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Abstract

A certain regularization technique for contact problems leads to a family of problems that can be solved efficiently using infinite-
dimensional semismooth Newton methods, or in this case equivalently, primal–dual active set strategies. We present two procedures
that use a sequence of regularized problems to obtain the solution of the original contact problem: first-order augmented Lagrangian,
and path-following methods. The first strategy is based on a multiplier-update, while path-following with respect to the regularization
parameter uses theoretical results about the path-value function to increase the regularization parameter appropriately. Comprehensive
numerical tests investigate the performance of the proposed strategies for both a 2D as well as a 3D contact problem.
© 2006 Elsevier B.V. All rights reserved.

MSC: 49M15; 74M15; 49M37; 65K05

Keywords: Contact problems; Path-following; Semismooth Newton methods; Active sets; Augmented Lagrangians; Primal–dual methods

1. Introduction

In contact problems (also known as Signorini problems), one is concerned with the deformation of an elastic body
whose surface or boundary possibly hits a rigid foundation; in advance it is not known which part of the body’s surface
will be in contact with this obstacle. Theoretically, sound and efficient algorithms for the solution of these problems
are still a very active field of research; we refer to the selected contributions [1,8,10,13,18–21,25] and the references
given therein.

In this paper, we focus on the combination of semismooth Newton (SSN) methods [9,22] (which are in certain
cases equivalent to primal–dual active set strategies [9]) with augmented Lagrangian and path-following methods in
function space. The resulting algorithms are applied for the solution of contact problems in linear elasticity. Since we
are interested in these methods in a function space framework, a regularization technique for the Signorini problem
is introduced that allows an infinite-dimensional analysis. Aside from the theoretical interest, such a function space
approach is also of significant practical importance, e.g., it is well known that the performance of a numerical algorithm
is related to the structure of the infinite-dimensional problem. To be precise, regularity of Lagrange multipliers and
smoothing properties of the involved operators can influence the performance of a numerical algorithm dealing with
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discretizations of continuous problems. Moreover, results such as mesh-independence heavily rely on the availability
of the method in infinite dimensions. Only recently, these facts have led to the consequent investigation of numerical
algorithms in function space (see, e.g., [9,11,15,22–24]).

The regularization chosen for the Signorini problem results in a family of problems having more favorable properties
than the original one. It is motivated by augmented Lagrangians [3,14] and SSN methods [9,15,22]. Clearly, there
exist numerous smoothing techniques for the Signorini and related problems (see, e.g., [12]). However, our choice
results in first-order optimality conditions that can be written as semismooth equations in function space. This allows
the application of an infinite-dimensional Newton-type method leading to an algorithm that converges locally with
superlinear rate. Having this method for the solution of the regularized problem at hand, the question arises how to
obtain a solution to the original problem. Here, we first consider the first-order augmented Lagrangian method which is
an update strategy for the multiplier. The second approach relies on a path-following idea taken from the recent article
[11]. Once the path-value function (or a sufficient good approximation of the path-value function) is available it can
serve as basis for updating strategies of the path (or regularization) parameter. The proposed updating strategy has been
inspired by path-following and interior point methods in finite-dimensional spaces [6,26].

Concerning the application of SSN (and primal–dual active set) methods for contact problems, an approach related
to the one proposed in this work is followed in [10,13]. The techniques used in these papers are inherently finite-
dimensional and, thus, can only be applied to discretizations of continuous problems. Restricting oneself to finite-
dimensional problems allows to apply SSN methods without the need of any regularization. This gain opposes the
advantages of an infinite-dimensional approach mentioned above.

Let us now give a brief outline of this paper. In Section 2, the contact problem in linear elasticity is stated and basic
results are summarized. In Section 3, the regularized problem is introduced and a SSN algorithm for its solution is
presented and analyzed. In the first part of Section 4, an augmented Lagrangian method is presented, while the second
part of Section 4 is concerned with exact and inexact path-following strategies. In Section 5, the performance of our
algorithms is investigated for two examples.

2. Problem statement

Let � ⊂ Rn, n�2 be an open bounded domain with C1,1-boundary � := �� (see Fig. 1). We define the product
space H1(�) := ∏n

j=1 H 1(�) and analogously use bold notation for the product spaces L2(�), H1/2(�), . . . and their
duals. The set of admissible deformations is

Y := {v ∈ H1(�) : �v = 0 a.e. on �d},
where �d ⊂ � is open, nonempty and � : H1(�) → H1/2(�) denotes the (componentwise) trace operator. Furthermore,
we denote by � := int(�\�d) the interior of �\�d , by �c ⊂ � the nonempty open region of possible contact and by
�n := int(�\�c) the (possibly empty) set with given Neumann conditions. We assume that ��c, �� ⊂ � are smooth

Γd
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Γc
d
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Fig. 1. Elastic body with rigid obstacle.
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and, for simplicity, that �c ⊂ �. The latter assumption implies that

H1/2(�c) = {(�v)|�c
: v ∈ H1(�)}.

The elements in H1/2(�c) can be decomposed into their normal and tangential components [16], i.e., there exists the
continuous linear normal trace mapping �N : Y → H 1/2(�c) defined by �N v := (�v)�� for v ∈ Y. Here, � denotes the
unit outward normal vector along the boundary. The corresponding tangential trace mapping �T : Y → {v ∈ H1/2(�) :
�N v = 0} is defined by �T v := v − (�N v)�.

As usual in linear elasticity we define for y ∈ Y the components of the strain tensor ε(y) ∈ (L2(�))n×n as

ε(y) := 1
2

(
∇y + (∇y)�

)
.

The stress tensor �(y) ∈ (L2(�))n×n is given by

�(y) := (� tr(ε(y))I + 2�ε(y)),

where I denotes the n × n-identity matrix and tr(·) the trace of a matrix. The Lamé constants �, � are given by
� = E/(2(1 + �)) and � = E�/((1 + �)(1 − 2�)), with Young’s modulus E > 0 and the Poisson ratio � ∈ (0, 1

2 ).
For y, z ∈ Y we define the symmetric bilinear form

a(y, z) :=
∫
�

ε(y) : �(z) dx,

where “:” denotes the matrix L2-product. For a given volume force f ∈ L2(�) and surface tractions t ∈ L2(�n) we
define the continuous linear form L : Y → R by

L(y) :=
∫
�

fy dx +
∫
�n

t (�y) dx for y ∈ Y.

To model a possible gap between the elastic body and the rigid foundation we introduce d ∈ H 1/2(�c), with d �0
pointwise almost everywhere. After these preparations the contact problem can be written as minimization of the
potential energy over the set of admissible deformations, i.e., as

min
�N y�d

J (y) := 1

2
a(y, y) − L(y), (P)

or equivalently as elliptic variational inequality of the first kind [7]:{
Find y with �N y�d such that
a(y, z − y)�L(z − y) for all z ∈ Y with �N z�d.

(1)

It follows from the Korn inequality (see, e.g., [16]) that the problem (P) or equivalently (1) admits a unique solution.
From the surjectivity of the mapping �N we obtain that the solution to (P) is characterized by the existence of �̄ ∈
H−1/2(�c) such that

a(ȳ, z) − L(z) + 〈�̄, �N z〉�c
= 0 for all z ∈ Y, (2a)

〈�̄, �N z〉�c
�0 for all z ∈ Y with �N z�0, (2b)

〈�̄, �N ȳ − d〉�c
= 0. (2c)

Above, 〈·, ·〉�c
denotes the duality pairing between elements in H−1/2(�c) and H 1/2(�c). Note that using (2a) it can

be shown that the Lagrange multiplier �̄ coincides with the negative normal stress on the boundary [16].
Formally, the conditions �N ȳ�d , (2b) and (2c) can be rewritten as

�̄ = max(0, �̄ + 	(�N ȳ − d)) for any fixed 	 > 0, (3)

as one can verify by a short computation. However, in general �̄ is only an element in H−1/2(�c). Thus, it is not
pointwise almost everywhere defined and (3) has no meaning. Moreover, the pointwise max-functional appearing in
(3) is not differentiable. This causes difficulties if one intends to develop Newton-like methods for the solution of the
system consisting of (2a) and (3).
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3. A family of regularized problems and a SSN method for their solution

Due to the problems mentioned at the end of the previous section we replace (3) by

� = max(0, �̂ + 
(�N y − d)), (4)

where �̂ ∈ L2(�c) and 
 > 0 are given. For �̂ ≡ 0, this results in a penalty-type regularization. The introduction of �̂ is
motivated by augmented Lagrangians (see, e.g., [14,15] and the discussion in the next section). Moreover, for certain
problems, �̂ can be used to control the feasibility of the solution of the regularized problems (see [15]). Another reason
for the choice of (4) are SSN methods for the solution of complementarity systems in function space: considering in
(4) the variable y as a function of � ∈ L2(�c) defined by means of (2a), we observe that �N y is smoother than �. In
other words, the expression inside the max-functional is the image of � under an affine mapping with a compact linear
operator. Such a property is necessary for semismoothness of the max-function (see [9,22]). In the original problem
(3) we cannot expect any smoothing of the expression inside the max-function due to the explicit appearance of �.

We remark that the optimization problem corresponding to the smoothed system (2a) and (4) is

min
y∈Y

J (
, y) := 1

2
a(y, y) − L(y) + 1

2

‖ max(0, �̂ + 
(�N y − d))‖2

�c
. (P
)

Due to the uniform convexity of J (
, ·) for all 
 > 0, the system (2a), (4) admits a unique solution. To highlight the
dependence on 
, this solution is denoted by y
 and the corresponding multiplier by �
 (the dependence on �̄ is neglected
in the notation). In the next theorem, we show that y
 converges to ȳ as 
 → ∞; for a proof we refer to Appendix A.
Aside from the fact that this result justifies our regularization, it motivates a continuation procedure for the parameter

 (see Section 4.2).

Theorem 1. For every �̂ ∈ L2(�c), the solutions y
 of (P
) converge to the solution ȳ of (P) strongly in Y, and the

corresponding multipliers �
 converge to �̄ weakly in H−1/2(�c) as 
 → ∞.

We can now show how a SSN method can be utilized for the solution of (P
), i.e., the solution of (2a) and (4). To
be precise, we apply the method to the mapping F : L2(�c) → L2(�c) given by

F(�) := � − max(0, �̂ + 
(�N y(�) − d)),

where y(�) ∈ Y is the unique solution y of (2a) for given � ∈ L2(�c). Note that �N y ∈ H 1/2(�c), which embeds
continuously into Lq(�c) for every q < ∞ in the case n = 2 and for q = 2(n − 1)/(n − 2) if n�3. Thus, for each
dimension n, �N y ∈ Lq(�c) for some q > 2 and we obtain the norm gap required for semismoothness of the max-
function according to [9, Proposition 4.1]. Hence, we can apply a generalized Newton method for the solution of
F(�) = 0, where a generalized derivative of the max-function is given by

Gm(v)(x) =
{

1 if v(x) > 0,

0 if v(x)�0.

This results in the following algorithm, in which �S denotes the characteristic function for a set S ⊂ �c.

Algorithm (SSN).

(1) Choose y0 ∈ Y and set k := 0.
(2) Determine

Ak+1 = {x ∈ �c : �̂ + 
(�N yk − d) > 0},
Ik+1 = �c\Ak+1.

(3) If k�1 and Ak+1 = Ak stop, else
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(4) Solve

a(yk+1, z) − L(z) + (�̂ + 
(�N yk+1 − d), �Ak+1�N z)�c
= 0

for all z ∈ Y, set �k+1 =
{

�̂ + 
(�N yk+1 − d) on Ak+1,

0 on Ik+1,
(5)

and k := k + 1; Go to Step 2.

Note that the solution to (5) is unique, since (5) represents the necessary and sufficient optimality condition for the
auxiliary problem

min
y∈Y

1

2
a(y, y) − L(y) + 1

2

‖�̂ + 
(�N y − d)‖2

Ak+1 ,

which is uniquely solvable. Observe that (SSN) obeys the form of an active set strategy. This is caused by the (general-
ized) derivative of the pointwise max-function appearing in (3). Thus, codes for the solution of elasticity problems not
taking into account contact conditions can—relatively easily—be adopted for the solution of contact problems. Note
that a similar strategy for finite-dimensional problems is investigated in [1]. Next, we summarize properties of (SSN).
For the proofs and related results we refer to [15,21].

Lemma 2. If Algorithm (SSN) stops, the last iterate yk is the solutions to (P
), i.e., (yk, �k) solves (2a) and (4).

Theorem 3. Let �̂ ∈ L2(�c) and 
 > 0 be arbitrary given. Provided that ‖�0 − �
‖�c
is sufficiently small, the iterates

(yk, �k) of (SSN) converge to (y
, �
) superlinearly in Y × L2(�c).

4. Towards the solution of the original contact problem

In this section we present two approaches in function space that utilize a sequence of regularized problems (P
) for
the solution of the original contact problem (P).

4.1. Augmented Lagrangian methods

Augmented Lagrangian methods apply for the solution of contact problems provided the solution multiplier �̄ is
in L2(�c). Following regularity results for the Signorini problem (see [17, Theorem 2.2]), a sufficient condition for
�̄ ∈ L2(�c) is that the active set at the solution, i.e.,

A(ȳ) = {x ∈ �c : �N ȳ − d = 0 a.e.}

is strictly contained in �c, that is

A(ȳ) ⊂ �c. (A)

This condition holds for many contact problems. It can often be verified a priori from considering the geometry of the
problem. For the rest of this section we assume that (A) holds.

The first-order augmented Lagrangian method is, such as the Uzawa algorithm, an update strategy for the multiplier
in (P). It can be considered as an implicit version of the Uzawa method (see [14]). Its main advantage, compared to
the latter strategy, is its unconditional convergence for all penalty (or regularization) parameters 
 > 0 while the Uzawa
algorithm only converges for sufficiently small 
 > 0 possibly leading to extremely slow convergence. However, the
drawback of the augmented Lagrangian method is that in every iteration step it requires to solve a nonlinear problem
compared to the linear problem in every iteration of the Uzawa algorithm. Since this nonlinear problem is exactly of
the form (P
), we can apply (SSN) for its solution. The whole method is specified next.
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Algorithm (ALM).

(1) Choose �0 ∈ L2(�c) and set l := 0.
(2) Choose 
l+1 > 0 and solve (P
) with �̂ := �l , i.e., determine (yl+1, �l+1) such that

a(yl+1, z) − L(z) + (�l+1, �N z)�c
= 0 for all z ∈ Y,

�l+1 − max(0, �l + 
l+1(�N yl+1 − d)) = 0.

(3) Update l := l + 1 and go to Step 2.

In the next theorem global convergence of (ALM) is stated. For the proof we refer to Appendix B.

Theorem 4. For every choice of parameters 0 < 
0 �
1 �
2 � · · · the iterates �l of (ALM) converge weakly to �̄ in
L2(�c). Furthermore, the corresponding iterates yl converge strongly to ȳ in Y.

Let us comment on the role of the parameters 
l in (ALM). Due to possible difficulties in the numerical treatment
of (P
) for large penalty parameters 
 one may start with a moderate value for 
 in Step 2 of (ALM) and increase this
value during the iteration. However, note that �l converges to �̄ without the requirement that 
 tends to infinity such as
in Theorem 1 where �̂ is kept fixed.

4.2. Path-following methods

Following Theorem 1, the solutions y
 of (P
) converge to ȳ as 
 → ∞. Starting immediately with a huge value for 

may lead to a badly conditioned problem that is difficult to solve. Therefore, it appears advantageous to use a continuation
procedure with respect to 
. Such a procedure has already been applied for obstacle and related problems [15,21], where
the adaptation of 
 was heuristic. In the recent article [11], a path-following method has been developed that allows
appropriate steering of this parameter. Aside from the infinite-dimensional theory devised in [11], promising numerical
experiments for obstacle problems are presented. Furthermore, both a feasible as well as an infeasible regularization
approach are presented. However, to be able to divide the discussion into these two cases it is required that the involved
operator satisfies a maximum principle. This is, in general, not the case for the operator in linear elasticity.

We briefly summarize the approach for �̂ ≡ 0 (called “infeasible method” in [11]). Although our operators do not
satisfy a maximum principle, we numerically experience a very similar behavior as for obstacle problems. To be precise,
we observe that, for �̂ ≡ 0, the solutions of the regularized problem (P
) are typically infeasible.

We set �̂ ≡ 0 and consider the primal–dual path 
 → (y
, �
) with 
 ∈ [0, ∞). Similarly, as in [11] for obstacle
problems one can show that this path is bounded in H1(�) × H−1/2(�c). We introduce the primal–dual path-value
functional by


 → V (
) := J (
, y
), (6)

with J (· , ·) as defined in (P
). Now, we focus on an appropriate model function m(
) approximating V (·). In deriving
such a model, knowledge about the derivatives of V turns out to be useful. As in [11], it can be shown that V (·) is
differentiable with first derivative

V̇ (
) = 1

2

∫
�c

| max(0, �N y
 − d)|2 dx = 1

2
2

∫
�c

|�
|2 dx. (7)

Remarkably, the derivative V̇ (
) is characterized without recourse to ẏ
. Thus, having calculated (y
, �
) not only V (
)
but also V̇ (
) is available. Taking into account second derivative information it turns out (see [11]) that an appropriate
model function for V (·) is

m(
) = C1 − C2

E + 

, (8)

with C1 ∈ R, C2 �0 and E > 0. In [11] further evidence for the choice of (8) as model function is given.
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To adjust the parameters C1, C2 and E we choose 
� ∈ (0, ∞) and compute the values for V (0) and V (
�). Due to
(7), the value for V̇ (
�) is available as well. Using V (0), V (
�) and V̇ (
�) we can fix the parameters in (8) by setting
m(0) = V (0), m(
�) = V (
�) and ṁ(
�) = V̇ (
�), which results in the following equations:

E = (
�)2V̇ (
�)(V (
�) − V (0) − 
�V̇ (
�))−1,

C2 = (
�)−1E(E + 
�)(V (
�) − V (0)),

C1 = V (0) + C2E
−1. (9)

Clearly, if more data points than V (0) and V (
�), V̇ (
�) for a certain 
� are available one can use, e.g., a least-squares
approach to fit the model parameters C1, C2 and E. However, our numerical tests show that the model function calculated
from the data V (0) and V (
�), V̇ (
�) already gives a remarkable correspondence with the path-value functional. Thus,
for every choice of 
k we obtain a slightly different model function denoted by mk(
) = Ck

1 − Ck
2/(Ek + 
).

Next, we describe how knowledge about the primal–dual path-value functional can be used in numerical practice.
We introduce the notation V̄ := lim
→∞ V (
) and assume given a sequence �k with �k ∈ (0, 1) and �k ↓ 0. Taking
into account the superlinear convergence of (SSN) motivates the following strategy [11]: provided V (
k) is available,
the new path parameter 
k+1 should ideally satisfy

|V̄ − V (
k+1)|��k|V̄ − V (
k)|. (10)

Since V̄ and V (
k+1) are unknown, we use our model mk to obtain V̄ ≈ Ck
1 and V (
k+1) ≈ mk(
k+1). Hence, (10) is

replaced by

|Ck
1 − mk(
k+1)|��k|Ck

1 − V (
k)| =: �k . (11)

Solving the equation Ck
1 − mk(
k+1) = �k yields


k+1 = Ck
2/�k − Ek . (12)

Summarizing, we obtain the following algorithm for exact path-following:

Algorithm (PF).

(1) Derive V (0), choose 
0 > 0 and set l := 0.
(2) Solve (P
) with �̂ := 0 and 
 := 
l , i.e., determine (yl+1, �l+1) such that

a(yl+1, z) − L(z) + (�l+1, �N z)�c
= 0 for all z ∈ Y,

�l+1 − max(0, 
l (�N yl+1 − d)) = 0.

(3) Use the values V (0), V (
l ), V̇ (
l ) to derive the model function mk(·). Calculate the new path parameter 
l+1

according to (12).
(4) Update l := l + 1 and go to Step 2.

Of course, in the above algorithm the previous iterate is used as initialization for (SSN) when solving the system
in Step 2 of (PF). So far, we have a simple rule for an automatic update of the path parameter 
 if every auxiliary
problem (P
) is solved exactly. From finite-dimensional interior point and path-following methods one can expect that
the overall number of iterations is reduced if the auxiliary problems are only solved approximately. That is, not for
every 
k the corresponding point on the primal–dual path is calculated exactly, which leads to inexact path-following
methods. Typically, it is required that the primal–dual iterates stay within a certain neighborhood of the path with the
goal to keep the number of iterations low while still obtaining reliable convergence. In order to define an appropriate
neighborhood of the primal–dual path we introduce the residuals

r1

 (y, �) = sup

z∈H1(�)

1

‖z‖H1
{a(y, z) − L(z) + (�, �N z)}, (13a)

r2

 (y, �) = ‖ max(0, 
(�N y − d))‖L2 . (13b)



540 G. Stadler / Journal of Computational and Applied Mathematics 203 (2007) 533–547

Note that r1

 (y, �) represents the norm in the dual of H1(�). For a fixed parameter � we define the following neighborhood

of the primal–dual path:

N
 := {(y, �) ∈ H1(�) × L2(�) : ‖r1

 (y, �), r2


 (y, �)‖2 ��/
√


}. (14)

In our inexact path-following method we require the iterates to stay within N
. The question arises about an update
strategy for the path-parameter 
. Increasing 
 too slow causes that we follow the path very closely leading to slow
convergence. Too aggressive 
-updates lead to points which are far away from the path and many SSN iterations are
necessary to produce iterates lying within N
. As in [11] we introduce the primal infeasibility measure 
F, and the
complementarity measure 
C for the (k + 1)th iterate as follows:


k+1
F :=

∫
�c

max(0, �N yk+1 − d) dx,


k+1
C :=

∫
Ik+1

max(0, �N yk+1 − d) dx +
∫
Ak+1

− min(0, �N yk+1 − d) dx.

These measures are used in the following rule for choosing the new path parameter 
k+1:


k+1 � max
(

k max(�1, 


k+1
F /
k+1

C ), 1/(max(
k+1
F , 
k+1

C ))q
)

, (15)

with �1 > 1 and q �1. To safeguard the 
-updates in order to avoid too large changes of 
 we use our model functions
mk . Namely, we reduce the value of 
k+1 as long as 
k+1 is much larger than 
k and until

|tk(
k+1) − mk(
k+1)|��3|J (
k, yk+1) − J (
k−1, yk)|, (16)

with �3 > 0 and tk(
)=J (
k, yk+1)+(�J/�
)(
k, yk+1)(
−
k). Note that mk(
k)=J (
k, yk+1) due to the definition of
our model functions. Observe that the right-hand side in (16) is independent of 
k+1 while the left-hand side tends to 0 as

k+1 goes to 
k . Thus, if (16) is not satisfied immediately, it is likely to be satisfied already after a few backtracking-like
steps. We remark that for small 
 there might be a big difference between the tangent tk and the model mk . However,
the right-hand side in (16) is large as well because we expect a relatively large change in the function value. For large

 both sides in (16) tend to be small.

5. Numerical results

Here we present results of our numerical tests for a 2D as well as a 3D contact problem. In the first subsection, we
introduce our test examples and discuss the implementations before we report on results obtained for the algorithms
presented in the previous sections.

5.1. Implementation and presentation of the examples

Our implementation adopts the MATLAB-code for elasticity problems published in [2]. We use linear finite elements
to discretize our problems and solve the arising linear systems exactly. The SSN method is always initialized with the
solution of the unconstrained problem (i.e., the solution of (2a) with �=0).As initialization for the first-order augmented
Lagrangian method we always use �0 = 0. Unless otherwise specified we stop the algorithms (ALM) and (PF) if the
L2-norm of the nonlinear residual drops below 10−10. Now, we present our test examples.

Example 1. In Fig. 2, the geometry used for this example is sketched. For reasons of graphical presentation the gap
function d is multiplied by a factor of 20. The exact data are as follows: � = [0, 3] × [0, 1], �d = {0} × (0, 1) and
�c = (0, 3) × {0}. Furthermore, f = 0 and t = (0, −2)� on {3} × (0, 1), where t ≡ 0 on the rest of �n. The distance
to the obstacle is given by d(x1) = 0.003(x1 − 1.5)2 + 0.001. We use materials described by E = 5000 and various
values for the Poisson ratio � ∈ (0, 1

2 ).

Example 2. In this example a 3D rectangular elastic body is pressed onto a solid hemisphere. The geometry of the
body is given by � = [−0.5, 0.5] × [−1, 1] × [−0.5, 0.5] and the obstacle is a half-ball with a radius of 0.5 and
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Fig. 3. Geometry and obstacle for Example 2.

midpoint (−0.3, 0, −1)�. For the upper surface (−0.5, 0.5) × (−1, 1) × {0.5} we prescribe the Dirichlet condition
y = (0, 0, −0.2)�. The side surfaces are assumed to be traction-free, i.e., t ≡ 0. The contact surface is the lower
face given by (−0.5, 0.5) × (−1, 1) × {−0.5}. The material parameters are E = 1e6 and � = 0.45. The problem is
discretized with tetrahedral elements. The initial mesh is generated using FEMLAB’s [5] mesh generator. This initial
mesh is adaptively refined using an averaging a posteriori error estimator [4]. The resulting locally refined mesh and the
rigid obstacle are shown in Fig. 3, where for reasons of graphical representation the obstacle has been moved slightly
downwards (i.e., in negative z-direction). The mesh consists of 31 453 elements and has automatically been refined in
and around the contact zone.

5.2. Results for Example 1

First, we briefly discuss (SSN) for the solution of the regularized problem (P
). For all choices of � and regularization
parameters the algorithm converges after a few iterations. Moreover, we observe monotonicity in the sense that the size
of the active set decreases in every iteration. Note that monotonicity of iterates can be proved rigorously if the operator
satisfies a maximum principle [15].

The deformed mesh for 
 = 1010 and � = 0.49 is shown in Fig. 4, where the displacement y
 as well as the gap-
function d are magnified by the factor 20. The gray values visualize the elastic shear energy density [2]. In Table 1,
the numbers of iterations for � = 0.4, 0.49, 0.499, 0.4999 and various values of 
 on a mesh of 120 × 40 elements are
shown. We observe that for �-values very close to the threshold 1

2 the number of iterations increase significantly as the
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Fig. 4. Example 1: deformed mesh, gray tones visualize the elastic shear energy density, � = 0.49, 
 = 1010.

Table 1
Example 1: number of iterations for different values of � and 


� 


102 104 106 1010

0.4 4 6 7 7
0.49 3 7 8 8
0.499 4 8 12 12
0.4999 4 9 25 29

regularization parameter 
 becomes large. Especially, for these cases either an augmented Lagrangian or a continuation
procedure with respect to 
 appears worth using.

Our tests for the first-order augmented Lagrangian method show a relatively slow convergence behavior if the
parameter 
 is kept fixed. For example, using 
l =103 for all l, overall 27 iterations for �=0.4 are necessary. Increasing

 simultaneously with the update of the multiplier speeds up the convergence significantly. Clearly, such a strategy is
related to a pure continuation strategy and thus to the path-following methods we turn to next.

First, we numerically investigate the quality of the model function (8) by comparing it to the primal–dual value
function. To calculate the unknown parameters in m(·) we use V (0), V (
�) and V̇ (
�), where we derive the model
functions for 
� = 102, 103, 105. The results for � = 0.4 and 0.4999 are shown in Fig. 5. We observe that the model
functions m(·) reflect the behavior of V (·) very well, especially in a neighborhood around the 
-value used to derive the
parameters E, C1, C2 according to (9). These excellent approximation properties of our model functions can be used
to obtain an automatic update of the path parameter 
 as described in Section 4.2. We shall now present our numerical
results for both path-following as well as inexact path-following.

To initialize the model function we first solve the problem for 
 := 
0 = 0, i.e., we solve the unrestricted problem.
Since the corresponding optimality system is linear only one system solve is necessary. As second step to derive a
model function we solve the problem for some 
1 > 0. Here, 
1 = 102 is chosen. Using (9) in (8) we obtain the model
function m1(·). As described at the end of Section 4.2, m1(·) can be used to derive the new path parameter 
2, where
we choose �k := 10−k . The resulting data are summarized in Table 2 for the two values � = 0.4 and 0.4999.

We also tested less aggressive 
-updates, e.g., using �k=0.2k . This leads to fewer inner iterations (i.e., fewer iterations
of (SSN)). However, the number of outer iterations, i.e., steps where 
 is updated increases. For �k = 0.2k this leads to
six and seven outer, and to overall 17 and 18 inner iterations for � = 0.4 and 0.4999, respectively.

We now turn to tests for inexact path-following. Here, iterates are not required to lie on the primal–dual path exactly,
but one stops the inner iteration as soon as a point in the neighborhood N
 (for its definition see (14)) is found. We
choose the parameters �1 =5, q =1.5 and �=106. In Fig. 6, we show the primal–dual path-value function together with
the value function evaluated at the iterates. Note that a logarithmic scale for the 
-values is used. Since N
 is rather
large for 
1 and 
2 only one (SSN)-iteration is needed for these values of the path parameter. For 
3 and 
4 three and
two inner iterations are needed, respectively, to find a point that is sufficiently close to the path. The inexact strategy
requires overall 11 and 15 iterations for � = 0.4 and 0.4999, respectively.
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Fig. 5. Example 1: primal–dual value function V (·) versus model functions m(·) for 
 = 102, 103, 105 for � = 0.4 (left plot) and � = 0.4999 (right
plot).

Table 2
Example 1: number of inner iterations (#(SSN)-iter) and value for path-parameter 
 per path-following step (path-iter.) for � = 0.4 and 0.4999

Path-iter. l 1 2 3 4 5

� = 0.4 
l 1.00e2 1.62e3 1.75e5 1.75e8 1.76e12
#(SSN)-iter 3 +3 +6 +1 +1

� = 0.4999 
l 1.00e2 2.80e3 3.23e5 3.24e8 3.24e12
#(SSN)-iter 3 +4 +7 +3 +1

γ

γ1 γ2 γ3 γ4 γ5 γ6

Fig. 6. Example 1: primal–dual path-value function (solid) and path-value functional evaluated at iterates produced using inexact path-following.
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5.3. Results for Example 2

In the second example, we start with investigating how well our model functions m(·) approximate the primal–dual
path-value function V (·). Similarly as in the previous example we use different 
’s to fit the parameters C1, C2, E in
m(·); the remarkable match between V (·) and m(·) can be seen from Fig. 7, where V (·) is compared with the models
using the 
-values 106, 108, 1010 as support points. Note that in Example 2 it is not necessary to calculate the solution
of (P
) for 
 = 0: since t ≡ 0 and f ≡ 0, the linear form L in (P
) is the zero-functional. Thus, for 
 = 0 the minimum
in (P
) is obtained for y = (0, 0, −0.2)top, which implies that V (0) = 0.

We apply our inexact path-following strategy with the parameters � = 108, �1 = 5, q = 1.5 for the solution of the
problem. The algorithm stops after seven iterations with a residual of 3.85e−12 and the path parameter 
 = 1.02e10.
The deformed mesh is depicted in Fig. 8. Again, the gray values visualize the elastic shear energy density [2].
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Fig. 7. Example 2, left: primal–dual path-value function V (·) versus model functions m(·) using the support points 
� = 106, 108, 1010; right: detail
of left plot.
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Fig. 8. Deformed mesh for Example 2, gray values visualize the stress density.
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Appendix A. Proof of Theorem 1

Recall that both the variables (y
, �
) and (ȳ, �̄) satisfy Eq. (2a). Moreover, (2b) and (2c) hold for (ȳ, �̄), while
(y
, �
) satisfies

�
 = max(0, �̂ + 
(�N y
 − d)). (A.1)

Setting z := y
 − ȳ in (2a) results in

a(y
, y
 − ȳ) − L(y
 − ȳ) + (�
, �N(y
 − ȳ))�c
= 0. (A.2)

Next, we estimate

(�
, �N(y
 − ȳ))�c
= (�
, �N y
 − d)�c

− (�
, �N ȳ − d)�c

�
−1(�
, �̂ + 
(�N y
 − d))�c
− 
−1(�
, �̂)�c

,

where (�
, �N ȳ − d)�0 a.e. on �c was used. Thus,

(�
, �N(y
 − ȳ))�c
�
−1(�
, max(0, �̂ + 
(�N y
 − d)))�c

− 
−1(�
, �̂)�c

= 
−1‖�
‖2
�c

− 
−1(�
, �̂)�c
(A.3)

= 1

2

‖�
 − �̂‖2

�c
+ 1

2

‖�
‖2

�c
− 1

2

‖�̂‖2

�c
� − 1

2

‖�̂‖2

�c
. (A.4)

Eqs. (A.2) and (A.3) imply that

a(y
, y
) + 1



‖�
‖2

�c
�a(y
, ȳ) + 1



(�
, �̂)�c

+ L(y
 − ȳ). (A.5)

Using the coercivity (with constant c > 0) and the continuity of a(· , ·) in (A.5) shows that

c‖y
‖Y + 1



‖�
‖�c

is uniformly bounded with respect to 
�1. Hence y
 is bounded in Y and �
 in H−1/2(�c) from (2a). Consequently,

there exist (ỹ, �̃) ∈ Y × H−1/2(�c) and a sequence 
k with limk→∞ 
k = ∞ such that

y
k ⇀ ỹ weakly in Y and �
k ⇀ �̃ weakly in H−1/2(�c). (A.6)

In the sequel, we dismiss the subscript “k” with 
k . Note that, due to the definition of �
,

1



‖�
‖2

�c
= 


∥∥∥∥max

(
0,

1



�̂ + �N y
 − d

)∥∥∥∥
2

�c

. (A.7)

Since H 1/2(�c) embeds compactly into L2(�c), �N y
 converges to �N ỹ almost everywhere on �c. Thus, (A.7) implies
that �N ỹ − d �0 a.e. on �c.

Subtracting Eq. (2a) for (y
, �
) from the same equation for (ȳ, �̄) and setting z := y
 − ȳ yields

a(y
 − ȳ, y
 − ȳ) = −〈�
 − �̄, �N(y
 − ȳ)〉�c
. (A.8)

Using (A.4), the coercivity of a(· , ·), (A.8) and (2c) shows that

0� lim sup

→∞

c‖y
 − ȳ‖2
Y � lim


→∞ 〈�̄, �N(y
 − ȳ)〉�c

= 〈�̄, �N ỹ − d〉�c
− 〈�̄, �N ȳ − d〉�c

= 〈�̄, �N ỹ − d〉�c
�0,
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where �N ỹ−d �0 a.e. on �c is used. From the above estimate follows that y
 → ȳ strongly in Y and thus ỹ= ȳ. Passing
to the limit in

a(y
, z) − L(z) + (�
, �N z)�c
= 0 for all z ∈ Y

yields

a(ȳ, z) − L(z) + 〈�̃, �N z〉�c
= 0 for all z ∈ Y. (A.9)

Comparing (A.9) with (2a) shows that �̂ and �̄ satisfy the same equation for all z ∈ Y, and thus �̃ = �̄ in H−1/2(�c).
Due to the uniqueness of the solution variables ȳ, �̄ this implies that the whole family {(y
, �
)} converges as stated in
the theorem.

Appendix B. Proof of Theorem 4

Let us denote by �l
y := yl − ȳ ∈ Y and �l

� := �l − �̄ ∈ L2(�c), where ȳ and �̄ denote the solution of (P) and the

corresponding multiplier, respectively. From the fact that (ȳ, �̄) satisfies (2a) we have for l�1

a(ȳ, �l+1
y ) − L(�l+1

y ) + (�̄, �N�l+1
y )�c

= 0 (B.1)

and from Step 2 of (ALM) that

a(yl+1, �l+1
y ) − L(�l+1

y ) + (�l+1, �N�l+1
y )�c

= 0. (B.2)

Subtracting (B.1) from (B.2) results in

0 = a(�l+1
y , �l+1

y ) + (�l+1
� , �N�l+1

y )�c
. (B.3)

Note that

�l+1 = P(�l + 
l+1(�N yl+1 − d)) and �̄ = P(�̄ + 
l+1(�N ȳ − d)), (B.4)

where P : L2(�c) → L2(�c) denotes the pointwise projection onto the convex cone of nonnegative functions. Thus,
we obtain

(�l+1 − �̄, (�l + 
l+1(�N yl+1 − d)) − �l+1) − (�̄ + 
l+1(�N ȳ − d) − �̄))�c
�0.

This implies that

(�l+1
� , �N�l+1

y )�c
= (
l+1)−1(�l+1 − �̄, (�l + 
l+1(�N yl+1 − d)) − (�̄ + 
l+1(�N ȳ − d)))�c

− (
l+1)−1(�l+1 − �̄, �l − �̄)�c

�(
l+1)−1‖�l+1 − �̄‖2
�c

− (
l+1)−1(�l+1 − �̄, �l − �̄)�c

� 1

2
l+1 ‖�l+1
� ‖2

�c
− 1

2
l+1 ‖�l
�‖2

�c
. (B.5)

Utilizing the above estimate and (B.3) yield that

1

2
l+1 ‖�l+1
� ‖2

�c
− 1

2
l+1 ‖�l
�‖2

�c
+ a(�l+1

y , �l+1
y )�0. (B.6)

Using the assumption that 
l �
l+1 for all l�1 and summing over all l shows that liml→∞ a(�l
y , �

l
y)=0. Consequently,

yl → ȳ strongly in Y and from Step 2 of (ALM) �l → �̄ weakly in L2(�c).
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