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Abstract

This paper presents a new treatment of the localic Katětov–Tong interpolation theorem, based on
an analysis of special properties of normal frames, which shows that it does not hold in full generality.
Besides giving us the conditions under which the localic Katětov–Tong interpolation theorem holds,
this approach leads to a especially transparent and succinct proof of it. It is also shown that this
pointfree extension of Katětov–Tong theorem still covers the localic versions of Urysohn’s Lemma
and Tietze’s Extension Theorem.
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Urysohn’s Lemma shows that normal spaces are precisely the spaces that admit “plenty
of real-valued continuous functions” [3], that is, the spaces where all sets that could pos-
sibly be separated by continuous functions actually are. Indeed, it states that a space X

is normal if and only if for any closed subset F , contained in any open subset G, there
is a real-valued continuous function h on X such that χF � h � χG. The well-known
Katětov–Tong interpolation theorem ([10,13]; see also [11]) strengthens this characteri-
zation by replacing χF and χG by arbitrary upper and lower semicontinuous real-valued
functions f and g, respectively.

In Theorem 2.2 of [12], the authors extend this characterization to normal frames:
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A frame L is normal if and only if for every upper semicontinuous real function
f :Lu(R) → L and every lower semicontinuous real function g :Ll (R) → L with
f � g, there exists a continuous real function h :L(R) → L such that f � h � g.

However, a detailed analysis of their proof reveals that it does not work for all f and g;
in fact, the statement above is not valid in its full generality, as Example 4.2 in the sequel
shows.

The purpose of this paper is twofold: firstly, to correct that by establishing the conditions
under which the localic version of Katětov–Tong interpolation theorem holds; secondly, to
see as directly as possible how the normality of the frame provides the construction of the
continuous map h to be inserted between the given upper f and lower g.

Apart from giving us the right formulation for the localic Katětov–Tong theorem, we
believe that our approach leads to a specially transparent proof of it, avoiding the use of the
sublocale lattice in [12], where the mistake occurred. In particular, it gives us a new proof
of Theorem 2.1 of [12] (a weak form of the localic Katětov–Tong theorem).

Our investigation was, originally, motivated by the aim to study the basic properties of
the localic upper and lower semicontinuous functions that appeared naturally in our inves-
tigation, with Ferreira [5,6], on the construction of compatible frame quasi-uniformities.
The recognition that the notions of upper and lower semicontinuous functions in frames
provide a pointfree axiomatization of semicontinuity in spaces naturally raised the ques-
tion of pointfree interpolation theorems.

It is felt that the present approach should help to make the subject of interpolation
theorems somewhat more transparent. As Ball and Walters-Wayland wrote in [2] “what the
pointfree formulation adds to the classical theory is a remarkable combination of elegance
of statement, simplicity of proof, and increase of extent”.

1. Preliminaries

Pointfree topology is motivated by the goal of building topology on the intuition of
“places of non-trivial extent” rather than on points; so it regards the points of a space as
subsidiary to its open sets and accordingly deals with “lattices of open sets” abstractly
defined as follows:

A frame (also locale) is a complete lattice L satisfying the infinite distributive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}
for every x ∈ L and every S ⊆ L, and a frame homomorphism is a map h :L → M between
frames which preserves the respective operations

∧
(including the top element 1) and

∨
(including the bottom element 0). Frm is then the corresponding category of frames and
their homomorphisms.

The most familiar examples of frames are the finite distributive lattices, the complete
chains, the complete Boolean algebras and, for any topological space X, the lattice OX of
open subsets of X.

We recall the basic notions involving frames that will be of particular importance here.
As a general reference to frames, the reader can consult Johnstone [8] or Vickers [15].
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For x ∈ L we write x∗ for its pseudocomplement
∨{a ∈ L | a ∧ x = 0}. Notice that, in

any frame, x � x∗∗, x∗ = x∗∗∗ and the first De Morgan law(∨
i∈I

xi

)∗
=

∧
i∈I

x∗
i (1.1)

holds; moreover

x ∨ y = 1 �⇒ y∗ � x. (1.2)

A frame L is called normal if x ∨ y = 1 implies that there exist a, b ∈ L such that
x ∨a = 1 = y ∨b and a ∧b = 0. Clearly, this is equivalent to saying that x ∨y = 1 implies
the existence of a ∈ L such that x ∨ a = 1 = y ∨ a∗.

By the algebraic nature of frames, there is the notion of a congruence on a frame L, as
an equivalence relation θ on L which is a subframe of L × L in the obvious sense, and
the corresponding quotient frame L/θ is then defined just as quotients are always defined
for algebraic systems, making the map L → L/θ taking each x ∈ L to its θ -block a frame
homomorphism. The lattice of frame congruences on L under set inclusion is a frame,
denoted by CL. Here, we shall need the following properties:

(1) For any x ∈ L, ∇x := {(a, b) ∈ L × L | a ∨ x = b ∨ x} is the least congruence contain-
ing (0, x); �x := {(a, b) ∈ L × L | a ∧ x = b ∧ x} is the least congruence containing
(1, x). The ∇x are called closed and the �x open.

(2) For each closed congruence ∇x , L/∇x is isomorphic to the frame ↑x := {y ∈ L | y �
x} and the closed quotient L �↑x is given by y �→ x ∨ y.

(3) ∇L := {∇x | x ∈ L} is a subframe of CL. Further, let �L denote the subframe of
CL generated by {�x | x ∈ L}. The map x �→ ∇x is a frame isomorphism L → ∇L,
whereas the map x �→ �x is a dual poset embedding L → �L taking finitary meets to
finitary joins and arbitrary joins to arbitrary meets.

The fact that Frm is an algebraic category (in particular, one has free frames and quotient
frames) also permits a procedure familiar from traditional algebra, namely, the definition
of a frame by generators and relations: take the quotient of the free frame on the given set
of generators modulo the congruence generated by the pairs (u, v) for the given relations
u = v. So, it is natural and very useful to introduce the reals in the following pointfree way,
independent of any notion of real number (in the sequel we denote by Q the usual totally
ordered set of rational numbers):

The frame of reals [9,1] is the frame L(R) generated by all ordered pairs (α,β) where
α,β ∈ Q, subject to the relations

(R1) (α,β) ∧ (γ, δ) = (α ∨ γ,β ∧ δ),
(R2) (α,β) ∨ (γ, δ) = (α, δ) whenever α � γ < β � δ,
(R3) (α,β) = ∨{(γ, δ) | α < γ < δ < β},
(R4) 1 = ∨{(α,β) | α,β ∈ Q}.

Classically, this is just the interval topology of the real line, but under the point of view
of constructiveness, these two notions are not the same (cf. [1,7]; see also [14] for more
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elucidation on the relation between this notion of real number and Dedekind cuts on the
level of their propositional theories).

Continuous real functions play a central role in general topology, and the corresponding
localic continuous real functions, are no less important to pointfree topology (cf. [1,2,12]):
for any space X, there is a one–one onto map

Frm
(
L(R),OX

) → Top(X,R) (1.3)

given by the correspondence h̃ �→ h such that α < h(x) < β iff x ∈ h̃(α,β) whenever
α < β in Q; this led Banaschewski [1] to define a continuous real function on L as a frame
homomorphism h :L(R) → L.

The definition of L(R) implies immediately that, for any frame L, a map from the
set of all pairs (α,β), α,β ∈ Q, into L determines a (unique) continuous real function
h :L(R) → L if and only if it transforms the above relations (R1)–(R4) into identities in L.

Throughout the paper, we write R(L) for the set of all continuous real functions on L.
Further, we denote by L(R) the frame generated by all ordered pairs (α,β), subject to the
relations (R1), (R2) and (R3), and we write R(L) for the corresponding set of all frame
homomorphisms L(R) → L.

An obvious equivalent representation of the frame of reals is the following [12]: L(R)

(respectively, L(R)) is the frame generated by elements (−, α) and (α,−), α ∈ Q, subject
to the relations

(R′
1) β < α �⇒ (−, α) ∨ (β,−) = 1,

(R′
2) α � β �⇒ (−, α) ∧ (β,−) = 0,

(R′
3)

∨
β<α (−, β) = (−, α),

(R′
4)

∨
β>α (β,−) = (α,−),

(R′
5)

∨
α∈Q (−, α) = 1,

(R′
6)

∨
α∈Q (α,−) = 1

(respectively (R′
1), (R′

2), (R′
3) and (R′

4)).

2. Localic semicontinuous real functions

In a previous paper [5], motivated by our investigation of compatible frame quasi-
uniformities and by the work of Banaschewski [1] on localic continuous real functions,
the concept of localic semicontinuous real function appeared naturally. We point out that
equivalent concepts appear in [12], in terms of upper and lower continuous chains. Here
we present the basic facts about them.

Let Lu(R) be the frame generated by elements (−, α), α ∈ Q, subject to the relations

(U1) α � β �⇒ (−, α) � (−, β),
(U2)

∨
β<α (−, β) = (−, α),

(U3)
∨

(−, α) = 1,
α∈Q
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and, dually, let Ll(R) be the frame generated by elements (α,−), α ∈ Q, subject to the
relations

(L1) α � β �⇒ (α,−) � (β,−),
(L2)

∨
β>α(β,−) = (α,−),

(L3)
∨

α∈Q (α,−) = 1.

Classically, Lu(R) and Ll (R) are, respectively, the upper and lower topologies of the
real line, but not in the constructive view.

We will also need the frame Lu(R), defined by omitting the relation (U3) in the defin-
ition of Lu(R), and the frame Ll (R), defined dually, by omitting the relation (L3) in the
definition of Ll (R).

Recall that, for a space X, a real-valued map f :X → R is upper semi-continuous if
f :X → Ru is continuous, where Ru denotes the space of reals with the upper topology
{(−∞, a) | a ∈ R}. Correspondingly, we say that an upper semicontinuous real function
on a frame L is a frame homomorphism Lu(R) → L. Dually, a lower semicontinuous real
function is a frame homomorphism Ll (R) → L.

Obviously, a map f from the generators of Lu(R) into L defines an upper semicontin-
uous real function if and only if it transforms the relations (U1)–(U3) into identities in L;
that is, if and only if {f (−, α)}α∈Q is a proper continuous ascending chain [12] in L, that
is, an ascending chain satisfying∨

β<α

f (−, β) = f (−, α) (continuity)

and ∨
α∈Q

f (−, α) = 1 (properness).

Similarly, a map g :Ll(R) → L is a lower semicontinuous real function if and only if
{g(α,−)}α∈Q is a proper continuous descending chain in L, that is,

α � β �⇒ g(α,−) � g(β,−) (descending)∨
β>α

g(β,−) = g(α,−) (continuity)

∨
α∈Q

g(α,−) = 1 (properness).

Of course, frame homomorphisms f :Lu(R) → L (respectively frame homomorphisms
g :Ll(R) → L) correspond precisely to continuous ascending chains (respectively contin-
uous descending chains) in L (cf. [12, Lemma 1.1]).

We write Ru(L) for the set of all upper semicontinuous functions on L, Ru(L) for the
set of all frame homomorphisms f :Lu(R) → L, Rl(L) for the set of all lower semicon-
tinuous functions on L and Rl (L) for the set of all frame homomorphisms f :Ll(R) → L.

Ru(L) (and, in particular, Ru(L)) is partially ordered by

f1 � f2 ≡ f1(−, α) � f2(−, α) for every α ∈ Q
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and Rl(L) (in particular, Rl (L)) is partially ordered by

g1 � g2 ≡ g1(α,−) � g2(α,−) for every α ∈ Q.

Notice that (Rl (L),�) is a poset with unit 1, given by 1(α,−) = 1 for every α ∈ Q, and
(Rl (L),�) is a frame, with zero O given by O(α,−) = 0 for every α ∈ Q. This is an
interesting feature of the theory of localic semicontinuous functions, that shows that this
theory is more general and interesting than the classical one even when the frame is spatial
(cf. [12]).

Dually, (Ru(L),�) is a poset with zero O, given by O(−, α) = 1 for every α ∈ Q, and
(Rl (L),�) is a co-frame.

For f ∈ Ru(L) and g ∈Rl (L) we define

f � g ≡ f (−, α) ∨ g(β,−) = 1 whenever β < α

and

g � f ≡ f (−, α) ∧ g(α,−) = 0 for every α ∈ Q.

Let x ∈ L. It is easy to see that the correspondence

(−, α) �→
⎧⎨
⎩

1 if α > 1,

x if 0 < α � 1,

0 if α � 0

defines an upper semicontinuous function χu
x :Lu(R) → L; similarly,

(α,−) �→
⎧⎨
⎩

1 if α < 0,

x if 0 � α < 1,

0 if α � 1

defines a lower semicontinuous function χl
x :Ll (R) → L.

The following proposition has a straightforward proof.

Proposition 2.1. For any x, y ∈ L,

(a) if x � y then χu
x � χu

y and χl
x � χl

y ,

(b) χu
x � χl

y if and only if x ∨ y = 1.

It is also easy to see that continuous real functions h ∈ R(L) are completely described
by proper continuous chains on L, that is, pairs (f, g), with f ∈ Ru(L) and g ∈ Rl (L),
such that f � g and g � f : for each h ∈ R(L) the corresponding f ∈ Ru(L) is given by
f (−,p) = ∨

q∈Q h(q,p), for every p ∈ Q, and the corresponding g ∈ Rl(L) is given by
g(p,−) = ∨

q∈Q h(p,q), for every p ∈ Q; conversely, for each proper continuous chain

(f, g), the corresponding h ∈ R(L) is given by h(p,q) = f (−, q) ∧ g(p,−), for every
p,q ∈ Q [12, Lemma 1.1].

Similarly, maps h ∈R(L) are completely described by continuous chains on L, that is,
pairs (f, g), with f ∈ Ru(L) and g ∈ Rl(L), such that f � g and g � f [12].
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Proposition 2.2. Let (f, g) be a continuous chain in L. Then:

(a)
∨

α∈Q ∇f (−,α) = ∨
α∈Q �g(α,−);

(b)
∨

α∈Q �f (−,α) = ∨
α∈Q ∇g(α,−).

Proof. We only prove (a) since (b) may be proved similarly.
For each α ∈ Q, f (−, α) ∧ g(α,−) = 0, so ∇f (−,α) � �g(α,−). Therefore∨

α∈Q

∇f (−,α) �
∨
α∈Q

�g(α,−).

On the other hand, for each α ∈ Q, f (−, β)∨g(α,−) = 1 whenever β > α. Thus ∇g(α,−)∨
(
∨

β∈Q ∇f (−,β)) = 1 and, consequently,

�g(α,−) = �g(α,−) ∧
(

∇g(α,−) ∨
(∨

β∈Q

∇f (−,β)

))

= �g(α,−) ∧
( ∨

β∈Q

∇f (−,β)

)
.

Hence
∨

α∈Q �g(α,−) �
∨

α∈Q ∇f (−,α). �
R(L) may be partially ordered by

(f1, g1) � (f2, g2) ≡ f1 � f2

(which is easily seen to be equivalent to g1 � g2, also f1 � g2, also g1 � f2).

3. The basic lemmas

In order to simplify the notation, given f ∈ Ru(L) and g ∈ Rl (L), we denote through-
out the element f (−, α) by fα and the element g(α,−) by gα .

Lemma 3.1. Let f ∈ Ru(L) and g ∈ Rl(L). If f � g then:

(a) For every α ∈ Q and every γ > α, fγ ∨ (
∧

β<α gβ) = 1.
(b) For every α ∈ Q and every γ < α, (

∧
β>α fβ) ∨ gγ = 1.

Proof. We only prove (a) (assertion (b) may be proved in a similar way):
Since gβ � gα for every β < α, we have

∧
β<α gβ � gα and therefore

fγ ∨
( ∧

β<α

gβ

)
� fγ ∨ gα = 1. �

Notice that Lemma 3.1 holds, more generally, for any ascending chain f and any de-
scending chain g.
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The following lemma gives us the characterization of normal frames which will be
fundamental in our approach.

Lemma 3.2. A frame L is normal if and only if, for every countable subsets {xi}i∈N and
{yi}i∈N of L, satisfying xi ∨ (

∧
j∈N yj ) = 1 and yi ∨ (

∧
j∈N xj ) = 1 for every i ∈ N, there

exists u ∈ L such that xi ∨ u = 1 and yi ∨ u∗ = 1 for every i ∈ N.

Proof. Let L be a normal frame. Then, for each i ∈ N, xi ∨ (
∧

j∈N yj ) = 1 implies, by
normality, the existence of ui ∈ L satisfying xi ∨ui = 1 and (

∧
j∈N yj )∨u∗

i = 1. Similarly,
yi ∨ (

∧
j∈N xj ) = 1 implies that there exists vi ∈ L such that yi ∨ vi = 1 and (

∧
j∈N xj ) ∨

v∗
i = 1. Then, for each i ∈ N, we have

xi ∨
(

i∧
k=1

v∗
k

)
�

( ∧
j∈N

xj

)
∨

(
i∧

k=1

v∗
k

)
=

i∧
k=1

(( ∧
j∈N

xj

)
∨ v∗

k

)
= 1

and, similarly,

yi ∨
(

i∧
k=1

u∗
k

)
�

( ∧
j∈N

yj

)
∨

(
i∧

k=1

u∗
k

)
=

i∧
k=1

(( ∧
j∈N

yj

)
∨ u∗

k

)
= 1.

Now define, for each i ∈ N, u′
i := ui ∧ ∧i

k=1 v∗
k and v′

i := vi ∧ ∧i
k=1 u∗

k and consider
u := ∨

i∈N u′
i and v := ∨

i∈N v′
i . Evidently,

xi ∨ u � xi ∨ u′
i = (xi ∨ ui) ∧

(
xi ∨

(
i∧

k=1

v∗
k

))
= 1

and

yi ∨ v � yi ∨ v′
i = (yi ∨ vi) ∧

(
yi ∨

(
i∧

k=1

u∗
k

))
= 1.

Furthermore,

u ∧ v =
∨
i∈N

∨
j∈N

(u′
i ∧ v′

j ) =
∨
i∈N

∨
j∈N

(
ui ∧ vj ∧

i∧
k=1

v∗
k ∧

j∧
l=1

u∗
l

)
= 0.

Thus v � u∗ and, consequently, yi ∨ u∗ � yi ∨ v = 1.
The converse is trivial. �
In the sequel let {αi | i ∈ N} be an indexation of Q by natural numbers.

Lemma 3.3. Let L be a normal frame. Given f ∈ Ru(L) and g ∈ Rl (L) such that f � g,
there exists {uαi

}i∈N ⊆ L satisfying

(γ > αi) �⇒ (fγ ∨ uαi
= 1),

(δ < αi) �⇒ (gδ ∨ u∗
αi

= 1),

(αj1 < αj2) �⇒ (uαj1
∨ u∗

αj2
= 1).
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Proof. We shall prove this by showing, applying induction over N, that, for every i ∈ N,
there exists uαi

∈ L such that

(γ > αi) �⇒ (fγ ∨ uαi
= 1),

(δ < αi) �⇒ (gδ ∨ u∗
αi

= 1),

(αj1 < αj2) �⇒ (uαj1
∨ u∗

αj2
= 1), for all j1, j2 � i.

Since f � g, we may assume, by virtue of Lemma 3.1, that fγ ∨ (
∧

β<α1
gβ) = 1, for

every γ > α1, and (
∧

β>α1
fβ) ∨ gδ = 1, for every δ < α1. Then, by Lemma 3.2, there

exists uα1 ∈ L satisfying fγ ∨ uα1 = 1, for every γ > α1, and gδ ∨ u∗
α1

= 1, for every
δ < α1, which shows the first step of the induction.

Now, consider k ∈ N, and assume, by inductive hypothesis, that for any i < k there is
uαi

∈ L satisfying fγ ∨ uαi
= 1, for every γ > αi , gδ ∨ u∗

αi
= 1, for every δ < αi , and

(αj1 < αj2) �⇒ (uαj1
∨ u∗

αj2
= 1), for all j1, j2 � k − 1.

Further, define

{f ′
n}n∈N := {fγ | γ > αk} ∪ {u∗

αi
| i < k, αk < αi},

{g′
n}n∈N := {gδ | δ < αk} ∪ {uαi

| i < k, αi < αk}.
Then {f ′

n}n∈N and {g′
n}n∈N satisfy the conditions of Lemma 3.2:

(1) For each γ > αk ,

fγ ∨
( ∧

δ<αk

gδ ∧
∧

i<k,αi<αk

uαi

)

=
(

fγ ∨
( ∧

δ<αk

gδ

))
∧

(
fγ ∨

( ∧
i<k, αi<αk

uαi

))
= 1

since fγ ∨ (
∧

δ<αk
gδ) = 1, by Lemma 3.1, and, by inductive hypothesis,

fγ ∨
( ∧

i<k, αi<αk

uαi

)
=

∧
i<k,αi<αk

(fγ ∨ uαi
) = 1.

(2) For each i < k such that αk < αi ,

u∗
αi

∨
( ∧

δ<αk

gδ ∧
∧

j<k,αj <αk

uαj

)

=
(

u∗
αi

∨
( ∧

δ<αk

gδ

))
∧

(
u∗

αi
∨

( ∧
j<k,αj <αk

uαj

))
= 1,

since u∗
αi

∨ (
∧

δ<αk
gδ) � u∗

αi
∨ gαk

= 1 and, by inductive hypothesis,

u∗
αi

∨
( ∧

j<k, α <α

uαj

)
=

∧
j<k,α <α

(u∗
αi

∨ uαj
) = 1.
j k j k
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(3) Similarly to (1) and (2), respectively, one can prove that, for each δ < αk ,( ∧
γ>αk

fγ ∧
∧

i<k,αk<αi

u∗
αi

)
∨ gδ = 1,

and that, for each i < k satisfying αi < αk ,( ∧
γ>αk

fγ ∧
∧

i<k,αk<αi

u∗
αi

)
∨ uαi

= 1.

So, it follows from Lemma 3.2, that there exists uαk
∈ L such that

∀γ > αk, fγ ∨ uαk
= 1,

(αk < αi) �⇒ (u∗
αi

∨ uαk
= 1) for all i < k,

∀δ < αk, gδ ∨ u∗
αk

= 1,

(αi < αk) �⇒ (uαi
∨ u∗

αk
= 1) for all i < k.

This, together with the inductive hypothesis, gives us the required uαk
∈ L satisfying

∀γ > αk, fγ ∨ uαk
= 1,

∀δ < αk, gδ ∨ u∗
αk

= 1,

(αj1 < αj2) �⇒ (uαj1
∨ u∗

αj2
= 1) for all j1, j2 � k. �

4. Interpolation theorems

Given f ∈ Ru(L), g ∈ Rl (L) and h = (h1, h2) ∈ R(L), we write f � h whenever
f � h1 (or, equivalently, f � h2) and we write h � g whenever h1 � g (or, equivalently,
h2 � g).

Next, we present a new proof of Theorem 2.1 of [12].

Theorem 4.1. A frame L is normal if and only if for every f ∈ Ru(L) and g ∈ Rl(L) with
f � g there exists h ∈R(L) such that f � h � g.

Proof. Suppose that L is normal and consider f ∈ Ru(L) and g ∈ Rl (L) with f � g. By
virtue of Lemma 3.3, we may construct {uαi

}i∈N ⊆ L such that, for every i, j1, j2 ∈ N,

(a) ∀γ > αifγ ∨ uαi
= 1,

(b) ∀δ < αigδ ∨ u∗
αi

= 1,
(c) (αj1 < αj2) �⇒ (uαj1

∨ u∗
αj2

= 1).

Then h1(−, αk) := ∨
αj <αk

u∗
αj

defines a homomorphism h1 :Lu(R) → L; indeed,
{h1(−, αk)}k∈N is clearly an ascending chain in L; further, it is continuous since, by the
density of Q in itself,∨

αk<αi

h1(−, αk) =
∨

αk<αi

∨
αj <αk

u∗
αj

=
∨

αj <αi

u∗
αj

= h1(−, αi).

Analogously, h2(αk,−) := ∨
uαj

defines a homomorphism h2 :Ll(R) → L.
αj >αk
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In order to show that the pair (h1, h2) gives the required continuous real function h on
L, it remains to show that this is a continuous chain in L (that is, (1) h1 � h2 and (2)
h2 � h1) interpolating f and g (that is, (3) f � h1 and (4) h2 � g).

(1) Let αi < αj and consider αk,αl ∈ Q such that αi < αl < αk < αj . Then

h1(−, αj ) ∨ h2(αi,−) =
∨

αk<αj

u∗
αk

∨
∨

αl>αi

uαl
� u∗

αk
∨ uαl

= 1.

(2) For every k ∈ N we have

h1(−, αk) ∧ h2(αk,−) =
( ∨

αi<αk

u∗
αi

)
∧

( ∨
αj >αk

uαj

)
=

∨
αi<αk,αj >αk

(u∗
αi

∧ uαj
).

By (c), uαi
∨ u∗

αj
= 1 and, consequently, using (1.1), u∗

αi
∧ u∗∗

αj
= 0, that is, u∗

αi
� u∗∗∗

αj
=

u∗
αj

. Thus u∗
αi

∧ uαj
� u∗

αj
∧ uαj

= 0 and
∨

αi<αk,αj >αk
(u∗

αi
∧ uαj

) = 0.
(3) We need to show that fαk

�
∨

αj <αk
u∗

αj
for every k ∈ N, that is, u∗

αj
� fαk

for every
k ∈ N and αj < αk . This is obvious, since fαk

∨ uαj
= 1 by (a).

(4) By (b), gαk
∨ u∗

αj
= 1 whenever αk < αj . This implies, using property (1.2), that

uαj
� u∗∗

αj
� gαk

. Hence h2(αk,−) = ∨
αj >αk

uαj
� gαk

.
For the converse we apply the interpolation hypothesis with f,g characteristic functions

of appropriate elements:
Let x∨y = 1. By Proposition 2.1, χu

x � χl
y , so there is h ∈ R(L) such that χu

x � h � χl
y .

Let a := h2(1/2,−). Then

1 = χu
x (−,3/4) ∨ h2(1/2,−) = x ∨ a,

since χu
x � h2, and, on the other hand,

y ∨ a∗ = χl
y(1/4,−) ∨ h2(1/2,−)∗ � χl

y(1/4,−) ∨ h1(−,1/2) = 1,

since h2 � h1 � χl
y . This proves that L is normal. �

The following example shows that Theorem 4.1 is no longer true if we replace Ru(L),
Rl (L) and R(L) by, respectively, Ru(L), Rl (L) and R(L) (and, therefore, it shows that
the statement of Theorem 2.2 of [12] is not valid for all functions f , g).

Example 4.2. Let L be the complete chain Z ∪ {−∞,∞} obtained by adding a top
element ∞ and a bottom element −∞ to Z. This is, clearly, a normal frame. Con-
sider f :Lu(R) → L given by f (−, α) := min{n ∈ Z | α � n} (that we denote by
α) and g :Ll(R) → L given by g(α,−) := ∞. Of course, f � g. Now consider h ∈
R(L) given by Theorem 4.1. Then h(−, α) � α for all α ∈ Q, since f � h; there-
fore, for every α ∈ Q and β < α, α ∨ h(β,−) � h(−, α) ∨ h(β,−) = ∞. Consequently,
h(β,−) = ∞ for all β ∈ Q. But h(−, β) ∧ h(β,−) = −∞, so h(−, β) = −∞ for every
β ∈ Q. Thus

∨
β∈Q h(−, β) = −∞, that is, h(

∨
β∈Q(−, β)) = −∞, which shows that

h /∈ R(L).

This raises the question of finding the conditions under which the h provided by Theo-
rem 4.1 belongs to R(L) whenever f ∈ Ru(L) and g ∈ Rl(L).
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Proposition 4.3. Let f ∈ Ru(L) and g ∈ Rl (L) with f � g and consider h := (h1, h2) ∈
R(L) given by Theorem 4.1. Then:

(a) h1 ∈ Ru(L) if and only if for each α ∈ Q there exists β ∈ Q such that

f (−, α) ∧ g(β,−) �
∨
γ∈Q

h1(−, γ );

(b) h2 ∈ Rl (L) if and only if for each β ∈ Q there exists α ∈ Q such that

f (−, α) ∧ g(β,−) �
∨
γ∈Q

h2(γ,−).

Proof. We only prove (a) since assertion (b) may be proved dually.
The implication “⇒” is trivial. Conversely, for each α ∈ Q consider β ∈ Q for which

f (−, α) ∧ g(β,−) �
∨

γ∈Q h1(−, γ ). Since h1 � g, we have

g(β,−) ∨
( ∨

γ∈Q

h1(−, γ )

)
= 1.

Thus

f (−, α) = f (−, α) ∧
(

g(β,−) ∨
( ∨

γ∈Q

h1(−, γ )

))

�
∨
γ∈Q

h1(−, γ )

for every α ∈ Q, from which it follows that
∨

α∈Q f (−, α) �
∨

γ∈Q h1(−, γ ). Hence∨
γ∈Q h1(−, γ ) = 1 and h1 ∈ Ru(L). �

Corollary 4.4. Let f ∈ Ru(L) and g ∈ Rl(L) with f � g and consider h = (h1, h2) ∈
R(L) given by Theorem 4.1. Then:

(a) Each one of the following conditions implies that h1 ∈ Ru(L).
(a1) ∀α ∈ Q ∃β ∈ Q: f (−, α) ∧ g(β,−) = 0.
(a2)

∨
α∈Q �g(α,−) = 1.

(b) Each one of the following conditions implies that h2 ∈ Rl (L).
(b1) ∀β ∈ Q ∃α ∈ Q: f (−, α) ∧ g(β,−) = 0.
(b2)

∨
α∈Q �f (−,α) = 1.

Proof. (a1) It follows immediately from Proposition 4.3(a).
(a2) Since h1 ∈ Ru(L) if and only if

∨
α∈Q h1(−, α) = 1 and, in terms of congruences,

this condition means that
∨

α∈Q ∇h1(−,α) = 1, we may conclude, by Proposition 2.2, that

h1 ∈ Ru(L) if and only if
∨

α∈Q �h2(α,−) = 1. Since h2 � g, this is clearly implied by
condition (a2).

(b1) It follows immediately from Proposition 4.3(b).
(b2) Proved similarly to (a2). �
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Remarks 4.5.

(1) Notice that condition (a1) (respectively (b1)) trivially implies condition (a2) (respec-
tively (b2)).

(2) A careful analysis of the proof of Theorem 2.2 in [12] reveals that conditions (a2) and
(b2) are precisely the conditions on f and g under which the proof works without
problems. Our proof above is more direct and transparent and avoids the use of the
sublocale lattice.

(3) Condition (b2) implies, in particular, that
∧

α∈Q f (−, α) = 0. The converse is not true,

and
∧

α∈Q f (−, α) = 0 is not a sufficient condition for h2 ∈ Rl(L), as Example 4.2
above shows. Condition (b2) holds if

∧
α∈Q f (−, α) = 0 and {f (−, α)}α∈Q is, what

we call in [5], an interior-preserving cover of L (i.e.,
∨

α∈Q �f (−,α) = �∧
α∈Q f (−,α)).

We are finally in the position to establish the pointfree extension of Katětov–Tong in-
terpolation theorem.

Theorem 4.6. Let L be a frame. The following assertions are equivalent:

(i) L is normal.
(ii) For any f ∈ Ru(L) and g ∈ Rl(L), with f � g, satisfying conditions (a1) and (b1),

there exists h ∈ R(L) such that f � h � g.
(iii) For any f ∈ Ru(L) and g ∈ Rl(L), with f � g, satisfying conditions (a2) and (b2),

there exists h ∈ R(L) such that f � h � g.

Proof. (i) ⇒ (iii): It is clear by Theorem 4.1 and Corollary 4.4.
(iii) ⇒ (ii): It is obvious since conditions (a1) and (b1) imply conditions (a2) and (b2),

respectively.
(ii) ⇒ (i): Since χu

x ∈ Ru(L) and χl
y ∈ Rl (L) satisfy conditions (a1) and (b1), for every

x, y ∈ L, the proof of the normality of L goes on as in the proof of Theorem 4.1. �

5. Some noteworthy applications

The Katětov–Tong interpolation theorem has broad application in the theory of topo-
logical spaces, and so it should come as no surprise that its localic analogue (Theorem 4.6)
also has broad application for frames. We outline a few of these applications in this section
together with the remark that classical Katětov–Tong theorem follows immediately from
its localic analogue.

5.1. The classical Katětov–Tong theorem

Applied to OX for a normal space X, the “(i) ⇒ (ii)” part of 4.6 yields the non-trivial
implication of the classical Katětov–Tong interpolation theorem [10,13]:

For any upper semicontinuous real-valued function f :X → R and any lower semi-
continuous real-valued function g :X → R with f � g, let f̃ :Lu(R) → OX, de-
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fined by f̃ (−, α) := f −1((−∞, α)), and let g̃ :Ll (R) → OX, defined by g̃(α,−) :=
g−1((α,+∞)). The condition f � g implies f −1((−∞, α)) ⊇ g−1((α,+∞)), thus,
f̃ � g̃. Furthermore, we may assume without loss of generality that f (x) � 0 and g(x) � 1
for every x ∈ X (cf. [3, 15.13]). This implies that f̃ and g̃ satisfy conditions (a1) and (b1).
Take h̃ ∈ R(OX) as given by the Theorem, and consider h :X → R given by (1.3). Then,
immediately, f � h � g.

5.2. The localic Urysohn’s Lemma

Let L be a normal frame and consider x, y ∈ L with x ∨ y = 1. Applied to χu
x ∈ Ru(L)

and χl
y ∈ Rl (L), the “(i) ⇒ (ii)” part of 4.6 yields the non-trivial implication of the localic

Urysohn’s Lemma [4,1]:
Since χu

x and χl
y satisfy conditions (a1) and (b1), there exists h ∈ R(L) such that χu

x �
h � χl

y . This is clearly equivalent to h(0,−) � y, h(−,1) � x and h((−,0) ∨ (1,−)) = 0.

5.3. The localic Tietze’s Extension Theorem

Let L[a, b] :=↑ ((−, a) ∨ (b,−)), for a < b, be a closed interval frame of reals and
consider a closed quotient F :=↑x of a normal frame L, given by cF :L � F (y �→ y ∨x),
and a bounded continuous real function h :L[a, b] → F . Applied to

f :Lu(R) → L

(−, α) �→
⎧⎨
⎩

1 if α > b,

h((−, α) ∨ (b,−)) if a < α � b,

0 if α � a

and

g :Ll (R) → L

(α,−) �→
⎧⎨
⎩

1 if α < a,

h((−, a) ∨ (α,−)) if a � α < b,

0 if α � b

the “(i) ⇒ (ii)” part of Theorem 4.6 yields the non-trivial implication of the localic Tietze’s
extension theorem ([16]; see also Section 8.3 of [2]).

Indeed, it is obvious that f and g satisfy conditions (a1) and (b1) and f � g. So, there is
h̃ :L(R) → L such that f � h̃ � g. Since h̃((−, a)∨ (b,−)) � f (−, a)∨ g(b,−) = 0, the
restriction of h̃ to L[a, b] is a frame homomorphism h̃ :L[a, b] → L. Finally, let us check
that this is the required extension of h to L

L[a, b] h

h̃

F

L

cF

that is, h̃(α,β) ∨ x = h(α,β), for every α,β ∈ Q.
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The inequality h̃(α,β)∨x � h(α,β) follows immediately from the fact that f � h̃ � g.
Conversely, we have

h(α,β) = h(−, β) ∧ h(α,−) =
( ∨

γ<β

h(−, γ )

)
∧

( ∨
δ>α

h(δ,−)

)
.

But, for each γ < β ,

h(−, γ ) = h(−, γ ) ∧ (
h̃(−, β) ∨ h̃(γ,−)

)
= (

h(−, γ ) ∧ h̃(−, β)
) ∨ (

h(−, γ ) ∧ h̃(γ,−)
)

� h̃(−, β) ∨ (
h(−, γ ) ∧ h(γ,−)

)
= h̃(−, β) ∨ h(0)

= h̃(−, β) ∨ x.

Similarly, h(δ,−) � h̃(α,−) ∨ x whenever δ > α. Hence,

h(α,β) �
(
h̃(−, β) ∨ x

) ∧ (
h̃(α,−) ∨ x

) = h̃(α,β) ∨ x.
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[12] Y.-M. Li, G.-J. Wang, Localic Katětov–Tong insertion theorem and localic Tietze extension theorem, Com-
ment. Math. Univ. Carolin. 38 (1997) 801–814.



3218 J. Picado / Topology and its Applications 153 (2006) 3203–3218
[13] H. Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952) 289–292.
[14] J.J.C. Vermeulen, Constructive techniques in functional analysis, Doctoral dissertation, University of Sussex,

1987.
[15] S. Vickers, Topology via Logic, Cambridge Tracts Theoret. Comput. Sci., vol. 5, Cambridge University

Press, Cambridge, 1985.
[16] J. Walters-Wayland, Completeness and nearly fine uniform frames, Doctoral dissertation, University of Cape

Town, 1996.


