∥
L2(Ω)

� (1+ �tc)
∥∥ei

h

∥∥
L2(Ω)

+ ∥∥εi
h

∥∥
L2(Ω)

. (70)

Moreover due to the definition ofεi
h we clearly have:

εi
h(x) =

ti+1∫
ti

[
ḋh(x, s) − ḋh(x, ti)

]
ds, (71)

so we get the following bound from above for‖εi
h‖L2(Ω),

∥∥εi
h

∥∥
L2(Ω)

� max
s∈[ti ,ti+1]

∥∥ḋh(. , s) − ḋh(. , ti )
∥∥

L2(Ω)

ti+1∫
ti

1 ds � g(�t)�t, (72)

where g(�t) is independent ofh and converges to 0 as�t → 0+, because
ḋh ∈ C0([0, T ];L2(Ω)) andḋh converges tȯd in C0([0, T ];L2(Ω)).

Using (70) and (72) we can argue, for instance, as in Crouzeix and Mignot [6, p
and we directly obtain (63). We repeat here this argument for convenience of the rea
relies on the following lemma (whose proof is immediate by induction ini, because of the
inequality 1+ x � ex , for all x ∈ R):

Lemma. Let θi � 0 andαi � 0 be two sequences of real numbers, such that

θi+1 � (1+ c�ti)θi + αi, ∀i � 0, (73)
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wherec > 0 is a positive constant and�ti = ti+1 − ti , then

θi � ec(ti−t0)θ0 +
i−1∑
j=0

ec(ti−tj+1)αj , ∀i � 0. (74)

Consideringθi = ‖ei
h‖L2(Ω) andαi = ‖εi

h‖L2(Ω) we may apply (74) to (70) and als
using (72) we obtain:

∥∥ei
h

∥∥
L2(Ω)

� ec(ti−t0)
∥∥e0

h

∥∥
L2(Ω)

+ g(�t)

i−1∑
j=0

ec(ti−tj+1)

tj+1∫
tj

1 ds

� ec(ti−t0)
∥∥e0

h

∥∥
L2(Ω)

+
i−1∑
j=0

g(�t)

tj+1∫
tj

ec(ti−s) ds

� ec(ti−t0)
∥∥e0

h

∥∥
L2(Ω)

+ g(�t)
ec(ti−t0) − 1

c
, (75)

and the proof is complete.�
We are able now to conclude the following convergence result:

Theorem 4.3.We suppose that the initial conditionsη, ηh and d0
h = d0

h,�t of problems

(2), (18) and (47) verify ‖η − ηh‖L2(Ω) → 0 and ‖ηh − d0
h‖L2(Ω) → 0 as h → 0+ and

�t → 0+. Moreover, we assume the hypotheses of Proposition4.1. Then, the solution
(u, d) and(ui

h, d
i
h) of problems(2) and (47)satisfy:

lim
h→0+ lim

�t→0+

(
max

0�i�N

∥∥u(. , ti) − ui
h

∥∥
V

)
= 0, (76)

lim
h→0+ lim

�t→0+

(
max

0�i�N

∥∥d(. , ti) − di
h

∥∥
L2(Ω)

)
= 0. (77)

Proof. It is a trivial consequence of the following triangular norm inequalities:

∥∥u(. , ti) − ui
h

∥∥
V

�
∥∥u(. , ti) − uh(. , ti)

∥∥
V

+ ∥∥uh(. , ti) − ui
h

∥∥
V
,∥∥d(. , ti) − di

h

∥∥
L2(Ω)

�
∥∥d(. , ti) − dh(. , ti)

∥∥
L2(Ω)

+ ∥∥dh(. , ti) − di
h

∥∥
L2(Ω)

(78)

and Theorems 3.4 and 4.1–4.2.�
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5. Conclusion and future work

We have proved theoretical error estimates and convergence results for the appr
tion of a class of bone remodeling models, that consists of a quasi-static system co
a variational equation, of elliptic type, with an ordinary differential equation with res
to time. We have used a Galerkin method for the space discretization and a forward
method for the time discretization. The structure of this class of models enables t
of the integral Gronwall’s inequality and a generalization of Céa’s lemma, which ar
fundamental mathematical tools for the proofs presented in this paper. The choice
explicit method, as the forward Euler method, to approximate the remodeling rate
tion, is also suggested by the structure of this class of models.

We observe that we could have considered in (2) a remodeling rate equation dep
nonlinearly one33(u), that is (cf. Figueiredo and Trabucho [8], formula (74)):

ḋ = 1

b3333(d)
e33(u)e33(u) + c(d)e33(u) + b(d), (79)

which is an equation that seems to be more suitable to represent the remodeli
process, from the mechanical view-point, even in the case of small strains (cf. He
and Cowin [12]). In fact, all the convergence and error estimates results presented
paper can also be derived for this type of nonlinear remodeling rate equation; the no
term 1

b3333(d)
e33(u)e33(u) in (79) only originates more complicated calculus.

Moreover we intend to do some numerical experiments in order to confirm the th
ical convergence results presented in this paper.
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