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Jiří Adámek a,∗,1, Manuela Sobral b,2, Lurdes Sousa c,3

a Department of Theoretical Computer Science, Technical University of Braunschweig,
Postfach 3329, 38023 Braunschweig, Germany

b Departamento de Matematica da Universidade de Coimbra,
Apartado 3008, 3001-454 Coimbra, Portugal

c Departamento de Matematica da Escola Superior de Tecnologia de Viseu,
Campus Politecnico, 3504-510 Viseu, Portugal

Received 8 December 2004

Available online 17 February 2006

Communicated by Kent R. Fuller

Abstract

Algebraic theories are called Morita equivalent provided that the corresponding varieties of alge-
bras are equivalent. Generalizing Dukarm’s result from one-sorted theories to many-sorted ones, we
prove that all theories Morita equivalent to an S-sorted theory T are obtained as idempotent modifi-
cations of T . This is analogous to the classical result of Morita that all rings Morita equivalent to a
ring R are obtained as idempotent modifications of matrix rings of R.
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1. Introduction

The classical results of Kiiti Morita characterizing equivalence of categories of modules,
see [12], have been generalized to one-sorted algebraic theories in several articles. The aim
of the present paper is to generalize one of the basic characterizations to many-sorted
theories, and to illustrate the result on concrete examples.

Let us first recall the classical results concerning

R-Mod

the category of left R-modules for a given ring R. Two rings R and Q are called Morita
equivalent if the corresponding categories R-Mod and Q-Mod are equivalent. (For dis-
tinction we speak about categorical equivalence whenever the equivalences of categories
in the usual sense is discussed.) For Lawvere’s algebraic theories T [9], i.e., small cate-
gories having finite products, we have the analogous concept w.r.t. the categories AlgT of
T -algebras (i.e., set functors preserving finite products): we call two theories Morita equiv-
alent if their categories of algebras are categorically equivalent. For categories of modules
K. Morita provided two types of characterizations:

Type 1: Rings R and Q are Morita equivalent iff there exist an R-Q-bimodule M and
an Q-R-bimodule M ′ such that

M ⊗ M ′ ∼= Q and M ′ ⊗ M ∼= R.

This result was fully generalized by F. Borceux and E. Vitale [4] to Lawvere’s algebraic
theories as follows: given algebraic theories T and T ′, by a T -T ′-bimodel M is meant a
model of T in the category of T ′-algebras. Two algebraic theories T and T ′ are Morita
equivalent iff there exist a T -T ′-bimodel M and a T ′-T -bimodel M ′ such that

M ⊗ M ′ ∼= T ′ and M ′ ⊗ M ∼= T ,

where ∼= means natural isomorphism and ⊗ is the tensor product corresponding to
Hom(M,−) and Hom(M ′,−), respectively.

Type 2: Two constructions on a ring R are specified yielding a Morita equivalent ring.
Then it is proved that every Morita equivalent ring can be obtained from R by applying
successively the two constructions.

(a) Matrix ring R[n]. This is the ring of all n × n matrices over R with the usual addition,
multiplication, and unit matrix. This ring R[n] is always Morita equivalent to R.

(b) Idempotent modification uRu. Let u be an idempotent element of R, uu = u, and let
uRu be the ring of all elements of the form uxu (i.e., all elements x ∈ R with x = uxu).
The addition and multiplication of uRu is that of R, and u is the multiplicative unit.
This ring uRu is Morita equivalent to R whenever u is pseudoinvertible, i.e., eum = 1
for some elements e and m of R.

K. Morita proved that two rings R and Q are Morita equivalent iff Q is isomorphic to
the ring uR[n]u for some pseudoinvertible n × n matrix u over R.
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This result was generalized to one-sorted algebraic theories T (i.e., categories having
as objects natural numbers, and such that every object n is a product of n copies of 1) by
J.J. Dukarm [6] who again introduced two constructions yielding from a given one-sorted
theory a Morita equivalent theory:

(a) Matrix theory T [n]. This is the full subcategory of T on all objects kn (k ∈ N).
(b) Idempotent modification uT u. Given an idempotent morphism u : 1 → 1, i.e., u ·u = u,

we denote by

uk = u × u × · · · × u : k → k

the corresponding idempotents of T , and we call u pseudoinvertible if there is k � 1
such that

eukm = id

for some morphisms 1 m−→ k
e−→ 1 of T .

We denote, for every pseudoinvertible idempotent u, by uT u the theory of all those
morphisms f :p → q of T which fulfill f = uqf up . The composition is as in T , and the
identity morphisms are un.

J.J. Dukarm proved, again, that whenever T and T ′ are one-sorted algebraic theories,
then they are Morita equivalent iff T ′ is categorically equivalent to the theory uT [n]u for
some n and some pseudoinvertible idempotent u of T [n].

Before turning to many-sorted algebraic theories, let us recall a classical result concern-
ing small categories T and T ′ in general, first formulated by M. Bunge [5]: the functor
categories SetT and SetT

′
are categorically equivalent iff the two categories T and T ′

have the same idempotent completion (see Remark 2.2 below). Consequently, algebraic
theories are Morita equivalent iff they have the same idempotent completion. However for
one-sorted algebraic theories Dukarm’s result is much “sharper” than this general observa-
tion. This was nicely demonstrated by R. McKenzie [11] and H.-E. Porst [13] who provided
a concrete description of algebras both of matrix theories and idempotent modifications of
theories.

The aim of the present paper is to generalize Dukarm’s characterization of Morita
equivalence to many-sorted theories. By an S-sorted algebraic theory we mean one of
the following equivalent concepts:

(a) a category with finite products and chosen objects As , s ∈ S, such that every object is
a finite product As1 × · · · × Asn (si ∈ S),

or

(b) a category whose objects form the set S∗ of all finite words on S, and such that every
object s1 · · · sn is a product of s1, . . . , sn.
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We introduce a concept of idempotent modification of a many-sorted algebraic theory
which generalizes the above matrix theory and idempotent modifications (in one step).
And we prove that for every S-sorted theory T all Morita equivalent theories are precisely
the idempotent modifications of T .

The result is illustrated by examples of algebraic theories of sets, M-sets for monoids M ,
and R-modules. For example, Set has the obvious list of all one-sorted algebraic theories:
just the matrix theories T [n] of the category T dual to the one of finite sets. The list of all
many-sorted theories (i.e., all S-sorted idempotent modifications of T ) is more colorful.
We present it at the end of the paper.

2. Morita equivalence of algebraic theories

Notation 2.1. For an algebraic theory T , i.e., a small category with finite products, we
denote by

AlgT

the category of algebras, i.e., the full subcategory of SetT formed by all functors preserving
finite products. For S-sorted algebraic theories T these categories are (up to categorical
equivalence) precisely the S-sorted varieties of algebras, see, e.g., [10].

Two algebraic theories T and T ′ are called Morita equivalent provided that the cate-
gories AlgT and AlgT ′ are categorically equivalent.

Remark 2.2. (a) We call a category idempotent-complete provided that every idempotent
morphism in it splits (i.e., has the form u = i · e where e · i = id). Recall that every cat-
egory K has an idempotent completion L (called Cauchy completion in [3]), i.e., L is an
idempotent-complete category containing K as a full subcategory such that every object
of L is obtained as a splitting of an idempotent of K.

(b) Recall from [1] the concept of a sifted colimit. For the proof below all the reader has
to know about sifted colimits is the following:

(i) If a category D has finite coproducts then every diagram with domain D is sifted.
(ii) A strongly finitely presentable object is an object whose hom-functor preserves sifted

colimits. In categories AlgT of algebras, strongly finitely presentable objects are pre-
cisely the retracts of the “free algebras”

YB :T → Set for B ∈ T ,

where Y :T op → AlgT is the Yoneda embedding and B an arbitrary object of T .

Definition 2.3. A collection of idempotent morphisms

us :Bs → Bs (s ∈ S)

of an algebraic theory T is called pseudoinvertible provided that for every object T ∈ T
there exist morphisms

T
m−→ Bs × · · · × Bsn

e−→ T (s1 · · · sn ∈ S∗)
1
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such that the square

Bs1 × · · · × Bsn

us1 ×···×usn

Bs1 × · · · × Bsn

e

T

m

T

commutes.

Remark 2.4. Given an R-sorted theory T , with chosen objects Tr , r ∈ R, for a verification
of the pseudoinvertibility of a collection u = (us)s∈S of idempotents it is sufficient to find
m and e above for all the chosen objects T = Tr , r ∈ R. In particular, in case of one-sorted
theories Definition 2.3 coincides with the pseudoinvertibility in the introduction.

Definition 2.5. By an S-sorted idempotent modification of an algebraic theory T is meant
the following S-sorted theory uT u, where u = (us)s∈S is a pseudoinvertible collection of
idempotents us :Bs → Bs of T . Objects of uT u form the set S∗ (see the introduction). The
morphisms from s1 · · · sn to t1 · · · tk are precisely those morphisms f :Bs1 × · · · × Bsn →
Bt1 × · · · × Btk of T for which the following square

Bs1 × · · · × Bsn

f

us1×···×usn

Bt1 × · · · × Btk

Bs1 × · · · × Bsn
f

Bt1 × · · · × Btk

ut1×···×utk (2.1)

commutes. The composition in uT u is that of T , and the identity morphism of s1 · · · sn is
us1 × · · · × usn .

Remark 2.6. (1) If T is a one-sorted theory, and S = {s} has just one element, i.e., a single
idempotent u :n → n is given, then uT u of Definition 2.5 is the category uT [n]u of the
introduction, with the difference that in Definition 2.5 we call the objects words s · · · s (of
length k) rather than the corresponding natural numbers kn.

(2) The matrix theory T [n] of the introduction has the obvious S-sorted generalization:
given a collection D = {Bs; s ∈ S} of objects of T , we consider the full subcategory
T [D] of T on all finite products of these objects. This is a special case of uT u: choose
us = idBs , for s ∈ S. Pseudoinvertibility means here that all objects are retracts of products
Bs1 × · · · × Bsn .

Theorem 2.7. Let T be an algebraic theory. Then an S-sorted algebraic theory is Morita
equivalent to T iff it is categorically equivalent to an S-sorted idempotent modification
of T .



366 J. Adámek et al. / Journal of Algebra 297 (2006) 361–371
Proof. (1) Sufficiency: let

us :Bs → Bs (s ∈ S)

be a pseudoinvertible collection of idempotents. We will find a category T 〈u〉 Morita equiv-
alent to T which is categorically equivalent to uT u—then uT u is, obviously, also Morita
equivalent to T . Denote by

Y :T op → AlgT

the Yoneda embedding. Since AlgT is complete, the idempotent Yus has a splitting

Yus YBs

εs

As
μs

in AlgT : let μs be an equalizer of Yus and id, and εs :YBs → As be the unique morphism
with

μsεs = Yus and εsμs = id in AlgT . (2.2)

Denote by

T 〈u〉 ⊆ (AlgT )op (2.3)

the S-sorted algebraic theory which is the full subcategory of (AlgT )op on all objects
which are, in (AlgT )op, finite products of the algebras As (s ∈ S).

(1a) We prove that T and T 〈u〉 are Morita equivalent. The closure C of T 〈u〉 under
retracts in the (idempotent-complete) category (AlgT )op is an idempotent completion
of T 〈u〉. It is sufficient to prove that

YBs ∈ C

for every s ∈ S: in fact, we then have YT ∈ C for every T ∈ T because T is a retract of
a finite product Bs1 × · · · × Bsn (use m and ē = e · (us1 × · · · × usn) in Definition 2.3).
Therefore, Y op[T ] is contained in C. Moreover, since As is a retract of YBs (use (2.2)
above), we conclude that C is an idempotent completion of Y op[T ] ∼= T , thus, T and T 〈u〉
are Morita equivalent.

For the proof of YBs ∈ C apply Definition 2.3 to T = Bs and consider the following
morphisms of AlgT :

ẽ ≡ YBs
Ye−→ YBs1 + · · · + YBsn

εs1 +···+εsn−−−−−−−→ As1 + · · · + Asn

and

m̃ ≡ As + · · · + Asn

μs1+···+μsn−−−−−−−→ YBs + · · · + YBsn
Ym−−→ YBs.
1 1
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Since (2.2) implies m̃ · ẽ = Ym · Y(us1 × · · · × usn) · Ye = Y [e · (us1 × · · · × usn) · m] = id,
we see that YBs is a retract of As1 × · · · × Asn in (AlgT )op, thus, it lies in C.

(1b) We prove next that T 〈u〉 is categorically equivalent to uT u—thus, by (1a), uT u is
Morita equivalent to T .

Define a functor

E :uT u → T 〈u〉

on objects by

E(s1 · · · sn) = As1 × · · · × Asn

and on morphisms f : s1 · · · sn → t1 · · · tk (which, recall, are special morphisms f :Bs1 ×
· · · × Bsn → Bt1 × · · · × Btk of T ) by the commutativity of the following square in AlgT :

As1 + · · · + Asn At1 + · · · + Atk

Ef

μt1 +···+μtk

YBs1 + · · · + YBsn = Y(Bs1 × · · · × Bsn)

εs1 +···+εsn

Y (Bt1 × · · · × Btk ) = YBt1 + · · · + YBtk
Yf

(2.4)

It is easy to verify that E is well defined, let us prove that it is an equivalence functor.
E is faithful because Y is faithful, and we have

Yf = Y(us1 × · · · × usn) · Yf · Y(ut1 × · · · × utk ) see (2.1)

= (μs1 + · · · + μsn) · (εs1 + · · · + εsn)

· Yf · (μt1 + · · · + μtk ) · (εt1 + · · · + εtk ) see (2.2)

= (μs1 + · · · + μsn) · Ef · (εt1 + · · · + εtk ) see (2.4).

E is full because Y is full: given h :At1 + · · · + Atk → As1 + · · · + Asn in AlgT , we
have f :Bs1 × · · · × Bsn → Bt1 × · · · × Btk in T with

Yf = (μs1 + · · · + μsn) · h · (εt1 + · · · + εtk ). (2.5)

From (2.2) we conclude that

Yf = Y
[
(ut1 × · · · × utk ) · f · (us1 × · · · × usn)

]
,

hence f is a morphism of uT u (recall that Y is faithful). From (2.2), (2.4) and (2.5) we
conclude Ef = h.

Since E is surjective on objects, it is an equivalence functor.
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(2) Necessity: given an S-sorted algebraic theory T ′ with chosen objects Cs (s ∈ S),
and given an equivalence functor

F : AlgT ′ → AlgT ,

we find a pseudoinvertible collection u = (us)s∈S of idempotents with T ′ categorically
equivalent to uT u. Denote the corresponding Yoneda embeddings by YT :T op → AlgT
and YT ′ :T ′ op → AlgT ′. The T -algebras

As = F(YT ′Cs) (s ∈ S)

are strongly finitely presentable (since YT ′Cs are, see Remark 2.2(b)). Thus, each As is a
retract of some YT Bs for Bs ∈ T . Choose homomorphisms

YT Bs

εs

As
μs

with εsμs = id (in AlgT ).

Then the idempotent μsεs has the form YT us for a unique idempotent us :Bs → Bs of T op.
And the codomain restriction of (F ·YT ′)op :T ′ → (AlgT )op yields an equivalence functor
between T ′ and T 〈u〉, see (2.3) above. As in (1b), we deduce that uT u is categorically
equivalent to T 〈u〉. It remains to show that u is pseudoinvertible.

For every object T ∈ T we will prove that YT T is a retract of an object of (T 〈u〉)op in
AlgT , i.e., that there exist homomorphisms ē :As1 + · · · + Asn → YT T and m̄ :YT T →
As1 + · · · + Asn with ē · m̄ = id in AlgT . This will prove the pseudoinvertibility: we have
unique morphisms m and e in T with

YT e = YT T
m̄−→ As1 + · · · + Asn

μs1+···+μsn−−−−−−−→ YT (Bs1 × · · · × Bsn)

and

YT m = YT (Bs1 × · · · × Bsn)
εs1 +···+εsn−−−−−−−→ As1 + · · · + Asn

ē−→ YT T .

The desired square in Definition 2.3 follows from the fact that YT is faithful:

YT T

m̄

YT [e(us1×···×usn )m]=id
YT T

As1+ · · · + Asn

μs1 +···+μsn

id

As1+ · · · +Asn

ē

YT Bs1+ · · · +YT Bsn
εs1+···+εsn

As1+ · · · + Asn

id

μs1+···+μsn

YT Bs1+ · · · +YT Bsn

εs1 +···+εsn



J. Adámek et al. / Journal of Algebra 297 (2006) 361–371 369
To prove that YT T is a retract of an object of (T 〈u〉)op, observe that since the algebras
YT ′Cs (s ∈ S) are dense in AlgT ′, it follows that As (s ∈ S) are dense in AlgT . And so
is their closure (T 〈u〉)op under finite coproducts. Therefore, YT T is a canonical colimit
of the diagram D of all homomorphisms A → YT T with A ∈ (T 〈u〉)op. The domain of
this diagram, i.e., the comma-category (T 〈u〉)op/YT T , has finite coproducts (being closed
under them in AlgT /YT T ), thus, the diagram is sifted, see Remark 2.2(b). Since YT T is
strongly finitely presentable, it follows that one of the colimit morphisms of D is a split
epimorphism. �

3. Examples

Example 3.1. Modules. For one-sorted theories K. Morita covered the whole spectrum:
there exist no other one-sorted theories of R-Mod than those canonically derived from
Morita equivalent rings.

More detailed:

(i) Each Rn (n ∈ N) has a natural structure of a left R-module. The full subcategory

TR = {
Rn; n ∈ N

}

of (R-Mod)op is a one-sorted algebraic theory of R-Mod.
(ii) Consequently, for every ring Q Morita equivalent to R, we have an algebraic theory

TS of R-Mod.
(iii) The above are, up to categorical equivalence, all one-sorted algebraic theories

of R-Mod. In fact, let T be a one-sorted algebraic theory with an equivalence functor

E : AlgT → R-Mod.

Then T is categorically equivalent to TQ for a ring Q Morita equivalent to R: in-
deed, following [7], AlgT is equivalent to Q-Mod, with Q = T (1,1). Moreover,
the composition of the Yoneda embedding Y :T op → AlgT with the equivalence
AlgT → Q-Mod sends an object n to T (n,1) which, by additivity, is isomorphic
to T (1,1)n = Qn. This shows that T is equivalent to TQ, with Q Morita equivalent
to R.

Remark 3.2. There are, of course, additional algebraic theories of R-Mod which are not
one-sorted. For example, in Ab = Z-Mod the theory T ′ generated by Z and Z2 = Z/2Z

is certainly Morita equivalent to TZ, but it is not categorically equivalent to TQ for any
Morita equivalent ring Q (e.g., T ′ contains an object with a finite hom).

Example 3.3. All algebraic theories of Set. The one-sorted theories are well known to be
just the theories

T [n] (n = 1,2,3, . . .),
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where T ⊆ Setop is the full subcategory on all natural numbers, and T [n] is the matrix
theory, i.e., the full subcategory of T on 0, n, 2n, . . . . And these theories are, obviously,
pairwise categorically nonequivalent.

We now describe all many-sorted theories: they are precisely the matrix theories T [D],
see 2.6(2), for finite sets

D ⊆ N

which are sum-irreducible, i.e., no number of D is a sum of more than one member of D.
Recall that

T [D]

is the dual of the full subcategory of Set on all finite sums of members of D. Then we
know that T [D] is an algebraic theory of Set. We are going to prove that these are precisely
all of them:

(a) Every algebraic theory T ′ is categorically equivalent to T [D] for some finite sum-
irreducible D ⊆ N. In fact, consider a pseudoinvertible collection us :Bs → Bs (s ∈ S) of
idempotents in T with T ′ categorically equivalent to uT u, where us has precisely rs fixed
points. Without loss of generality we can assume us �= id∅ for every s, i.e., rs � 1. Let K

be the subsemigroup of the additive semigroup N generated by {rs}s∈S . (That is, K is the
set of all numbers of fixed points of the morphisms us1 × · · · × usn in Setop.) Then uT u is
categorically equivalent to K as a full subcategory of Setop. Recall that every subsemigroup
K of the additive semigroup of natural numbers is finitely generated (see [14]). Therefore,
if D is a minimum set of generators of K , then D is finite, sum-irreducible and K is
categorically equivalent to T [D].

(b) The theories T [D] are pairwise nonequivalent categories. In fact, every ele-
ment n ∈ D defines an object of T [D] which is product-indecomposable and has nn

endomorphisms—this determines D categorically.

Example 3.4. M-sets. For monoids M the question of Morita equivalence (that is, given
a monoid M ′ when are M-Set and M ′-Set equivalent categories) was studied by B. Ba-
naschewski [2] and U. Knauer [8]. The main result is formally very similar to that of
K. Morita: let us say that an idempotent u ∈ M is pseudoinvertible if there exist e,m ∈ M

with eum = 1. It follows that the monoid

uMu = {uxu: x ∈ M}

whose unit is u and multiplication is as in M is Morita equivalent to M . And these are all
monoids Morita equivalent to M , up to isomorphism.

Unlike Example 3.1, this does not describe all one-sorted theories of M-Set. In fact,
if M = {1} is the trivial one-element monoid, then M-Set = Set has infinitely many pair-
wise nonequivalent one-sorted theories, as we saw in Example 3.3, although there are no
nontrivial monoids Morita equivalent to {1}.
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Remark 3.5. We saw above that all algebraic theories of Set are finitely-sorted (i.e., have
finitely many objects whose finite products form all objects). This is not true for M-sets,
in general. In fact, whenever M is a commutative monoid with uncountably many idem-
potents, then the “standard” algebraic theory T (dual to the category of all free M-sets on
finitely many generators) has an idempotent completion T ′ which has uncountably many
pairwise nonisomorphic objects. In fact, every idempotent m of M yields an idempotent
endomorphism m · − : M → M in T , and the splittings of these endomorphisms produce
pairwise nonisomorphic objects Am of T ′: indeed, whenever Am is isomorphic to An, then
for every element x of M we see that m · x = x iff n · x = x. By choosing x = n and
x = m we conclude m = n. Consequently, T ′ is an algebraic theory of M-sets which is not
finitely-sorted.
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