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Abstract

An inverse problem is solved, by stating that the regular linear functionalsu andv associated to
linearly related sequences of monic orthogonal polynomials(Pn)n and(Qn)n, respectively, in the
sense

Pn(x) +
N∑

i=1

ri,nPn−i (x) = Qn(x) +
M∑
i=1

si,nQn−i (x)

for all n = 0,1,2, . . . (whereri,n andsi,n are complex numbers satisfying some natural conditio
are connected by a rational modification, i.e., there exist polynomialsφ and ψ , with degreesM
andN , respectively, such thatφu = ψv. We also make some remarks concerning the correspon
direct problem, stating a characterization theorem in the caseN = 1 andM = 2. As an example, we
give a linear relation of the above type involving Jacobi polynomials with distinct parameters.
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1. Introduction and main result

In the last decade the study of the so-called Sobolev-type orthogonal polynomial
received much attention (see [10], where F. Marcellán and A. Ronveaux gave a upda
of 240 references on this subject). These are sequences of polynomials which are o
nal with respect to nonstandard scalar inner products

(f, g) :=
N∑

ν=0

∫
R

f (ν)g(ν) dµν,

whereµ0, . . . ,µN are positive Borel measures supported on the real line, their sup
are infinite sets, and with finite moments, i.e.,

∫
R

|x|s dµν < ∞ for all s = 0,1,2, . . .

and ν = 0, . . . ,N . Often the study of Sobolev-type orthogonal polynomials leads
linear algebraic relation between the orthogonal polynomials associated to the me
µ0, . . . ,µN . This suggests the study of the corresponding inverse problem—in the
general setting of moment linear functionals defined in the spaceP of all polynomials,
with P and its dualP ′ carried with appropriate topologies—i.e., to state the relation
tween two regular linear functionals such that the corresponding sequences of orth
polynomials (OPS) are linearly related. Our main result is the following

Theorem 1.1. Let u and v be two regular functionals in P ′, and let {Pn}n�0 and {Qn}n�0
be the corresponding monic OPS’s, respectively. Assume that there exist nonnegative inte-
ger numbers N and M , and complex numbers ri,n and sk,n (i = 1, . . . ,N ; k = 1, . . . ,M ;
n = 0,1, . . .), such that the structure relation

Pn(x) +
N∑

i=1

ri,nPn−i (x) = Qn(x) +
M∑
i=1

si,nQn−i (x) (1)

holds for all n = 0,1,2, . . . . Further, assume that

rN,M+N �= 0, sM,M+N �= 0, det
{[αi,j ]N+M

i,j=1

} �= 0, (2)

where

αij :=



rj−i,j−1, if 1� i � M ∧ i � j � N + i,

sj−i+M,j−1, if M + 1� i � M + N ∧ i − M � j � i,

0, otherwise,

(3)

with the convention r0,k = s0,ν = 1 for all k = 0, . . . ,M and ν = 0, . . . ,N . Then there exist
two polynomials φ and ψ , with degφ = M and degψ = N , such that

φu = ψv. (4)

These polynomials φ and ψ can be constructed explicitly.

The left multiplication of a functional by a polynomial in (4) is defined in the us
distributional sense, i.e.,

〈φu, f 〉 := 〈u, φf 〉, f ∈ P,

where〈,〉 means the duality bracket.
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Theorem 1.1 generalizes and is motivated by some results contained in a recen
by M. Alfaro, F. Marcellán, A. Peña, and M.L. Rezola [1], where the authors chara
ized linearly related sequences of orthogonal polynomials involving linear combina
with exactly two elements—corresponding to the caseM = N = 1 in (1)—in terms of
their functionals. Further, in [2] the above authors gave a complete discussion of th
ularity conditions involving a rational modification as(x − a)u = λ(x − b)v between two
moment linear functionalsu andv (thus, corresponding again to the caseM = N = 1).
Special cases of these type of relations were treated in [7,9,14]. Theorem 1.1 give
lution for the inverse problem associated to (1). The corresponding direct problem
to find the relation between the polynomials starting from a relation such as (4) be
the functionals (rational modification) is not completely solved here. In fact, we only
that, in general, a relation such as (4) between regular functionalsu andv, associated to
monic OPS’s(Pn) and(Qn), always implies two structure relations (which, in princip
are independent) close to (1), i.e.,(Pn) and(Qn) are linearly related by (16) and (17)
bellow. However, the number of summands in both sides of (16) and (17) is not op
when compared with the number of summands in both sides of (1), namely degφ +1 in the
sum involving theQν ’s, and degψ + 1 in the sum involving thePν ’s. We conjecture tha
an optimal structure relation can be obtained (under certain suitable conditions). In
holds when degφ = degψ = 1, as follows from the results in [1]. Further, in the pres
paper we prove (again under certain natural conditions) that it also holds when degφ = 2
and degψ = 1 (an so, by symmetry, also when degφ = 1 and degψ = 2).

The paper is organized as follows. In Section 2 we review some general results n
for the proof of Theorem 1.1. This proof will be made in Section 3, and in Secti
we will discuss the converse of the statement in Theorem 1.1. In Section 5 we s
characterization theorem in the caseN = 1 andM = 2 which we use to establish a line
relation involving Jacobi polynomials (which we did no found in the literature). Finall
Section 6 we see that the same technique applies to give an alternative proof to (a
modification of) Theorem 2.4 in [1] and we discuss integral representations for the inv
moment linear functionals.

2. Background

All the facts presented in this section concerning general aspects in the theory
thogonal polynomials can be found in the standard textbooks by Szegö [18], Freu
or Chihara [5], and its connection with the theory of locally convex spaces in the p
[11,13,15] by Maroni. The needed general facts about the theory of locally convex s
are contained, e.g., in the books by Treves [19] or Reed and Simon [17]. See also [1
a review on these topics.

With the usual operations of addition and scalar multiplication,C[x] is a linear space
which will be denoted byP . Pn will denote the linear subspace ofP of polynomials with
degree less than or equal ton. Since in a finite dimensional vector space all the norms
equivalent, we may adopt (without loss of generality)
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‖f ‖n :=
n∑

ν=0

|aν |

for an arbitrary polynomialf ∈ Pn such thatf (x) ≡ ∑n
ν=0 aνx

ν . Then(Pn,‖ · ‖n) is a
Banach space (remember that a finite dimensional normed space is always comple
clear thatPn ⊂ Pn+1 for all n = 0,1,2, . . . (strict inclusion) and the topology of eachPn is
identical to the one induced byPn+1. Further, eachPn is closed inPn+1. Therefore, since

P =
+∞⋃
n=0

Pn,

the theory of locally convex spaces leads us to consider inP its natural topology of the
hyper-strict inductive limit (the term “hyper-strict” is used for the strict inductive li
X = ind limn Xn of a family of l.c.s.’s(Xn)n when eachXn is closed inXn+1) defined by
the sequence{(Pn,‖ · ‖n)}n∈N0 (cf. Maroni [13,15]; Treves [19, pp. 126–131]).

LetP∗ be the algebraic dual ofP , i.e., the set of all linear functionalsu :P → C. Given
anu ∈ P∗, the action ofu over a polynomialf will be denoted by〈u, f 〉. The topological
dual of P will be represented byP ′ and the topology to be considered in this spac
the dual weak topology, which, by definition, is characterized by the family of semin
℘ := {pf : f ∈P}, where

pf (u) := ∣∣〈u, f 〉∣∣, u ∈P ′, f ∈ P
(see Treves [19, p. 197]). Alternatively, setting := {| · |n: n ∈ N0}, where

|u|n := sup
0�ν�n

∣∣〈u, xν
〉∣∣, u ∈P ′, n = 0,1,2, . . . ,

it can be proved that the families of seminorms℘ and onP ′ are equivalent (cf. Maron
[15]). HenceP ′ is a Fréchet space. Further, the set equality

P ′ = P∗ (5)

holds, which follows essentially from∣∣〈u, f 〉∣∣ � |u|n‖f ‖n (u ∈P∗, f ∈Pn), n = 0,1,2, . . . ,

and taking into account general facts concerning continuity in inductive limit topolog
Any sequence of polynomials{fn}n�0 such that degfn = n for all n will be called a

simple set. Let{Rn}n�0 be a simple set of polynomials. Since it is an (algebraic) b
for P , we can consider the corresponding dual basis inP∗, say{an}n�0, where, by defini-
tion, an :P → C is the linear functional characterized by

〈an,Rν〉 := δn,ν (n, ν = 0,1,2, . . .),

δn,ν being the usual Kronecker symbol. Under these conditions, making use of (5)
be shown that anyv ∈ P∗ admits a Fourier-type representation such as

v =
∞∑

n=0

λnan, λn := 〈v,Rn〉 (n = 0,1,2, . . .), (6)

in the sense of the weak dual topology inP ′ (see Maroni [14]).
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Next we recall the concept of orthogonality. Letu ∈ P∗. A sequence of polynomial
(Pn)n is said to be an orthogonal polynomial sequence (OPS) with respect tou if it is a
simple set and

〈u,PnPm〉 = knδn,m, n,m = 0,1,2, . . . ,

wherekn is a nonzero complex number for eachn. When there exists an OPS with resp
to u, u is said to be regular or quasi-definite. Without loss of generality, usually one w
with monic orthogonal polynomial sequences (MOPS). Any MOPS{Pn}n�0 is character-
ized by a three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n = 0,1,2, . . . ,

with initial conditionsP−1(x) = 0 andP0(x) = 1, where{βn}n�0 and {γn}n�0 are se-
quences of complex numbers such thatγn �= 0 for all n = 1,2, . . . . This fact is known as
Favard’s theorem (see, e.g., [5, p. 21]) or spectral theorem for orthogonal polynomia

Every MOPS(Pn)n is a simple set of polynomials, hence it has an associated dual
in P ′. A very important fact asserts that ifu is the regular moment linear functional inP
corresponding to(Pn)n, and(an)n is the associated dual basis, then the functionals in
dual basis are explicitly given by (cf. [15])

an = Pn

〈u,P 2
n 〉u, n = 0,1,2, . . . . (7)

This fact will of major importance in the proof of Theorem 1.1.
Finally, we would like to point out some remarks concerning the so-called distribut

approach to the theory of orthogonal polynomials. In fact, orthogonal polynomials c
studied from many different points of view, according to the motivations of the au
dealing with the subject. However, from an algebraic point of view, it is very useful to
sider the moment linear functional with respect to which a given sequence of polyno
is orthogonal as an element of the topological dual spaceP ′ of the spaceP , with the above
topologies. Notice that, according to (5) every linear functional defined inP is continu-
ous. (This property never holds in an infinite dimensional normed space, since in
space one can always ensure the existence of a linear functional which is not contin
a well-known fact which can be proved by using Zorn’s lemma—henceP is not normable
in fact, it is not metrizable.) Therefore we have the possibility of giving a meaning t
convergence of any sequence of functionals inP∗, in the sense of the weak topology inP ′.
In particular, a Fourier-type expansion as in (6) of any given linear functional as a
combination (finite or not) of the elements of any dual basis corresponding to any s
set inC[x] is always possible. This fact enables us to deal directly in the dual spaceP ′—by
choosing some appropriate dual basis when the corresponding simple sets are sequ
orthogonal polynomials or not—instead of work in the spaceP of the polynomials. Thus
the use of continued fractions and recurrence relations—which are the main classic
when working with algebraic properties of orthogonal sequences inP—is replaced by the
use of dual basis inP ′ of appropriate chosen simple sets inP . The application of thes
ideas produces a natural way for the study of the algebraic properties of sequence
thogonal polynomials. Further, in the so-called positive definite case, often it also le
the necessary understanding of the problem in consideration in order to get the a
properties (in particular, the orthogonality measure) of the polynomials.
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3. Proof of Theorem 1.1

Denote by{an}n�0 and {bn}n�0 the dual basis inP ′ corresponding to{Pn}n�0 and
{Qn}n�0, respectively. Then, according to (7), the relations

an = Pn

〈u,P 2
n 〉u, bn = Qn

〈v,Q2
n〉

v, n = 0,1,2, . . . , (8)

hold. In view of the structure relation, we can define a simple set of polynomials{Rn}n�0
by

Rn(x) :=
N∑

i=0

ri,nPn−i (x) =
M∑
i=0

si,nQn−i (x), n = 0,1,2, . . . , (9)

with the conventionr0,n = s0,n = 1 for all n = 0,1,2, . . . (we always assumePk = Qk ≡ 0
if k < 0). Let {cn}n�0 be the dual basis corresponding to{Rn}n�0. Expandingan in terms
of {cn}n�0, by (6) we can write

an =
∑
i�0

λn,ici , n = 0,1,2, . . . , (10)

where, using (9),

λn,i = 〈an,Ri〉 =
N∑

j=0

rj,i〈an,Pi−j 〉 =
{

ri−n,i , if n � i � n + N,

0, otherwise.

Therefore (10) reduces to

an =
n+N∑
i=n

ri−n,ici , n = 0,1,2, . . . . (11)

Similarly, if we start by expandingbn in the basis{cn}n�0, we find

bn =
n+M∑
i=n

si−n,ici , n = 0,1,2, . . . . (12)

We now consider the equations (11) forn = 0,1, . . . ,M − 1 and also (12) forn =
0,1, . . . ,N − 1, to get the following system:

A




c0

...

cM−1

cM

...

cM+N−1




=




a0

...

aM−1

b0

...

bN−1




, (13)

whereA := [αij ]N+M
i,j=1 and theαij ’s are defined by (3). Since, by hypothesis, detA �= 0,

solving (13) forci we get

ci = 
i,0a0 + · · · + 
i,M−1aM−1 + 
i,Mb0 + · · · + 
i,M+N−1bN−1 (14)
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for every i = 0,1, . . . ,N + M − 1, where (for everyi andj ) the complex numbers
i,j

depend only on the coefficientsrk,ν (k = 0, . . . ,N;ν = 0, . . . ,N + M − 1) andsk,ν (k =
0, . . . ,M; ν = 0, . . . ,M + N − 1). Now consider the system with two equations, one
which is (11) forn = M and the other one is (12) forn = N , then multiply the first of
these equations bysM,M+N and the second one byrN,M+N , and then subtract the resultin
equations (this will eliminatecN+M ) to get

sM,M+NaM − rN,M+NbN = 
1cK + · · · + 
M+N−KcN+M−1, (15)

where K := min{N,M} and the numbers
1, . . . , 
M+N−K are explicitly determined
only in terms ofrν,M+ν (ν = 0, . . . ,N ) andsν,N+ν (ν = 0, . . . ,M). Finally, substituting
cK, . . . , cN+M−1 given by (14) in the right-hand side of (15) and taking into account
after some straightforward computations we get (4),φ andψ being defined by

φ(x) := sM,M+N

〈u,P 2
M 〉 xM + πM−1(x), ψ(x) := rN,M+N

〈v,Q2
N 〉 xN + �N−1(x),

with πM−1 ∈ PM−1 and�N−1 ∈ PN−1. This concludes the proof.�
Remark 3.1. From an algebraic viewpoint (i.e., using duality arguments) the method o
proof of the previous theorem can be applied to get the relation between linear func
associated with sequences of orthogonal polynomials such that their derivatives a
early related. This is connected with some problems solved by S. Bonan, D. Lubinsk
P. Nevai [3,4], among others. We point out that when derivatives of some of the inv
families of orthogonal polynomials appear in the structure relation, the framework o
class of (inverse) problems is the theory of semiclassical orthogonal polynomials (se
[8,12,13,15]).

4. Some remarks on the converse of Theorem 1.1

The natural question at this point is to know when the converse of Theorem 1.1
i.e., if a relation such as (4) between two regular moment linear functionals imp
structure relation of the type (1) between the corresponding MOPS’s. In order to a
this question, letu andv be two regular moment linear functionals,(Pn)n and(Qn)n their
associated MOPS’s, respectively, and let us assume that there exist polynomialsφ andψ ,
with degφ = M and degψ = N , such that (4) holds. Then, by computing the Fou
coefficients ofφQn with respect to(Pn)n, one gets

φQn =
n+M∑

ν=n−N

rn,νPν (n = 0,1,2, . . .),

wherern,ν = 〈u, φQnPν〉/〈u,P 2
ν 〉 for all n = 0,1,2, . . . andν = n − N, . . . , n + M . Sim-

ilarly, we also have

ψPn =
n+N∑

ν=n−M

sn,νQν (n = 0,1,2, . . .),

wheresn,ν = 〈v,ψPnQν〉/〈v,Q2
ν〉 for all n = 0,1,2, . . . andν = n − M, . . . , n + N .
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Now, by using successively the three-term recurrence relation for the sequence(Qn)n,
we can expandφQn as a finite linear combination (with at most 2M +1 terms, independen
of n) to get a relation of the form

n+M∑
ν=n−M

r̃n,νQν =
n+M∑

ν=n−N

rn,νPν (n = 0,1,2, . . .), (16)

where the coefficients̃rn,ν only depend on the polynomialφ and the coefficients of th
three-term recurrence relation for the sequence(Qn)n. In the same way, expandingψPn

using the three-term recurrence relation for(Pn)n, we find

n+N∑
ν=n−N

s̃n,νPν =
n+N∑

ν=n−M

sn,νQν (n = 0,1,2, . . .), (17)

where the numbers̃sn,ν only depend on the polynomialψ and the coefficients of the thre
term recurrence relation for the sequence(Pn)n.

Notice that both (16) and (17) show that the sequences(Pn)n and (Qn)n are linearly
related in the required sense. However, comparing with (1) in Theorem 1.1 we conj
that (up to some natural conditions) relations with a smaller number of summands i
sides of (16) and (17) can be obtained, namelyN + 1 terms in the sums involving thePν ’s,
andM + 1 terms in the sums involving theQν ’s. In fact this holds, for instance, whe
N = M = 1, as follows from Theorem 2.4 in [1] (cf. also Theorem 6.1 below), and w
N = 1 andM = 2, as follows from the next proposition (and so, of course, also w
N = 2 andM = 1).

5. The case M = 2, N = 1

Theorem 5.1. Let u and v be two regular functionals in P ′, and let (Pn)n and (Qn)n be the
corresponding MOPS’s, respectively. Then the following two conditions are equivalent:

(i) There exist complex numbers a, b, c, λ such that

(x − a)(x − b)u = λ(x − c)v, (18)

with 〈v,P2〉 �= 0 and 〈u,P 2
n 〉 �= λ〈v,PnQn−1〉 for all n = 2,3, . . . .

(ii) There exist complex numbers rn, sn, and tn, with r3t3 �= 0 and tn �= rn(sn−1 − rn−1) for
all n = 2,3, . . . , such that

Pn(x) + rnPn−1(x) = Qn(x) + snQn−1(x) + tnQn−2(x) (19)

for all n = 1,2, . . . .

Proof. (ii) ⇒ (i) follows from Theorem 1.1. In fact, if (ii) holds then the hypotheses
Theorem 1.1 are fulfilled since in this case (N = 1, M = 2) we have

A := [αij ]3i,j=1 =

1 r1 0

0 1 r2


 ,
1 s1 t2
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hence detA = t2 − r2(s1 − r1) �= 0 and so (18) holds for somea, b, c, λ ∈ C, with λ �= 0.
Further, multiplying both sides of (19) by(x − a)(x − b)Pn−3 and then applyingu and
taking into account (18), we find

rn
〈
u,P 2

n−1

〉 = tnλ
〈
v,Q2

n−2

〉
, n = 3,4, . . . . (20)

This, together with the hypothesistn �= rn(sn−1 − rn−1) for all n = 2,3, . . . , implies
rntn �= 0 for n = 3,4, . . . . Now, multiplying both sides of (19) byQn−1 and then apply
ing v, we get

〈v,PnQn−1〉 = (sn − rn)
〈
v,Q2

n−1

〉
, n = 1,2, . . . . (21)

In the same way, multiplying both sides of (19) byQn−2 and applyingv, and then taking
into account (21), we deduce

〈v,PnQn−2〉 = [
tn − rn(sn−1 − rn−1)

]〈
v,Q2

n−2

〉
, n = 2,3, . . . . (22)

For n = 2 this gives〈v,P2〉 = [t2 − r2(s1 − r1)]〈v,1〉 �= 0. Now, changingn into n + 1 in
(22) and then substituting in the right-hand side of the resulting equation the expre
for rn+1 andsn − rn given by (20) and (21), respectively, we find

〈v,Pn+1Qn−1〉 = tn+1
[〈

u,P 2
n

〉 − λ〈v,PnQn−1〉
] 〈v,Q2

n−1〉
〈u,P 2

n 〉 (23)

for all n = 2,3, . . . . Finally, from (20) and (23) we deduce

λ〈v,Pn+1Qn−1〉 = rn+1
[〈

u,P 2
n

〉 − λ〈v,PnQn−1〉
]
, n = 2,3, . . . . (24)

Therefore, comparing (22) and (24), and taking into account thatrn+1 �= 0 and tn �=
rn(sn−1 − rn−1) for all n = 2,3, . . . , we see that〈u,P 2

n 〉 �= λ〈v,PnQn−1〉 for all n =
2,3, . . . . Thus (ii)⇒ (i).

In order to prove that (i)⇒ (ii), denote by{βn, γn+1}n�0 and{β̃n, γ̃n+1}n�0 the sets of
parameters which appear in the three-term recurrence relations for the MOPS’s(Pn)n and
(Qn)n, respectively. Then, according to the considerations we have made just befo
statement of this theorem, the functional equation (18), withφ(x) := (x − a)(x − b) and
ψ(x) := λ(x − c), implies two relations corresponding to (16) and (17), namely

Pn+2 + rn,n+1Pn+1 + rn,nPn + rn,n−1Pn−1

= Qn+2 + r̃n,n+1Qn+1 + r̃n,nQn + r̃n,n−1Qn−1 + r̃n,n−2Qn−2, (25)

and

Pn+1 + (βn − c)Pn + γnPn−1

= Qn+1 + sn,n

λ
Qn + sn,n−1

λ
Qn−1 + sn,n−2

λ
Qn−2, (26)

wherern,ν = 〈u, φQnPν〉/〈u,P 2
ν 〉 (ν = n − 1, n,n + 1), sn,ν = 〈v,ψPnQν〉/〈v,Q2

ν〉 (ν =
n − 2, n − 1, n,n + 1), and

r̃n,n+1 = β̃n+1 + β̃n − a − b, r̃n,n = γ̃n+1 + γ̃n + φ(β̃n),

r̃n,n−1 = γ̃n(β̃n + β̃n−1 − a − b), r̃n,n−2 = γ̃nγ̃n−1
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ribu-

), after
for all n = 2,3, . . . . Notice that, according to (18) and the operational rules of the dist
tional calculus, for alln = 2,3, . . . one has

sn,n−2 = 〈v,ψPnQn−2〉
〈v,Q2

n−2〉
= 〈u, φQn−2Pn〉

〈v,Q2
n−2〉

= 〈u,P 2
n 〉

〈v,Q2
n−2〉

�= 0

(the last equality holds since degφ = 2), hence from (26) we can writeQn−2 as a linear
combination ofPn+1, Pn, Pn−1, Qn+1, Qn andQn−1. Further, by changingn into n+1 in
(26), we find an expression forQn+2 as a linear combination ofPn+2, Pn+1, Pn, Qn+1, Qn

andQn−1. Now, substituting these two expressions forQn−2 andQn+2 in the right-hand
side of (25), after some straightforward computations, we find

anPn+1 + bnPn + cnPn−1 = dnQn+1 + enQn + fnQn−1 (27)

for all n = 2,3,4, . . . , where

an := rn,n+1 − βn+1 + c − λr̃n,n−2/sn,n−2,

bn := rn,n − γn+1 − λ(βn − c)r̃n,n−2/sn,n−2,

cn := rn,n−1 − λγnr̃n,n−2/sn,n−2,

and

dn := r̃n,n+1 − sn+1,n+1/λ − λr̃n,n−2/sn,n−2,

en := r̃n,n − sn+1,n/λ − sn,nr̃n,n−2/sn,n−2,

fn := r̃n,n−1 − sn+1,n−1/λ − sn,n−1r̃n,n−2/sn,n−2.

SincePn+1 andQn+1 are monic polynomials, (27) impliesan = dn for everyn = 2,3, . . . .
Further,〈u,P 2

n−1〉rn,n−1 = 〈u, φQnPn−1〉 = 〈v,ψPn−1Qn〉 = λ〈v,Q2
n〉, so that

cn = λ
〈v,Q2

n〉
〈u,P 2

n−1〉
− λγn

γ̃nγ̃n−1

〈u,P 2
n 〉

〈
v,Q2

n−2

〉 = 0, n = 2,3, . . . ,

the zero equality being justified since the relationsγn = 〈u,P 2
n 〉/〈u,P 2

n−1〉 and γ̃n =
〈v,Q2

n〉/〈v,Q2
n−1〉 hold for all n = 1,2, . . . . Notice that (27) also holds forn = 0 and

n = 1, as follows trivially from (26), with

a0 = a1 = d0 = d1 = 1, b0 = β0 − c, c0 = c1 = 0, e0 = β̃0 − c,

b1 = β1 − c, e1 = s1,1/λ, f1 = s1,0/λ − γ1 (28)

(remark that this choice is not unique). Therefore, one see that (27) reduces to (19
changingn into n − 1, provided we can show thatan �= 0 for all n = 2,3, . . . , being

rn = bn−1

an−1
, sn = en−1

an−1
, tn = fn−1

an−1
, n = 1,2,3, . . . . (29)

In order to prove that, in fact,an �= 0 for all n = 2,3, . . . , notice first that

bn = λ〈v,QnPn+1〉 − 〈u,P 2
n+1〉

2
, n = 2,3, . . . . (30)
〈u,Pn 〉
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This follows from the definition ofbn and taking into account that

〈u, φQnPn〉 = 〈v,ψQnPn〉 = λ
(〈

v, (x − βn)PnQn + (βn − c)PnQn

〉)
= λ〈v,QnPn+1〉 + λ(βn − c)

〈
v,Q2

n

〉
.

Next, applyv to both sides of (27) to find

an〈v,Pn+1〉 = −bn〈v,Pn〉, n = 2,3, . . . . (31)

Since bn �= 0 for all n = 2,3, . . . and 〈v,P2〉 �= 0, as follows from (30) and the hy
pothesis, we deduce recursively from (31) that〈v,Pn〉 �= 0 for all n = 2,3, . . . , and so,
again by (31), we may conclude thatan �= 0 for all n = 2,3, . . . . So, (19) holds with
rn, sn and tn defined by (29), and it remains to prove that the conditionsr3t3 �= 0 and
tn �= rn(sn−1 − rn−1) hold for all n = 2,3, . . . . In fact, since (19) holds, as well as (18
as in the proof of (ii)⇒ (i) one immediately see that relations (20)–(24) hold. Theref
sincern = bn−1/an−1 �= 0 for all n = 3,4, . . . we conclude from (20) that alsotn �= 0 for
all n = 3,4, . . . , hence by the hypothesis we see that the right-hand side of (24) do
vanish, so that〈v,Pn+1Qn−1〉 �= 0 for all n = 2,3, . . . , and since by hypothesis we al
have〈v,P2〉 �= 0, then〈v,PnQn−2〉 �= 0 for all n = 2,3, . . . . Thus, it follows from (22) tha
tn �= rn(sn−1 − rn−1) hold for alln = 2,3, . . . . �
Remark 5.1. As a consequence of the proof, if (ii) holds in Theorem 5.1 thenrntn �= 0 for
all n = 3,4, . . . .

Remark 5.2. If (i) holds in Theorem 5.1 then the coefficientsrn, sn and tn in (ii) can
be computed successively from (24), (21) and (20), for alln = 3,4, . . . . Further, setting
Pn(x) = xn + pn,1x

n−1 + pn,2x
n−2 + · · · andQn(x) = xn + qn,1x

n−1 + qn,2x
n−2 + · · ·,

then it is easy to see that

〈v,PnQn−1〉 = (pn,1 − qn,1)
〈
v,Q2

n−1

〉
,

〈v,PnQn−2〉 = −[
qn,2 − pn,2 + qn−1,1(pn,1 − qn,1)

]〈
v,Q2

n−2

〉
(32)

for all n = 2,3, . . . . (In fact, this is true for any MOPS’s(Pn)n and(Qn)n.) As a conse-
quence, the parametersrn, sn andtn in the structure relation (19) can be computed only
terms of the coefficients ofxn−1 andxn−2 in the polynomialsPn andQn and the quantitie
〈u,P 2

n 〉 and〈v,Q2
n〉 (in the positive-case, these are the squares of the norms ofPn andQn,

respectively). In fact,

rn = pn,2 − qn,2 − (pn,1 − qn,1)qn−1,1

qn−1,1 − pn−1,1 + 〈u,P 2
n−1〉/(λ〈v,Q2

n−2〉)
,

sn = rn + pn,1 − qn,1, tn = rn
〈
u,P 2

n−1

〉
/
(
λ
〈
v,Q2

n−2

〉)
(33)

for all n = 3,4, . . . .

Example 5.1. Let P (α,β)
n , with α > −1 andβ > −1, be the Jacobi polynomial of degreen

with the usual normalizationP (α,β)
n (1) = (1+α)n/n!, (ν)n being the Pochhammer symbo

Then

P (α,β)
n (x) = k(α,β)

n P̂ (α,β)
n (x), k(α,β)

n := (1+ α + β)2n

n
,

2 n!(1+ α + β)n
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ct to

lled.

ith
whereP̂
(α,β)
n denotes the monic Jacobi polynomial of degreen, so that

P̂ (α,β)
n (x) = xn + p

(α,β)

n,1 xn−1 + p
(α,β)

n,2 xn−2 + · · · ,

p
(α,β)

n,1 := (α − β)n

α + β + 2n
, p

(α,β)

n,2 := −n(n − 1)[2n + α + β − (α − β)2]
2(α + β + 2n)(α + β + 2n − 1)

(34)

for all possiblen (see [5,18], e.g.). The Jacobi polynomials are orthogonal with respe
the functional (beta distribution)uα,β :P → C defined by

〈
uα,β, f

〉 := c(α,β)

1∫
−1

(1− x)α(1+ x)βf (x)dx, f ∈P,

wherec(α,β) is a constant, chosen such that〈uα,β,1〉 = 1. Further,

〈
uα,β,

[
P̂ (α,β)

n

]2〉 = 22nn!(1+ α)n(1+ β)n(1+ α + β)n

(1+ α + β)2n(2+ α + β)2n

, n = 0,1,2, . . . . (35)

Fix α > 1 andβ > 0. Then it is easy to check that

(x − 1)2uα−2,β = λ(x + 1)uα,β−1 in P ′,
whereλ := 2α(α−1)

β(α+β)
, so that (18) holds witha = b = −c = 1 and, of course, takingPn ≡

P̂
(α−2,β)
n andQn ≡ P̂

(α,β−1)
n . Now, using (32), (35) and (34), we find

〈v,PnQn−1〉 = (
p

(α−2,β)

n,1 − p
(α,β−1)

n,1

)〈
uα,β−1,

[
P̂

(α,β−1)

n−1

]2〉
= −22n−1n!(α + 2β − 2+ 3n)(1+ α)n−1(β)n−1(α + β)n−1

(α + β)2n−1(1+ α + β)2n−1

for all n = 1,2, . . . , hence

〈
u,P 2

n

〉 − λ〈v,PnQn−1〉 = 22nn!(α − 1)n+1(1+ β)n−2(α + β + 1)n−2

(α + n − 1)(α + β)2n−2(α + β + 1)2n−2

holds for alln = 2,3, . . . , and we see that the hypotheses in (i), Theorem 5.1, are fulfi
Henceforth, since

〈u,P 2
n 〉

λ〈v,Q2
n−1〉

= 2n(n + β − 1)(n + β)

(n + α − 1)(2n + α + β − 2)(2n + α + β − 1)

holds for alln = 1,2, . . . , and using (34) and (35), from (33) we get

rn = 2n(n + α − 2)

(2n + α + β − 3)(2n + α + β − 2)
,

sn = − 4n(n + β − 1)

(2n + α + β − 1)(2n + α + β − 3)
,

tn = 4n(n − 1)(n + β − 2)(n + β − 1)

(2n + α + β − 4)(2n + α + β − 3)2(2n + α + β − 2)

for all n = 3,4, . . . . This gives us the following linear relation for Jacobi polynomials (w
α > 1 andβ > 0)
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P (α−2,β)
n + n + α − 2

n + α + β − 2
P

(α−2,β)

n−1

= n + α + β − 1

2n + α + β − 1
P (α,β−1)

n − 2(n + β − 1)(2n + α + β − 2)

(2n + α + β − 3)(2n + α + β − 1)
P

(α,β−1)

n−1

+ (n + β − 2)(n + β − 1)

(n + α + β − 2)(2n + α + β − 3)
P

(α,β−1)

n−2

for all n = 1,2,3, . . . . (Actually, we have proved this relation only forn � 3, but when
n = 1 andn = 2 it can be checked directly.)

6. The case M = N = 1

This case was completely solved in [1,2]. Following the proof of Theorem 5.1, we
state the next proposition, which is a slightly modification of Theorem 2.4 in [1] (see
[16]).

Theorem 6.1. Let u and v be two regular functionals in P ′, and let (Pn)n and (Qn)n be the
corresponding MOPS’s, respectively. Then the following two conditions are equivalent:

(i) There exist complex numbers a, b,λ such that

(x − a)u = λ(x − b)v (36)

and 〈u,P 2
n 〉 �= λ〈v,Q2

n〉 for all n = 1,2, . . . .
(ii) There exist complex numbers rn and sn, with rnsn �= 0 and rn �= sn for all n = 1,2, . . . ,

such that

Pn(x) + rnPn−1(x) = Qn(x) + snQn−1(x) (37)

for all n = 1,2, . . . .

Remark 6.1. In order to have the conditionrnsn �= 0 for all n � 2 in (ii), it suffices to prove
thatr2s2 �= 0 (see [1]).

Remark 6.2. Under the conditions of Theorem 6.1 we can show that the formal Stie
seriesSu(z) := −∑

ν�0 uνz
−ν−1 andSv(z) := −∑

ν�0 vνz
−ν−1 associated tou and v,

respectively, satisfy

−λ(z − b)Sv(z) + (z − a)Su(z) = λ − 1 (38)

(with the normalization condition〈u,1〉 = 〈v,1〉 = 1). This gives us a simple relation b
tween the moments of the functionalsu andv. Further, if one of the functionalsu or v is
semiclassical, so thatD(ϕu) = ψu for some polynomialsϕ andψ , then, being a rationa
modification ofu, v is also semiclassical. The class ofv can then be easily obtained (b
standard methods) from(38).



392 J. Petronilho / J. Math. Anal. Appl. 315 (2006) 379–393

g in-
al, the

e

ge Prof.
s treated
To conclude this presentation we will consider the analytical problem concernin
tegral representations of the regular functionals involved in Theorem 6.1. As usu
principal Cauchy value will be denoted by

P

+∞∫
−∞

V (x)

x − b
dx := lim

ε→0+

( b−ε∫
−∞

+
+∞∫

b+ε

)
V (x)

x − b
dx,

assuming the limit exists.

Corollary 6.2. Under the conditions of Theorem 6.1, if u has the integral representation

〈u, f 〉 =
+∞∫

−∞
f (x)W(x)dx, f ∈P,

where W is a locally integrable function with rapid decay and continuous at the point
x = b, then v has the integral representation

〈v, f 〉 = −f (b)

λ

{
1− λ + (b − a)P

+∞∫
−∞

W(x)

x − b
dx

}

+ 1

λ
P

+∞∫
−∞

f (x)
x − a

x − b
W(x)dx, f ∈P, (39)

where we have assumed the normalization condition 〈u,1〉 = 〈v,1〉 = 1.

Proof. Setu0 := 〈u,1〉 andv0 := 〈v,1〉 (only in the conclusion of the proof we will assum
these quantities equal to one). Recall that, by definition, the division ofu by x − c is the
functional inP ′, denoted by(x − c)−1u, such that〈

(x − c)−1u, f
〉 := 〈

u,
(
f (x) − f (c)

)
/(x − c)

〉
, f ∈P .

Therefore the relation (36) between the functionalsu andv can be written as

v = v0δb + 1

λ
(x − b)−1(x − a)u,

where, as usual, for anyc ∈ C, the Dirac functional at the pointc, δc, is defined by
〈δc, f 〉 := f (c) for all f ∈ P . From the above relation it is easy to get

v = −u0 − λv0

λ
δb + 1

λ
u + b − a

λ
(x − b)−1u.

From this and after some straightforward computations (39) follows.�
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