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Abstract

Algebraic theories are called Morita equivalent provided that the corresponding varieties of alge-
bras are equivalent. Generalizing Dukarm’s result from one-sorted theories to many-sorted ones, we
prove that all theories Morita equivalent to an S-sorted theory 7 are obtained as idempotent modifi-
cations of 7. This is analogous to the classical result of Morita that all rings Morita equivalent to a
ring R are obtained as idempotent modifications of matrix rings of R.
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1. Introduction

The classical results of Kiiti Morita characterizing equivalence of categories of modules,
see [12], have been generalized to one-sorted algebraic theories in several articles. The aim
of the present paper is to generalize one of the basic characterizations to many-sorted
theories, and to illustrate the result on concrete examples.

Let us first recall the classical results concerning

R-Mod

the category of left R-modules for a given ring R. Two rings R and Q are called Morita
equivalent if the corresponding categories R-Mod and Q-Mod are equivalent. (For dis-
tinction we speak about categorical equivalence whenever the equivalences of categories
in the usual sense is discussed.) For Lawvere’s algebraic theories 7 [9], i.e., small cate-
gories having finite products, we have the analogous concept w.r.t. the categories Alg7 of
T -algebras (i.e., set functors preserving finite products): we call two theories Morita equiv-
alent if their categories of algebras are categorically equivalent. For categories of modules
K. Morita provided two types of characterizations:

Type 1: Rings R and Q are Morita equivalent iff there exist an R-Q-bimodule M and
an Q-R-bimodule M’ such that

MM =0 and M ®M=R.

This result was fully generalized by F. Borceux and E. Vitale [4] to Lawvere’s algebraic
theories as follows: given algebraic theories 7 and 7', by a 7-7'-bimodel M is meant a
model of 7 in the category of 7’-algebras. Two algebraic theories 7 and 7" are Morita
equivalent iff there exist a 7-7'-bimodel M and a 7’-7 -bimodel M’ such that

MM =T and M IM=T,
where = means natural isomorphism and ® is the tensor product corresponding to
Hom(M, —) and Hom(M’, —), respectively.
Type 2: Two constructions on a ring R are specified yielding a Morita equivalent ring.
Then it is proved that every Morita equivalent ring can be obtained from R by applying
successively the two constructions.

(a) Matrix ring R, This is the ring of all n x n matrices over R with the usual addition,
multiplication, and unit matrix. This ring R""! is always Morita equivalent to R.

(b) Idempotent modification uRu. Let u be an idempotent element of R, uu = u, and let
u Ru be the ring of all elements of the form uxu (i.e., all elements x € R with x = uxu).
The addition and multiplication of u Ru is that of R, and u is the multiplicative unit.
This ring u Ru is Morita equivalent to R whenever u is pseudoinvertible, i.e., eum = 1
for some elements e and m of R.

K. Morita proved that two rings R and Q are Morita equivalent iff Q is isomorphic to
the ring u Ry for some pseudoinvertible n x n matrix u over R.
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This result was generalized to one-sorted algebraic theories 7 (i.e., categories having
as objects natural numbers, and such that every object n is a product of n copies of 1) by
J.J. Dukarm [6] who again introduced two constructions yielding from a given one-sorted
theory a Morita equivalent theory:

(@) Matrix theory T, This is the full subcategory of 7 on all objects kn (k € N).
(b) Idempotent modification uT u. Given an idempotent morphismu : 1 — 1,i.e.,u-u =u,
we denote by

WK =uxux- - xuk—k

the corresponding idempotents of 7, and we call u pseudoinvertible if there is k > 1
such that

eu¥m =id
for some morphisms 1 %> k £ 1 of 7.

We denote, for every pseudoinvertible idempotent u, by u7u the theory of all those
morphisms f: p — g of 7 which fulfill f = u? fu”. The composition is as in 7, and the
identity morphisms are u”.

J.J. Dukarm proved, again, that whenever 7 and 7" are one-sorted algebraic theories,
then they are Morita equivalent iff 7" is categorically equivalent to the theory u7 "™ u for
some n and some pseudoinvertible idempotent u of 71,

Before turning to many-sorted algebraic theories, let us recall a classical result concern-
ing small categories 7 and 7" in general, first formulated by M. Bunge [5]: the functor
categories Set” and Set” " are categorically equivalent iff the two categories 7 and 7"’
have the same idempotent completion (see Remark 2.2 below). Consequently, algebraic
theories are Morita equivalent iff they have the same idempotent completion. However for
one-sorted algebraic theories Dukarm’s result is much “sharper” than this general observa-
tion. This was nicely demonstrated by R. McKenzie [11] and H.-E. Porst [13] who provided
a concrete description of algebras both of matrix theories and idempotent modifications of
theories.

The aim of the present paper is to generalize Dukarm’s characterization of Morita
equivalence to many-sorted theories. By an S-sorted algebraic theory we mean one of
the following equivalent concepts:

(a) a category with finite products and chosen objects Ag, s € S, such that every object is
a finite product Ay, x -+ x Ag, (s; €5),

or

(b) a category whose objects form the set S* of all finite words on S, and such that every
object s1 - - - s, is a product of sq, ..., sy.
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We introduce a concept of idempotent modification of a many-sorted algebraic theory
which generalizes the above matrix theory and idempotent modifications (in one step).
And we prove that for every S-sorted theory 7 all Morita equivalent theories are precisely
the idempotent modifications of 7.

The result is illustrated by examples of algebraic theories of sets, M -sets for monoids M,
and R-modules. For example, Set has the obvious list of all one-sorted algebraic theories:
just the matrix theories 7! of the category 7 dual to the one of finite sets. The list of all
many-sorted theories (i.e., all S-sorted idempotent modifications of 7°) is more colorful.
We present it at the end of the paper.

2. Morita equivalence of algebraic theories

Notation 2.1. For an algebraic theory T, i.e., a small category with finite products, we

denote by
AlgT

the category of algebras, i.e., the full subcategory of Set” formed by all functors preserving
finite products. For S-sorted algebraic theories 7 these categories are (up to categorical
equivalence) precisely the S-sorted varieties of algebras, see, e.g., [10].

Two algebraic theories 7 and 7" are called Morita equivalent provided that the cate-
gories AlgT and Alg 7’ are categorically equivalent.

Remark 2.2. (a) We call a category idempotent-complete provided that every idempotent
morphism in it splits (i.e., has the form u =i - e where e - i = id). Recall that every cat-
egory K has an idempotent completion L (called Cauchy completion in [3]), i.e., £ is an
idempotent-complete category containing /C as a full subcategory such that every object
of L is obtained as a splitting of an idempotent of /.

(b) Recall from [1] the concept of a sifted colimit. For the proof below all the reader has
to know about sifted colimits is the following:

(1) If a category D has finite coproducts then every diagram with domain D is sifted.

(ii) A strongly finitely presentable object is an object whose hom-functor preserves sifted
colimits. In categories Alg T of algebras, strongly finitely presentable objects are pre-
cisely the retracts of the “free algebras”

YB:T — Set forBeT,

where Y : 7°P — Alg T is the Yoneda embedding and B an arbitrary object of 7.

Definition 2.3. A collection of idempotent morphisms

Ug:By — By (s€08)

of an algebraic theory 7 is called pseudoinvertible provided that for every object T € 7
there exist morphisms

T By, x - xBg, &>T (s;---sp€8%)
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such that the square

Us) XX,
By x -+ x By, —————— B x---x By,

commutes.

Remark 2.4. Given an R-sorted theory 7, with chosen objects T, r € R, for a verification
of the pseudoinvertibility of a collection u = (u;)scs of idempotents it is sufficient to find
m and e above for all the chosen objects T = T;., » € R. In particular, in case of one-sorted
theories Definition 2.3 coincides with the pseudoinvertibility in the introduction.

Definition 2.5. By an S-sorted idempotent modification of an algebraic theory 7 is meant
the following S-sorted theory u7 u, where u = (uz)ses is a pseudoinvertible collection of
idempotents u : B; — By of 7. Objects of u7 u form the set S* (see the introduction). The
morphisms from s; - --s, to 1 - - -t are precisely those morphisms f: By x --- x B, —
By, x -+ x By, of T for which the following square

B, x -+ X By, ;>Bt1 X o+ X By

B l Tl ity @.1)

By, x -+ X By, —— B X --- X By,
f

commutes. The composition in u7 u is that of 7, and the identity morphism of s - - - s, is
Ug X -+ X Ug,.

Remark 2.6. (1) If 7 is a one-sorted theory, and S = {s} has just one element, i.e., a single
idempotent u :n — n is given, then u7 u of Definition 2.5 is the category u7 "l of the
introduction, with the difference that in Definition 2.5 we call the objects words s - - - s (of
length k) rather than the corresponding natural numbers kn.

(2) The matrix theory 711 of the introduction has the obvious S-sorted generalization:
given a collection D = {By; s € S} of objects of 7, we consider the full subcategory
T1P1 of T on all finite products of these objects. This is a special case of u7 u: choose
us =1idp_, for s € S. Pseudoinvertibility means here that all objects are retracts of products
By, x --- X By,.

Theorem 2.7. Let T be an algebraic theory. Then an S-sorted algebraic theory is Morita
equivalent to T iff it is categorically equivalent to an S-sorted idempotent modification
of T.
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Proof. (1) Sufficiency: let
Ug:By— By (s€0S)

be a pseudoinvertible collection of idempotents. We will find a category 7 ) Morita equiv-
alent to 7 which is categorically equivalent to u7 u—then u7 u is, obviously, also Morita
equivalent to 7. Denote by

Y: TP - AlgT

the Yoneda embedding. Since Alg T is complete, the idempotent Yu; has a splitting

Es
Yu, C YB, = Aq
s

in Alg T let ug be an equalizer of Yug and id, and &5 : Y By — Ay be the unique morphism
with

us€s =Yug and egug=id in Alg7T. 2.2)
Denote by
TW C (AlgT)°P (2.3)

the S-sorted algebraic theory which is the full subcategory of (Alg7)°P on all objects
which are, in (Alg 7)°P, finite products of the algebras A (s € S).

(1a) We prove that 7 and 7 are Morita equivalent. The closure C of 7 under
retracts in the (idempotent-complete) category (Alg7)°P is an idempotent completion
of 7™ Tt is sufficient to prove that

YB;eC

for every s € S: in fact, we then have YT € C for every T € 7 because T is a retract of
a finite product By, X --- x By, (use m and e = e - (u5; X --- X uy,) in Definition 2.3).
Therefore, Y°P[7] is contained in C. Moreover, since Ay is a retract of Y B, (use (2.2)
above), we conclude that C is an idempotent completion of Y°P[7] =7, thus, 7 and 7 (u)
are Morita equivalent.

For the proof of Y By € C apply Definition 2.3 to T = B, and consider the following
morphisms of Alg7T:

~_ Ye &5y o teyy,
e€=YB; =5 YB; +--+YB;, ——— A, + -+ Ay,

and

sy Fe sy,
—_ 5

= Ay 4+ Ay, YBy, +---+YB;, X% YB;.
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Since (2.2) implies i -e =Ym - Y (us, X -+ X uz,)-Ye=Y[e- (ug X --- X ug, ) -m]=id,
we see that Y By is a retract of Ay, X --- x Ay, in (Alg7T)°P, thus, it lies in C.

(1b) We prove next that 7 is categorically equivalent to u7 u—thus, by (1a), u7 u is
Morita equivalent to 7.

Define a functor

E:uTu—TW
on objects by

E(sy---8sp) = A X+ X Ay,
and on morphisms f :sy---s, — #---# (which, recall, are special morphisms f: By, X
-+ X Bg, = By X --- x By of T) by the commutativity of the following square in Alg 7

Ef

Ag +---+A Ay +---+ A,

Sn

&5y ooty My ey,

YBy +---+YBy, =Y(By, X -+ x BSH)TY(B“ XX By)=YBy +--+YB,
(2.4)

It is easy to verify that E is well defined, let us prove that it is an equivalence functor.
E is faithful because Y is faithful, and we have

Yf=Yus X Xug,) Yf-Y(uy x---xuy) see(2.1)
= (g, 4+ hs,) - (&5 - F&5,)

Yy A g) (8 ) see (2.2)

= (g +--+s,) - Ef - (&1 +---+ &) see (2.4).

E is full because Y is full: given h: Ay + -+ Ay — Agy + -+ Ay, in AlgT, we
have f: By X ---x By, = By X -+ x By in T with

Y =g+ + ) h-(ey +--- &) (2.5)
From (2.2) we conclude that
Y=Yy % xug) - f oGy X xug)],
hence f is a morphism of u7u (recall that Y is faithful). From (2.2), (2.4) and (2.5) we

conclude Ef = h.
Since E is surjective on objects, it is an equivalence functor.
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(2) Necessity: given an S-sorted algebraic theory 7’ with chosen objects Cs (s € S),
and given an equivalence functor

F:AlgT — AlgT,

we find a pseudoinvertible collection u = (us)ses of idempotents with 7' categorically
equivalent to u7 u. Denote the corresponding Yoneda embeddings by Y7 :7°P — AlgT
and Y7 : 7' %P — AlgT’. The T -algebras

A =FX7Cs) (se)

are strongly finitely presentable (since Y7/ C; are, see Remark 2.2(b)). Thus, each A is a
retract of some Y7 By for By € 7. Choose homomorphisms

Es
Y7 Bs Z > Ay withggug =id (in Alg 7).
s

Then the idempotent p &5 has the form Y7u; for a unique idempotent ug : By — B of 7°P.
And the codomain restriction of (F - Y77)°P: 7’ — (Alg T)°P yields an equivalence functor
between 7’ and 7, see (2.3) above. As in (1b), we deduce that u7 u is categorically
equivalent to 7 . It remains to show that u is pseudoinvertible.

For every object T € T we will prove that Y7 T is a retract of an object of (7 )P in
AlgT, i.e., that there exist homomorphisms e: Ag, +--- + A, > Y7T and m:Y7T —
Ag + -+ Ay, with e - m =id in Alg 7. This will prove the pseudoinvertibility: we have
unique morphisms m and e in 7 with

Mj'l +'”+ru5n
_

Yre=Y7T 25 A +---+ A, Y7(Bs, X -+ X By,)

and

&5yt tes,
_—

Yrm =Y (By X --- X By,) Ay +--+ Ay, 5 Y7 T.

The desired square in Definition 2.3 follows from the fact that Y7 is faithful:

Yrle(us, X Xk, ym]=id

YrT Y7 T

Agt -+ A, Agt -+ A,

id id
My oot iy Esp T tes,

YTBxH‘ - +YrB;, ———— As1+ et Ay, ——— YTBx1+ -« +Y7B;,
351+“'+5xn IL51+"'+HS;1
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To prove that Y7 T is a retract of an object of (7 ))°P observe that since the algebras
Y7:Cs (s € S) are dense in Alg T, it follows that A; (s € S) are dense in Alg7 . And so
is their closure (7 “))°P under finite coproducts. Therefore, Y77 is a canonical colimit
of the diagram D of all homomorphisms A — Y77 with A € (7 *))°P. The domain of
this diagram, i.e., the comma-category (7 “))°P/ Y7 T, has finite coproducts (being closed
under them in Alg T /Y7 T), thus, the diagram is sifted, see Remark 2.2(b). Since Y77 is
strongly finitely presentable, it follows that one of the colimit morphisms of D is a split
epimorphism. O

3. Examples

Example 3.1. Modules. For one-sorted theories K. Morita covered the whole spectrum:
there exist no other one-sorted theories of R-Mod than those canonically derived from
Morita equivalent rings.

More detailed:

(i) Each R" (n € N) has a natural structure of a left R-module. The full subcategory
Tr = {R”; ne N}

of (R-Mod)®P is a one-sorted algebraic theory of R-Mod.

(i) Consequently, for every ring Q Morita equivalent to R, we have an algebraic theory
Tg of R-Mod.

(iii) The above are, up to categorical equivalence, all one-sorted algebraic theories
of R-Mod. In fact, let 7 be a one-sorted algebraic theory with an equivalence functor

E:AlgT — R-Mod.

Then 7 is categorically equivalent to 7 for a ring Q Morita equivalent to R: in-
deed, following [7], Alg7T is equivalent to Q-Mod, with Q = 7 (1, 1). Moreover,
the composition of the Yoneda embedding Y :7°P — AlgT with the equivalence
AlgT — (Q-Mod sends an object n to 7 (n, 1) which, by additivity, is isomorphic
to 7 (1, 1)" = Q". This shows that 7 is equivalent to 7¢, with Q Morita equivalent
to R.

Remark 3.2. There are, of course, additional algebraic theories of R-Mod which are not
one-sorted. For example, in Ab = Z-Mod the theory 7" generated by Z and Z, = Z /27
is certainly Morita equivalent to 7z, but it is not categorically equivalent to 7o for any
Morita equivalent ring Q (e.g., 7' contains an object with a finite hom).

Example 3.3. All algebraic theories of Set. The one-sorted theories are well known to be
just the theories

T h=1,2,3,..),
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where 7 C Set® is the full subcategory on all natural numbers, and T is the matrix
theory, i.e., the full subcategory of 7 on 0, n, 2n, .... And these theories are, obviously,
pairwise categorically nonequivalent.

We now describe all many-sorted theories: they are precisely the matrix theories 7 1°1,
see 2.6(2), for finite sets

DCN

which are sum-irreducible, i.e., no number of D is a sum of more than one member of D.
Recall that

D]

is the dual of the full subcategory of Set on all finite sums of members of D. Then we
know that 71P1 is an algebraic theory of Set. We are going to prove that these are precisely
all of them:

(a) Every algebraic theory 7" is categorically equivalent to 7'°1 for some finite sum-
irreducible D C N. In fact, consider a pseudoinvertible collection ug: By — Bs (s € §) of
idempotents in 7 with 7" categorically equivalent to u7 u, where u; has precisely r; fixed
points. Without loss of generality we can assume u; # idy for every s, i.e., ry > 1. Let K
be the subsemigroup of the additive semigroup N generated by {r;}scs. (That is, K is the
set of all numbers of fixed points of the morphisms ug, X --- X uy, in Set°?.) Then u7 u is
categorically equivalent to K as a full subcategory of Set°P. Recall that every subsemigroup
K of the additive semigroup of natural numbers is finitely generated (see [14]). Therefore,
if D is a minimum set of generators of K, then D is finite, sum-irreducible and K is
categorically equivalent to 71P1.

(b) The theories 7'P! are pairwise nonequivalent categories. In fact, every ele-
ment n € D defines an object of 7'P! which is product-indecomposable and has n"
endomorphisms—this determines D categorically.

Example 3.4. M-sets. For monoids M the question of Morita equivalence (that is, given
a monoid M’ when are M-Set and M’-Set equivalent categories) was studied by B. Ba-
naschewski [2] and U. Knauer [8]. The main result is formally very similar to that of
K. Morita: let us say that an idempotent u € M is pseudoinvertible if there exist e,m € M
with eum = 1. It follows that the monoid

uMu = {uxu: x € M}

whose unit is # and multiplication is as in M is Morita equivalent to M. And these are all
monoids Morita equivalent to M, up to isomorphism.

Unlike Example 3.1, this does not describe all one-sorted theories of M-Set. In fact,
if M = {1} is the trivial one-element monoid, then M-Set = Set has infinitely many pair-
wise nonequivalent one-sorted theories, as we saw in Example 3.3, although there are no
nontrivial monoids Morita equivalent to {1}.
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Remark 3.5. We saw above that all algebraic theories of Set are finitely-sorted (i.e., have
finitely many objects whose finite products form all objects). This is not true for M-sets,
in general. In fact, whenever M is a commutative monoid with uncountably many idem-
potents, then the “standard” algebraic theory 7 (dual to the category of all free M-sets on
finitely many generators) has an idempotent completion 7’ which has uncountably many
pairwise nonisomorphic objects. In fact, every idempotent m of M yields an idempotent
endomorphism m - —: M — M in 7, and the splittings of these endomorphisms produce
pairwise nonisomorphic objects A,, of 7’: indeed, whenever A,, is isomorphic to A, then
for every element x of M we see that m - x = x iff n - x = x. By choosing x = n and
x =m we conclude m = n. Consequently, 7" is an algebraic theory of M -sets which is not
finitely-sorted.
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