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Abstract

In this paper we give bounds for the error arising in the approximation of the logarithm of a block triangular
matrix T by Padé approximants of the function f (x) = log[(1 + x)/(1 − x)] and partial sums of Gregory’s series.
These bounds show that if the norm of all diagonal blocks of the Cayley-transform B = (T − I )(T + I )−1 is suffi-
ciently close to zero, then both approximation methods are accurate. This will contribute for reducing the number
of successive square roots of T needed in the inverse scaling and squaring procedure for the matrix logarithm.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Given a nonsingular matrix A ∈ R
n×n, any solution of the matrix equation eX = A, where eX denotes

the exponential of the matrix X, is called a logarithm of A. In general, a nonsingular real matrix may
have an infinite number of real and complex logarithms. However, if A has no eigenvalues on the closed
negative real axis then there exists a unique real logarithm of A whose eigenvalues lie on the open
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strip {z ∈ C: −π < Im z < π} of the complex plane [10]. This unique logarithm is called the principal
logarithm of A and will be denoted by logA.

A well-known first step in algorithms to compute logA is an initial reduction of A to real Schur form,

A = QT QT ,

where T ∈ R
n×n is block upper triangular (each diagonal block of T is either a 1 × 1 matrix or a 2 × 2

having complex conjugate eigenvalues) and Q ∈ R
n×n is orthogonal, and then reduce the problem to

that of computing logT by means of the equation logA = Q(logT )QT . The real Schur decomposition
may be computed by stable algorithms (see, for instance, Algorithm 7.5.2 in [6], which requires about
25n3 flops) and for any orthogonally invariant norm (e.g., 2-norm or Frobenius norm), the absolute error
affecting logT is the same for logA.

This motivates the interest in the computation of the principal logarithm of a certain block triangular
matrices. However, this paper deals with a more general situation, when T is any block upper triangular
real matrix with square diagonal blocks and no eigenvalues on the closed negative real axis.

In this paper we consider two well-known methods for computing the principal logarithm of T : di-
agonal Padé approximants of the function log[(1 + x)/(1 − x)] (see [2]) and partial sums of Gregory’s
series

logT = 2
∞∑

k=0

B2k+1

2k + 1
, (1)

where B = (T − I )(T + I )−1 (see [13,5]). Both methods become effective if combined with the standard
inverse scaling and squaring technique [12] which consists, first, in taking a certain number, say k, of
consecutive square roots of T so that logT 1/2k

is accurately approximated, and then recover the original
logarithm using the identity

logT = 2k logT 1/2k

.

Here, X1/2 stands for the principal square root of T , i.e., the unique square root of T with eigenvalues
lying on the open right half plane. We refer the reader to [1,7,10] for details about matrix square roots.

To decide if the approximation for logT 1/2k

given by Padé approximants or partial sums has the
required accuracy, one needs sharp bounds for the absolute error.

The most widely used bound for the Padé error was derived by Kenney and Laub [11, Corollary 4]:∥∥logA − Sm(I − A)
∥∥ �

∣∣Sm

(‖I − A‖) − log
(
1 − ‖I − A‖)∣∣, (2)

where ‖I − A‖ < 1, Sm(x) is the (m,m) Padé approximant of log(1 − x) and ‖ · ‖ denotes a consistent
matrix norm.

An alternative upper bound was proposed in [2, Section 2]:∥∥logA − Rm(C)
∥∥ �

∣∣∣∣log

(
1 + ‖C‖
1 − ‖C‖

)
− Rm

(‖C‖)∣∣∣∣, (3)

where C = (A − I )(A + I )−1, ‖C‖ < 1 and Rm(x) is the (m,m) Padé approximant of log[(1 + x)/

(1 − x)]. Bound (3) is sharper than (2) and the condition required for A is in general less restrictive,
since ‖I − A‖ < 1 implies ‖C‖ < 1, but the converse may not be true. Another interesting feature of
(3) is that it can be used even when logA is approximated by the other approximant Sm(I − A) because
Rm(C) = Sm(I − A).
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Assume now that we are given a block triangular matrix T with no eigenvalues on the closed negative
real axis. The Cayley-transform B = (T − I )(T + I )−1 has the same block triangular structure. Our goal
is to give bounds for the Padé and Gregory absolute errors that exploit the particular block structure of T

and do not require so restrictive conditions such as ‖I − T ‖ < 1 and ‖B‖ < 1. These bounds will be
presented in Section 2 (Theorem 2.5) for diagonal Padé approximants and in Section 5 (Theorem 5.1)
for Gregory series. One important feature of these estimates is that they allow us to conclude that if there
exists w sufficiently close to zero such that the diagonal blocks of B satisfy

‖Bii‖ � w < 1, ∀i, (4)

then diagonal Padé approximants of log[(1 + x)/(1 − x)] and partial sums of Gregory’s series (1) give
accurate approximates.

As far as we know, the idea of estimating the Padé error using the norm of diagonal blocks was firstly
presented by Dieci and Papini [5]. Among other results, they showed that for block-(2 × 2) triangu-
lar matrices, “(diagonal) Padé approximation for logT produces an approximation for the (1,2) block
accurate in a relative-error sense, if the resulting approximations for diagonal blocks are accurate in
an absolute-error sense” [5, p. 928]. This statement is a consequence of [5, Theorem 4.6], which will
be generalized in Section 4 for block-(p × p) triangular matrices. However, here, one uses the Cayley
transform, since it leads to an improvement on the sharpness of the error estimates.

2. Bounding the Padé error

We say that a n × n square matrix X is a block-(p × p) matrix if it is partitioned into p2 matrices
(blocks) Xij , 1 � i, j � p, where the diagonal blocks Xii , 1 � i � p, are square matrices. For such a
matrix we write X = [Xij ]1�i,j�p. Two block-(p × p) matrices X = [Xij ]1�i,j�p and Y = [Yij ]1�i,j�p

of the same size are said to be partitioned conformably if, for all i, j = 1, . . . , p, the blocks Xij and Yij

have the same size.
If ‖ · ‖ denotes a consistent matrix norm, for a block-(p × p) matrix X = [Xij ]1�i,j�p ∈ R

n×n we
define a new p × p matrix |X| whose (i, j) entry equals ‖Xij‖, that is,

|X| = [‖Xij‖
]

1�i,j�p
.

It is clear that |X| depends on the block partitioning of X. So, in order to avoid any dubious situation,
we always fix a particular block partitioning of X before considering the corresponding matrix |X|. The
norm of the matrix |X| may also depend on the block partitioning of X. Such is the case for the norms

‖ · ‖1 and ‖ · ‖∞. However, for the Frobenius norm ‖A‖F =
√∑n

i,j=1 |aij |2, one has∥∥|X|∥∥
F

= ‖X‖F ,

for any blocking of X. Due to this property, some results in this paper are stated for the Frobenius
norm only. However, with the appropriate modifications some of them may be extended to other matrix
norms.

Definition 2.1. If X = [Xij ]1�i,j�p and Y = [Yij ]1�i,j�p are block-(p × p) matrices partitioned con-
formably, we say that |X| � |Y | if ‖Xij‖ � ‖Yij‖, for all i, j = 1, . . . , p.
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Lemma 2.2. For X and Y block-(p × p) matrices partitioned conformably, the following holds:

(i) |X + Y | � |X| + |Y |;
(ii) |XY | � |X||Y |;
(iii) |Xk| � |X|k , k = 1,2, . . . ;
(iv) |X| � |Y | �⇒ ‖X‖F � ‖Y‖F .

The proof of this lemma is a straightforward consequence of the properties of a matrix norm.

Lemma 2.3. Let T be a block-(p × p) upper triangular matrix decomposed as T = D + N , where
D = diag(T11, . . . , Tpp) is block-(p × p) diagonal and N is block-(p × p) strictly upper triangular.
Assume that w = max{‖T11‖F , . . . ,‖Tpp‖F } and f is given by the power series f (x) = ∑∞

k=0 akx
k, with

convergence radius R and ak � 0, ∀k. If w < R, then

∥∥f (T )
∥∥

F
�

∥∥∥∥∥
p−1∑
i=0

f (i)(w)

i! |N |i
∥∥∥∥∥

F

� max
0�i�p−1

f (i)(w)

i!
∥∥(

I − |N |)−1∥∥
F
.

Proof. Firstly, we observe that from Lemma 2.2 we can write

∣∣T k
∣∣ = ∣∣(D + N)k

∣∣ �
min(k,p−1)∑

i=0

(
k

i

)
wk−i |N |i . (5)

Since f (T ) = ∑∞
k=0 akT

k, where ak is nonnegative, from Lemma 2.2 and (5), it follows that

∣∣f (T )
∣∣ �

∞∑
k=0

ak|T k| =
∞∑

k=0

ak

∣∣(D + N)k
∣∣

�
∞∑

k=0

ak

min(k,p−1)∑
i=0

(
k

i

)
wk−i |N |i =

p−1∑
i=0

( ∞∑
k=i

ak

(
k

i

)
wk−i

)
|N |i

=
p−1∑
i=0

f (i)(w)

i! |N |i .

Since ‖|X|‖F = ‖X‖F , for any block partitioning of X, the following holds:

∥∥f (T )
∥∥

F
�

∥∥∥∥∥
p−1∑
i=0

f (i)(w)

i! |N |i
∥∥∥∥∥

F

.

The second inequality follows from the fact that(
I − |N |)−1 = I + |N | + · · · + |N |p−1,

because |N | is nilpotent of order p. �
This lemma may be viewed as a possible extension of Theorem 11.2.2 in [6] to block triangular

matrices and the inequality (5) as a block version of Lemma 2.1 in [3].
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The principal logarithm of a matrix A ∈ R
n×n with no eigenvalues on the closed negative real axis

enjoys the following integral representation in terms of C = (A − I )(A + I )−1:

logA =
1∫

−1

C(I − Cs)−1 ds. (6)

Next lemma shows that a Gauss–Legendre quadrature rule applied to this integral is equivalent to Padé
approximation for logA. Since this lemma is basically the Cayley-transform version of Theorem 4.3 in
[4], we omit its proof.

Lemma 2.4. Let A and C be as above and F(s) := C(I − Cs)−1. If

Q :=
m∑

k=1

akF (sk) (ak ∈ R, sk ∈ [−1,1])

is the m-point Gauss–Legendre quadrature rule applied to (6) and Rm(x) is the (m,m) Padé approximant
of log[(1 + x)/(1 − x)], then

Q= Rm(C).

The main result of this section is stated in the following theorem.

Theorem 2.5. Let T ∈ R
n×n be a block-(p×p) upper triangular matrix with no eigenvalues on the closed

negative real axis and B = (T − I )(T + I )−1. Assume that B = D + N , where D = diag(B11, . . . ,Bpp)

is block diagonal and N is block strictly upper triangular. If Rm(x) is the (m,m) Padé approximant of
log[(1 + x)/(1 − x)] and w = max{‖B11‖F , . . . ,‖Bpp‖F } < 1, then

∥∥logT − Rm(B)
∥∥

F
� μp,m

‖B2m+1‖F

(1 − w)2m+p

∥∥(
I − |N |)−1∥∥

F
, (7)

where μp,m = cm
22m+1(2m+p−1)!

(p−1)! , with cm = (m!)4

(2m+1)((2m)!)3 .

Proof. The standard error formula for m-point Gauss–Legendre quadrature rules (in scalar case) states
that

b∫
a

h(t)dt −
m∑

i=1

akh(tk) = cm(b − a)2m+1h(2m)(ξ),

where h is 2m-times differentiable in [a, b] and ξ ∈ [a, b]. Since logT = ∫ 1
−1 F(s)ds, where F(s) =

B(I − Bs)−1, and F (2m)(s) = (2m)![B(I − Bs)−1]2m+1, from [14, Theorem 3] and Lemma 2.4 it is not
hard to conclude that∥∥logT − Rm(B)

∥∥
F

� cm22m+1 max
s∈[−1,1]

∥∥F (2m)(s)
∥∥

F

� cm22m+1
∥∥B2m+1

∥∥
F

max
∥∥(2m)![B(I − Bs)−1

]2m+1∥∥
F
. (8)
s∈[−1,1]
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Now one needs to find a bound for maxs∈[−1,1] ‖(2m)![B(I − Bs)−1]2m+1‖F . Let f (x) := − log(1 − x).
To define the corresponding matrix function f (X) = − log(I − X) we must assume that the spectral
radius of X satisfies ρ(X) < 1. Since ρ(Bs) < 1, s ∈ [−1,1], we can write f (2m+1)(Bs) = (2m)![B(I −
Bs)−1]2m+1. If we let g(X) := f (2m+1)(X), we see that the coefficients of the Maclaurin series of g are
nonnegative. From Lemma 2.3 it follows that

max
s∈[−1,1]

∥∥f (2m+1)(Bs)
∥∥

F
= max

s∈[−1,1]
∥∥g(Bs)

∥∥
F

� max
s∈[−1,1]

∥∥∥∥I + g(ws)|Ns| + · · · + g(p−1)(ws)

(p − 1)! |Ns|p−1

∥∥∥∥
F

� max
0�k�p−1

g(k)(w)

k!
∥∥(

I − |N |)−1∥∥
F

= max
0�k�p−1

f (2m+1+k)(w)

k!
∥∥(

I − |N |)−1∥∥
F

� f (2m+p)(w)

(p − 1)!
∥∥(

I − |N |)−1∥∥
F

= (2m + p − 1)!
(p − 1)!(1 − w)2m+p

∥∥(
I − |N |)−1∥∥

F
,

and therefore the result follows. �
Remark 2.6. Consider the particular case w = ‖B‖ � 1. Taking p = 1, the bound (7) reduces to

∥∥logT − Rm(B)
∥∥

F
� (2m)!cm

(
2w

1 − w

)2m+1

,

giving rise to an alternative bound to (2) and (3).

One important advantage of using bound (7) is that the conditions ‖I − T ‖ < 1 or ‖B‖ < 1 are not
required. We only need to ensure that the norm of each diagonal block of B is sufficiently close to zero for
Padé approximants to give accurate approximations for logT . The drawback of (7) is its computational
cost: one needs to compute powers of the block triangular matrix B and the inverse of the upper p × p

triangular matrix I − |N |. To derive a less costly version of (7), one needs to bound ‖B2m+1‖F . We shall
not use the trivial bound∥∥B2m+1

∥∥
F

� ‖B‖2m+1
F ,

because we may have ‖B‖ 	 1. Instead, we may use (5) to obtain

∥∥B2m+1
∥∥

F
�

(
2m + 1

p − 1

)
w2m+2−p

∥∥(
I − |N |)−1∥∥

F
, (9)

where m � p − 1. This inequality also shows that ‖B2m+1‖F → 0 as w → 0. Using (9) in (7) it follows
that ∥∥logT − Rm(B)

∥∥
F

� θp,m

w2m+2−p

2m+p

∥∥(
I − |N |)−1∥∥2

F
, (10)
(1 − w)
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where θp,m = cm
22m+1(2m+p−1)!(2m+1)!

[(p−1)!]2(2m−p+2)! and the number of blocks is restricted to p � m + 1.
In both bounds (7) and (10) we can see that the nonnormal part of B , hidden inside the factor

‖(I − |N |)−1‖F , may have an important influence on the quality of the approximates given by Padé
approximants. Large values for ‖(I − |N |)−1‖F need to be compensated by large values for the order
of Padé approximants m or by small values for w. Since it is not practical to take m large (Higham [9]
suggests taking m � 16), an absolute error of order of the machine precision eps may not be attained (see
Remark 1).

We finish this section with some comments on the stability of the computation of powers of B . Since
we are assuming that ‖Bii‖ � w < 1, ∀i = 1, . . . , p, we have that Bk → O , whenever k → ∞. To
understand the way as the powers of B converge to the zero matrix, the following relationship gives
some insight:

|B|k �

⎡
⎢⎢⎣

O(wk) O(wk−1) . . . O(wk−p+1)

0 O(wk) . . . O(wk−p+2)
...

. . .
. . .

...

0 · · · 0 O(wk)

⎤
⎥⎥⎦ .

Although all the entries of |B|k converge to zero, we can see that diagonal entries converge faster than
the remaining ones. This becomes more clear when |N | (the nonnormal part of |B|) has entries with
large absolute values. In this case, the entries of the nondiagonal blocks of Bk are more sensitive to
the effects of rounding errors, because they may grow rapidly before decay. This phenomenon, usually
called “hump”, may originate heavy cancellation in finite precision arithmetic (see, for instance, [8,
Chapter 17]).

3. Numerical examples

In this section we report on some numerical examples to illustrate the behaviour of the bounds (7) and
(10). All the experiments were performed in Matlab (with relative machine epsilon ε ≈ 2.2 × 10−16) on
a Pentium IV. We have used Padé approximants of order m = 7 and the Frobenius norm. Symbols w, p

and B are as in Theorem 2.5 and errex, errest1, errest2 denote, respectively, the exact values
for the error, the estimate given by the bound (7) and the estimate given by the bound (10).

Table 1 compares the estimates for the absolute error with the exact values for some matrices of the
form

Ta = exp(a)

[1 b b2/2 + c

0 1 b

0 0 1

]

for which the exact logarithm is

logTa =
[

a b c

0 a b

0 0 a

]
.

We denote Ba = (Ta − I )(Ta + I )−1 and consider fixed values for b = 103, c = 10−3 and four distinct
values for a, as displayed in the first column of the table.
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Table 1
Comparison of the error estimates with the exact values for Ta

a w ‖Ba‖F errex errest1 errest2

0.05 0.03 6.8×103 1.5×10−11 3.4×10−10 3.5×10−10

0.1 0.05 1.3×104 1.5×10−11 4.3 × 10−6 4.6 × 10−6

0.3 0.15 3.7×104 9.8 × 10−8 4.2 × 101 4.9 × 101

0.5 0.24 5.8×104 6.5 × 10−5 1.9 × 105 2.5 × 105

One interesting fact reported on the table is that the estimates based on the bounds (7) and (10) show
that, although ‖Ba‖F 	 1, Padé approximants of order 7 give high accuracy for the logarithm of the
matrices T0.05 and T0.1. However, for matrices T0.3 and T0.5 we have obtained very poor estimates. The
reason is that w is not sufficiently close to zero or m is not large enough.

One important issue in the inverse scaling and squaring procedure is to find the smallest number of
successive square roots of T , say k, we need to take to guarantee that the approximation of logT 1/2k

given
by Rm(B(k)), where B(k) = (T 1/2k − I )(T 1/2k + I )−1, has the required accuracy. Computing unnecessary
square roots not only increases the number of operations involved, but may lead to a loss of accuracy in
the computed result (see [4]). Since the bound (7) does not require any of the conditions ‖I − T ‖ < 1 or
‖B‖ < 1, but instead that ‖Bii‖ � wi < 1, ∀i, a reduction on the number of square roots involved will
occur. This is more evident when T has diagonal block entries near one and other blocks with entries
having large absolute values. This is the case of matrices T0.05 and T0.1 considered above, for which

the smallest number of square roots k needed to have ‖I − T
1/2k

0.05 ‖ < 1 (respectively, ‖B(k)

0.05‖ < 1) is

k = 11 (respectively k = 10); for T0.1 we need k = 11 (respectively k = 10) to have ‖I − T
1/2k

0.1 ‖ < 1
(respectively, ‖B(k)

0.1‖ < 1). However, no square root is necessary to guarantee that diagonal blocks of B

satisfy ‖(B0.05)ii‖ < 1 or ‖(B0.1)ii‖ < 1, for all i.
Although the estimates (7) and (10) give quite similar results for matrices Ta , this is in fact a co-

incidence and not a general rule. To illustrate the difference between both estimates we have tested a
randomized 15 × 15 matrix T with real and nonreal pairs of eigenvalues, for which ‖B‖F = 0.9. Assum-
ing that the number of blocks is p = 5, we have got the following results: w = 0.4, errex= 1.5×10−13,
errest1 = 1.3 × 10−5 and errest2 = 2.5 × 103. We shall observe that this significative differ-
ence between errest1 and errest2 is due to the very conservative estimate given by the bound
(9) to ‖B2m+1‖F .

Assume now that we are given a matrix T such that B = (T − I )(T + I )−1 allows more than one
blocking, with the diagonal blocks satisfying the conditions of Theorem 2.5. It is easy to see that the
estimates given by the bounds (7) and (10) depend on the number p of blocks considered in B . Although
it seems to be hard to find a general rule for choosing an optimal p, the nature of the bounds shows that
we shall not take p large. For instance, if we have a 100×100 upper triangular matrix, it is not reasonable
to take p = 100. Based on our experience with some numerical examples and taking into account that
in practice Padé approximants of orders m � 9 are the most widely used, we also suggest to take p � 9
(check the tests above).

To analyse the effects of the blocking on the behaviour of bounds (7) and (10), we have tested
a randomized 20×20 upper triangular matrix T satisfying ‖B‖ = ‖(T −I )(T +I )−1‖ < 1. We have con-
sidered seven different block partitioning for T : p = 2,3,4,5,6,7,8. The result is displayed on Fig. 1,
where we can see that the best estimates occur when p = 3. We have also tested several randomized
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Fig. 1. Padé errors according to p.

100 × 100 upper triangular matrices with ‖B‖ < 1 and, curiously, the same observation holds, i.e., the
polygonal lines corresponding to both bounds seem to have a minimum near p = 3.

4. Padé error bounds for diagonal and first superdiagonal blocks

Let

T =
⎡
⎣T11 · · · T1p

. . .
...

0 Tpp

⎤
⎦

be a block-(p × p) triangular matrix with no eigenvalues on the closed negative real axis. The matrices
B = (T − I )(T + I )−1, logT and Rm(B) have the same block triangular structure as T and we will use
the following notation:

B =
⎡
⎣B11 . . . B1p

. . .
...

0 Bpp

⎤
⎦ ,

L = logT =
⎡
⎣L11 . . . L1p

. . .
...

0 Lpp

⎤
⎦ , L̄ = Rm(B) =

⎡
⎣ L̄11 . . . L̄1p

. . .
...

0 L̄pp

⎤
⎦ ,

where Bii = (Tii − I )(Tii + I )−1, Lii = logTii and L̄ii = Rm(Bii), for i = 1, . . . , p.
The following result improves the error bounds given by Dieci and Papini (see [5, Theorem 4.6]) for

the diagonal blocks L̄ii and blocks L̄i,i+1 in the first superdiagonal of L̄. These bounds reinforce an
important fact already observed by those authors: we shall expect better accuracy in diagonal blocks (in
general, full accuracy) than in superdiagonal ones. We note that Theorem 4.1 is stated for any consistent
matrix norm.



262 J.R. Cardoso, F. Silva Leite / Applied Numerical Mathematics 56 (2006) 253–267
Theorem 4.1. With the above assumptions, the following holds:

(i) If ‖Bii‖ � wi < 1, for i = 1, . . . , p, then

‖Lii − L̄ii‖ � (2m)!cm

(
2wi

1 − wi

)2m+1

;
(ii) If w = max{‖B11‖, . . . ,‖Bpp‖} < 0.9, then, for i = 1, . . . , p − 1,

‖Li,i+1 − L̄i,i+1‖ � (2m + 1)!cm‖Bi,i+1‖
(

2w

1 − w

)2m 2

(1 − w)2
, (11)

‖Li,i+1 − L̄i,i+1‖
‖Li,i+1‖ � cm(2m + 1)! sec2

(
tanh−1 w

)( 2w

1 − w

)2m 1

(1 − w)2
,

where cm = (m!)4

(2m+1)((2m)!)3 .

Proof. (i) For the Frobenius norm, this is an immediate consequence of Theorem 2.5 (see also Re-
mark 2.6). For any other consistent matrix norm, we can proceed as in the proof of part (ii) below.

(ii) Let F(s) = B(I − Bs)−1 = [fij (s)]i,j=1,...,n. From standard error formula for m-point Gauss–
Legendre quadrature rules (in scalar case) and Lemma 2.4, we have

L − L̄ = cm22m+1
[
f

(2m)
ij (ξij )

]
i,j=1,...,n

, (12)

where −1 � ξij � 1, ∀i, j ∈ {1, . . . , n}. Partitioning F(s) into p × p blocks conformably B , one may
write

F(s) = [
Fij (s)

]
i,j=1,...,p

.

Equating blocks (i, i + 1) in (12) and using (8), it follows that

‖Li,i+1 − L̄i,i+1‖ � cm22m+1 max
s∈[−1,1]

∥∥F
(2m)

i,i+1(s)
∥∥, i = 1, . . . , p − 1. (13)

Since each block on the first superdiagonal of Bk , which will be denoted by (Bk)i,i+1, can be written in
the form

(
Bk

)
i,i+1 =

k−1∑
j=0

B
k−1−j

ii Bi,i+1B
j

i+1,i+1, (14)

i = 1, . . . , p − 1, one has

F
(2m)

i,i+1(s) =
∞∑

k=0

(k + 2m)!
k!

k+2m∑
j=0

B
k+2m−j

ii Bi,i+1B
j

i+1,i+1s
k.

Therefore

max
s∈[−1,1]

∥∥F
(2m)

i,i+1(s)
∥∥ �

∞∑
k=0

(k + 2m)!
k!

k+2m∑
j=0

‖w‖k+2m−j‖Bi,i+1‖wj

= ‖Bi,i+1‖w2m

∞∑ (k + 2m + 1)!
k! wk = ‖Bi,i+1‖w2m (2m + 1)!

(1 − w)2m+2
,

k=0
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and from (13) the result follows. To obtain an upper bound for the relative error it suffices to bound
‖Bi,i+1‖ in terms of ‖Li,i+1‖ and then use (11). Since L = logT = log[(I +B)(I −B)−1] = 2 tanh−1(B),

where B = (T − I )(T + I )−1, we have that B = tanh(L/2) and hence

Bi,i+1 = (
tanh(L/2)

)
i,i+1.

The Taylor series for the hyperbolic tangent is given by

tanhx =
∞∑

k=1

a2k−1x
2k−1,

where a2k−1 = 22k(22k−1)

(2k)! b2k, with b2k being the Bernoulli numbers, and x2 < π2

4 . Thus, for L such that
ρ(L) < π , we may write

tanh

(
L

2

)
=

∞∑
k=1

a2k−1

(
L

2

)2k−1

.

Since

‖Lii‖ � log

(
1 + wi

1 − wi

)
, (15)

the assumption ‖Bii‖ � 0.9, for all i = 1, . . . , p, guarantees that L satisfies the spectral restriction
ρ(L) < π . Therefore, by (14),

Bi,i+1 = (
tanh(L/2)

)
i,i+1 =

∞∑
k=1

a2k−1

2k−2∑
j=0

(
Lii

2

)2k−2−j(
Li,i+1

2

)(
Li+1,i+1

2

)j

,

and so

‖Bi,i+1‖ �
∞∑

k=1

|a2k−1|
2k−2∑
j=0

∥∥∥∥Lii

2

∥∥∥∥
2k−2−j∥∥∥∥Li,i+1

2

∥∥∥∥
∥∥∥∥Li+1,i+1

2

∥∥∥∥
j

.

If � := max{‖L11
2 ‖, . . . ,‖Lpp

2 ‖}, then

‖Bi,i+1‖ �
∥∥∥∥Li,i+1

2

∥∥∥∥
∞∑

k=1

|a2k−1|
2k−2∑
j=0

�2k−2

=
∥∥∥∥Li,i+1

2

∥∥∥∥
∞∑

k=1

|a2k−1|(2k − 1)�2k−2 =
∥∥∥∥Li,i+1

2

∥∥∥∥ sec2 �.

Hence, from (15),

� � 1

2
log

(
1 + w

1 − w

)
= tanh−1 w,

and thus the result follows. �
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Now we shall justify why the bounds in the previous theorem improve the ones given in [5] for block-
(2 × 2) triangular matrices, which we recall in the following:

‖Lii − L̄ii‖ � (2m)!cm

(
αi

1 − αi

)2m+1

, (16)

with ‖I − Tii‖ � αi < 1, i = 1,2, and

‖L12 − L̄12‖ � cm‖T12‖
(

α

1 − α

)2m
(2m + 1)!
(1 − α)2

, (17)

where α = max{α1, α2}. In both cases cm = (m!)4

(2m+1)((2m)!)3 .
To compare the bound in Theorem 4.1(i) with (16), it is enough to compare αi/(1−αi) with 2wi/(1−

wi), for i = 1,2, and αi < 1. Since Bii = (Tii − I )(Tii + I )−1 and I + Tii = 2(I − I−Tii

2 ), we have

‖Bii‖ � ‖Tii − I‖∥∥(Tii + I )−1
∥∥ � αi

∥∥∥∥1

2

(
I − I − Tii

2

)−1∥∥∥∥ � αi

2(1 − ‖I−Tii‖
2 )

� αi

2 − αi

,

which implies that

2‖Bii‖
1 − ‖Bii‖ = 2wi

1 − wi

�
2 αi

2−αi

1 − αi

2−αi

= αi

1 − αi

. (18)

This means that the bound in Theorem 4.1(i) is always smaller than or equal to (16).
For the bounds (ii) (Theorem 4.1) and (17), we need to compare

‖B12‖
(

2w

1 − w

)2m 2

(1 − w)2
with ‖T12‖

(
α

1 − α

)2m 1

(1 − α)2
.

Since B12 = 2(T11 + I )−1T12(T22 + I )−1 and ‖(Tii + I )−1‖ � 1
2−αi

, for αi < 1 (i = 1,2), we have

‖B12‖ 2

(1 − w)2
� 2

∥∥(T11 + I )−1
∥∥‖T12‖

∥∥(T22 + I )−1
∥∥ 2

(1 − w)2
� 2

(2 − α)2
‖T12‖ 2

(1 − w)2
,

where α = max{α1, α2} < 1. If we assume that w � α/2, then

2

(2 − α)2
‖T12‖ 2

(1 − w)2
� 2

(2 − α)2
‖T12‖ 2

(1 − α/2)2
= 16

(2 − α)4
‖T12‖.

Since 16
(2−α)4 � 1

(1−α)2 , ∀α ∈ [0,1[, from (18) it follows that

‖B12‖
(

2w

1 − w

)2m 2

(1 − w)2
� ‖T12‖

(
α

1 − α

)2m 1

(1 − α)2
.

This means that the bound in Theorem 4.1(ii) is smaller than or equal to (17), provided that w � α/2.
We shall note that the condition w � α/2 comes from the relationships ‖Bii‖ � αi

2−αi
and αi

2−αi
≈ αi

2 , for
all αi sufficiently close to zero.

Remark 1. Under the assumptions of Theorem 4.1, let

δ = (2m)!cm

(
2w

)2m+1
1 − w
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be the maximum of the absolute errors affecting the diagonal blocks of L̄. The following inequality
relates the absolute error on diagonal blocks with the global error:∥∥logT − Rm(B)

∥∥
F

� δ
(2m + 1)(2m + p − 1)!

[(p − 1)!]2(2m − p + 2)![w(1 − w)]p−1

∥∥(
I − |N |)−1∥∥2

F
.

This shows that a small error δ in diagonal blocks may not avoid a large absolute error in the computed
approximation Rm(B). Thus, even when δ = eps, it may be hard to have an approximation for logT with
absolute error close to eps.

In the rest of this section, we briefly comment on some issues related with the Cayley transform B .
In this work we have been using B = (T − I )(T + I )−1 and not simply I − T because, as showed in

our previous work [2], the Cayley transform seems to be an important tool to obtain sharper estimates for
the error arising in the computation of logT via Padé or Gregory approximation. This means that using
this transform (namely, the norm of its diagonal blocks Bii) in the inverse scaling and squaring procedure
requires, in general, fewer square roots than using the norm of I −Tii . In some problems, this contributes
to reduce the overscaling and consequently to avoid an eventual loss of precision. One disadvantage of
using the Cayley transform is related with its computational cost. Since B is the solution of the linear
matrix equation

(T + I )B = T − I,

it costs approximately the same as one block triangular matrix inversion.

5. Gregory error estimates

A similar analysis to the one made in the previous sections for Padé approximants may be extended
to Gregory’s series. In order to avoid repetition, we only mention the most important results, namely the
Gregory versions of Theorems 2.5 and 4.1, and omit their proofs.

Theorem 5.1. Under the assumptions of Theorem 2.5, if f (x) = log[(1 + x)/(1 − x)] then∥∥∥∥logT − 2
q∑

k=0

B2k+1

2k + 1

∥∥∥∥
F

� ‖B2q+3‖F

(2q + 3)!(p − 1)!
∥∥(

I − |N |)−1∥∥
F
f (2q+p+2)(w), (19)

for all q .

Remark 2. The factor f (2q+p+2)(w) involved in the bound (19) is given by the expression

f (2q+p+2)(w) = (2q + p + 1)!
(

(−1)2q+p+1

(1 + w)2q+p+2
+ 1

(1 − w)2q+p+2

)
.

Since, for a sufficiently large q , 1
(1+w)2q+p+2 � 1

(1−w)2q+p+2 , we can estimate this factor using the relation-
ship

f (2q+p+2)(w) ≈ (2q + p + 1)!
2q+p+2

.

(1 − w)
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Therefore, the inequality (19) may be rewritten in the form∥∥∥∥logT − 2
q∑

k=0

B2k+1

2k + 1

∥∥∥∥
F

� (2q + p + 1)!‖B2q+3‖F

(2q + 3)!(p − 1)!(1 − w)2q+p+2

∥∥(
I − |N |)−1∥∥

F
.

Theorem 5.2. Let T be a block-(p × p) upper triangular matrix with no eigenvalues on the closed
negative real axis, B = (T − I )(T + I )−1 and L̃ = 2

∑q

k=0
B2k+1

2k+1 .

(i) If ‖Bii‖ � wi < 1, for i = 1, . . . , p, then

‖Lii − L̃ii‖ � 2

2q + 3

(
wi

1 − wi

)2q+3

;
(ii) If w := max{‖B11‖, . . . ,‖Bpp‖} � 0.9, then, for i = 1, . . . , p − 1,

‖Li,i+1 − L̃i,i+1‖ � 2‖Bi,i+1‖ w2q+2

1 − w2
,

‖Li,i+1 − L̃i,i+1‖
‖Li,i+1‖ � w2q+2

1 − w2
sec2

(
tanh−1(w)

)
.

6. Conclusion

In this work we have presented new estimates for the absolute error occurring whenever we approx-
imate the logarithm of block triangular matrices using Padé approximants or partial sums of Gregory’s
series. These bounds exploit the block triangular structure of the given matrix and improve the existing
estimates that treat the matrix as a whole. The error in the diagonal and superdiagonal blocks of the
approximation was also addressed as well as some numerical issues concerning to the behaviour of the
bounds.
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