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Centro de Matemática, Universidade de Coimbra, 3001–454 Coimbra, Portugal

Received 6 February 2006; accepted 31 May 2006

Abstract

In this article we consider the p-Laplace equation −�pu = λ f (u) on a smooth bounded domain of
R

N with zero Dirichlet boundary conditions. Under adequate assumptions on f we prove that the extremal

solution of this problem is in the energy class W 1,p
0 (Ω) independently of the domain. We also obtain Lq

and W 1,q estimates for such a solution. Moreover, we prove its boundedness for some range of dimensions
depending on the nonlinearity f .
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MSC: 35J70; 35J60

Keywords: p-Laplacian; Extremal solution; Regularity

1. Introduction

Let Ω be a smooth bounded domain of R
N and p > 1. We consider the following Dirichlet

problem for the p-Laplacian operator −�pu := −div(|∇u|p−2∇u),{−�pu = λ f (u) in Ω ,
u = 0 on ∂Ω , (1λ,p)

where λ is a positive parameter and f satisfies the following assumptions:

f is an increasing C2 function such that f (0) > 0, f (t)1/(p−1) is

superlinear at infinity (i.e., f (t)/t p−1 → +∞ as t → +∞), (2)
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and

( f (t)− f (0))1/(p−1) is convex in [0,+∞). (3)

We say that u ∈ W 1,p
0 (Ω) is a solution of (1λ,p) if f (u) ∈ L1(Ω) and∫

Ω
|∇u|p−2∇u · ∇ϕ dx = λ

∫
Ω

f (u)ϕ dx, for all ϕ ∈ C1
0 (Ω). (4)

Such solutions are usually known as weak energy solutions. For short, we will refer to them
simply as solutions.

On the other hand, we say that u ∈ W 1,p
0 (Ω) is a regular solution of (1λ,p) if f (u) ∈ L∞(Ω)

and satisfies (4). Using regularity results for degenerate elliptic equations, one has that every
regular solution belongs to C1,α(Ω) for some α > 0 (see [7,22], and [17]).

Under assumption (2), Cabré and the author [5] proved the existence of an extremal parameter
λ∗ ∈ (0,∞) such that: if λ < λ∗ then problem (1λ,p) admits a regular solution uλ which is
minimal among all other possible solutions, and if λ > λ∗ then problem (1λ,p) admits no regular
solution. Moreover, minimal solutions are semi-stable in the sense that the second variation of the
energy functional associated with (1λ,p) is nonnegative definite (see Definition 8 below). Using
this property [5] establishes that

u∗ := lim
λ↑λ∗ uλ (5)

is a solution of (1λ∗,p) whenever the nonlinearity f (u)makes its growth comparable to um ; u∗ is
called the extremal solution. As a particular case, the power nonlinearity f (u) = (1 + u)m with
m > p − 1 is studied; we obtain that u∗ is a bounded (and hence regular) solution if

N < G(m, p) := p

p − 1

(
1 + mp

m − (p − 1)
+ 2

√
m

m − (p − 1)

)
. (6)

Ferrero [9] also obtained (independently of [5]) the boundedness of the extremal solution when
N < G(m, p) and proved using phase plane techniques that u∗ is unbounded if N ≥ G(m, p)
and the domain Ω is the unit ball of R

N .
Garcı́a-Azorero, Peral, and Puel [11,12] studied in detail problem (1λ,p) when f (u) = eu .

They proved that u∗ is a solution independently of Ω , and that u∗ is a bounded solution if in
addition

N < F(p) := p + 4 p

p − 1
. (7)

Moreover, if N ≥ p +4 p/(p −1) and the domain Ω is the unit ball of R
N then u∗ is unbounded.

All these results were first obtained for the Laplacian problem (1λ,2). Crandall and Rabinowitz
[6] obtained the existence of the branch of minimal solutions {(λ, uλ) : λ ∈ (0, λ∗)} and proved
that u∗ is a solution of the extremal problem (1λ∗,2) for the exponential and power nonlinearities.
Moreover, they proved the boundedness of the extremal solution in the range of dimensions
commented on before (for p = 2). Joseph and Lundgren [14] made a detailed analysis for
both nonlinearities when the domain is the unit ball of R

N . Using phase plane techniques,
they obtained that u∗ is an unbounded solution if N ≥ G(m, 2) for f (u) = (1 + u)m , and
if N ≥ F(2) = 10 for f (u) = eu , where G and F are defined in (6) and (7), respectively. Brezis
et al. [2] proved, under assumptions (2) and (3), that u∗ is a weak solution of (1λ∗,2). Moreover,
they proved nonexistence results for λ > λ∗. Brezis and Vázquez [3] gave a characterization of
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singular semi-stable solutions and, as consequence, obtained the results in [14] using variational
methods instead of phase plane techniques. In [19,10,18,23], and [8] other results can be found
about the extremal solution of problem (1λ∗,2).

In [21] it is proved, assuming only (2), (3), and p ≥ 2, that u∗ is a solution of (1λ∗,p) if
N < p(1+ p′), where p′ = p/(p −1). Moreover, if p + p′ ≤ N < p(1+ p′) then u∗ ∈ Lq(Ω),
for all 1 ≤ q < q̄0, and u∗ ∈ W 1,q

0 (Ω), for all 1 ≤ q < q̄1, where

q̄0 := (p − 1)
N

N − (p + p′)
and q̄1 := (p − 1)

N

N − (1 + p′)
.

It is also proved that u∗ ∈ L∞(Ω) if N < p + p′. These results extend a work due to Nedev
[20] for p = 2, establishing that u∗ is a solution if N ≤ 5, and that u∗ is bounded if N ≤ 3.
It is still an open problem to prove the boundedness (or not) of the extremal solution when
p(1 + p′) ≤ N < F(p) = p + 4 p′ even for p = 2 (note that when f (u) = eu and the domain
Ω is the unit ball of R

N , u∗ is an unbounded solution if N ≥ F(p)).
The main results of this work use the semi-stability property of minimal solutions to establish

the boundedness of the extremal solution for a large class of nonlinearities. The first one applies
to every convex f when 1 < p < 2 and to some convex f when p = 2.

Theorem 1. Assume (2) and (3). Let u∗ be the function defined in (5). The following assertions
hold:
(i) If f is a convex function, 1 < p < 2, and

N ≤ H (p) := p + 2 p

p − 1

(
1 +√

2 − p
)
, (8)

then u∗ is a regular solution of (1λ∗,p). In particular, u∗ ∈ L∞(Ω).
(ii) Let

τ− := lim inf
t→+∞

( f (t)− f (0)) f ′′(t)
f ′(t)2

. (9)

If p = 2, 0 < τ−, and N ≤ 6, then u∗ is a regular solution of (1λ∗,2). In particular, u∗ ∈ L∞(Ω).

First, we note that part (ii) extends the main result in [20] under an additional assumption on
f : 0 < τ−. Second, as we said before, if N ≥ F(p), where F is defined in (7), then the extremal
solution u∗ is not necessarily bounded. Since 1 < F(p) − H (p) < 4, for all 1 < p < 2, the
optimal or larger dimension ensuring the boundedness will differ from (8) at most by four.

The next result extends Theorem 1, and gives Lq and W 1,q
0 estimates for the extremal solution

of (1λ∗,p). Its proof uses some of the arguments appearing in [20] and [21].

Theorem 2. Assume (2) and (3). Let u∗ and τ− be defined in (5) and (9), respectively. If

p − 2

p − 1
< τ− (10)

then u∗ is a solution of (1λ∗,p). Moreover the following assertions hold:
(i) If in addition

N < N(p) := p + 2 p

p − 1

(
1 +√

1 − (p − 1)(1 − τ−)
)
, (11)

then u∗ ∈ L∞(Ω).
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(ii) If in addition N ≥ N(p) then u∗ ∈ Lq(Ω), for all 1 ≤ q < q0, and u∗ ∈ W 1,q
0 (Ω), for all

1 ≤ q < q1, where

q0 :=
(

p + 2
√

1 − (p − 1)(1 − τ−)
)

N

N − N(p)

and

q1 :=
(p − 1)

(
p + 2

√
1 − (p − 1)(1 − τ−)

)
N

(p − 1)N − 2
(

p +√
1 − (p − 1)(1 − τ−)

) . (12)

For f (u) = eu we have that τ− = 1 and hence N(p) = F(p), where F is defined in (7).
Therefore, Theorem 2(i) recovers the boundedness of the extremal solution for the exponential
nonlinearity. It also extends the main results in [21] under the assumption (10). However,
(p − 2)/(p − 1) ≤ τ− whenever (3) holds. Indeed, defining h(t) := ( f (t) − f (0))1/(p−1)

and using (3) one obtains that h′′(t) ≥ 0 for all t ≥ 0, or equivalently,

( f (t)− f (0)) f ′′(t)
f ′(t)2

≥ p − 2

p − 1
for all t ≥ 0.

Finally, it is easy to check that (10) implies the existence of positive constants c and m > p − 1
such that f (t) ≥ c(1 + t)m for all t ≥ 0. Hence, we are assuming more than the superlinearity
of f (t)1/(p−1) at infinity.

Theorem 2(i) applied to f (u) = (1 + u)m with m > p − 1 does not recover the results
commented on before. Using Lemma 3.2 in [5] we improve Theorem 2 for some reaction terms
f (u) that make its growth comparable to a power of u.

Theorem 3. Assume (2), (3), and that there exist positive constants m and c such that

0 ≤ f (t) ≤ c(1 + t)m , for all t ≥ 0. (13)

Let u∗ and τ− be defined in (5) and (9), respectively. If (p − 2)/(p − 1) < τ− and

N <
p

p − 1

(
1 + mp

m − (p − 1)
+ 2m

√
1 − (p − 1)(1 − τ−)

m − (p − 1)

)
, (14)

then u∗ is a regular solution of (1λ∗,p). In particular, u∗ ∈ L∞(Ω).

For f (u) = (1 + u)m with m > p − 1, we have

p − 2

p − 1
< τ− = m − 1

m
.

Therefore, by Theorem 3 applied to f (u) = (1 + u)m with m > p − 1, we obtain that
u∗ ∈ L∞(Ω) if N < G(m, p), where G is defined in (6). As a consequence, this result is
optimal for the pure power nonlinearity.

Our last theorem takes into account the number

τ+ := lim sup
t→+∞

( f (t)− f (0)) f ′′(t)
f ′(t)2

. (15)
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Point (i) will be proved using the fact that τ+ < 1 implies the existence of positive constants m
and c such that (13) holds (see Lemma 13 below), and then Theorem 3. Point (ii) is an immediate
consequence of Theorem 2(i). Point (iii) follows from parts (i) and (ii).

Theorem 4. Assume (2) and (3). Let u∗, τ−, and τ+ be defined in (5), (9) and (15), respectively.
If τ− > (p−2)/(p−1) then u∗ is a solution of (1λ∗,p). Moreover the following assertions hold:
(i) Assume τ+ < 1. If in addition

N <
p

p − 1

(
1 + p

1 − (p − 1)(1 − τ+)
+ 2

√
1 − (p − 1)(1 − τ−)

1 − (p − 1)(1 − τ+)

)
, (16)

then u∗ ∈ L∞(Ω).
(ii) Assume τ+ ≥ 1. If in addition

N < N(p) = p + 2 p

p − 1

(
1 +√

1 − (p − 1)(1 − τ−)
)
, (17)

then u∗ ∈ L∞(Ω).
(iii) Assume τ− = τ+. If in addition

N < F(p) = p + 4 p

p − 1
,

then u∗ ∈ L∞(Ω).

We remark that part (iii) in this theorem is sharp in the sense that there exists a nonlinearity f
and a domain Ω such that the extremal solution u∗ is unbounded if N ≥ F(p). Recently, Cabré,
Capella, and the author [4] proved, when Ω is the unit ball of R

N and f is a general locally
Lipschitz function, the boundedness of the extremal solution if N < F(p). As we said before,
this fact remains open for general domains. Theorem 4 gives a positive answer to this question
for some nonlinearities.

Finally, we note that in all our results we are assuming (p − 2)/(p − 1) < τ−. Using the
a priori estimates obtained in [21] and Lemma 3.2 in [5], it is possible to obtain analogous
regularity results when τ− = (p − 2)/(p − 1) and (13) (or τ+ < 1) holds. For instance, it can
be proved that u∗ is bounded for all N if τ = τ− = τ+ = (p − 2)/(p − 1). By Theorem 4, one
expects to obtain the last assertion, since the function appearing in the right-hand side of (16)
tends to infinity as τ goes to (p − 2)/(p − 1).

The paper is organized as follows. In Section 2 we give some known results. In Section 3, we
prove the existence and regularity of the extremal solution under suitable hypotheses on f which
include the assumptions in Theorems 1 and 2 (see Proposition 10 below). In Section 4 we prove
Theorems 1 and 2. Finally, in Section 5, we prove Theorems 3 and 4.

2. Known results

We consider{−�pu = g(x) in Ω ,
u = 0 on ∂Ω , (18)

where g ∈ Lq (Ω) for some q ≥ 1.
The following result can be found in [13] or in [1].
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Lemma 5. Assume that g ∈ Lq (Ω), for some q ≥ 1, and that u is a solution of (18). The
following assertions hold:
(i) If q > N/p then u ∈ L∞(Ω). Moreover,

‖u‖∞ ≤ C‖g‖
1

p−1
q ,

where C is a constant depending only on N, p, q, and |Ω |.
(ii) If q = N/p then u ∈ Lr (Ω) for all 1 ≤ r < +∞. Moreover,

‖u‖r ≤ C‖g‖
1

p−1
q ,

where C is a constant depending only on N, p, r , and |Ω |.
(iii) If 1 ≤ q < N/p then |u|r ∈ L1(Ω) for all 0 < r < r1, where r1 := (p − 1)Nq/(N − qp).
Moreover,

‖|u|r‖1/r
1 ≤ C‖g‖

1
p−1

q ,

where C is a constant depending only on N, p, q, r , and |Ω |.
To obtain the estimates for the gradient of the extremal solution we will use the following

regularity result which follows from Theorem 1.6 in [15].

Lemma 6. If g ∈ Lq (Ω) for some q ≥ q̃ , where

q̃ := N p

(p − 1)N + p
, (19)

then there exists a unique solution u of (18). If in addition q < N/p, then u ∈ W 1,r
0 (Ω), where

r = (p − 1)Nq/(N − q).

Remark 7. We note that the existence and uniqueness of a solution is well known if f ∈
W−1,p′

(Ω) (see [16]), and hence, if f ∈ Lq̃ (Ω) (since q̃ = (p∗)′, where p∗ = N p/(N − p)
corresponds to the critical Sobolev embedding).

Now, we recall the definition of semi-stable solution introduced in [5] and give a technical
lemma that we will use to prove Theorem 3 (see Lemma 3.2 in [5]).

Definition 8. Let u ∈ W 1,p
0 (Ω) be a solution of (1λ,p). Define

Au := W 1,p
0 (Ω) if p ≥ 2,

and

Au := {ψ ∈ W 1,p
0 (Ω) : |ψ| ≤ Cu and |∇ψ| ≤ C|∇u| in Ω , for some constant C}

if 1 < p < 2.

We say that u is semi-stable if∫
{∇u 
=0}

|∇u|p−2

{
(p − 2)

( ∇u

|∇u| · ∇ψ
)2

+ |∇ψ|2
}

dx − λ

∫
Ω

f ′(u)ψ2dx ≥ 0, (20)

for all ψ ∈ Au .
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We note that the left-hand side of (20) is the second variation of the energy functional
associated with (1λ,p) and that it is well defined on the set of admissible functions Au (see [5]
for more comments).

Lemma 9. Assume that there exist positive constants m and c such that

0 ≤ f (t) ≤ c(1 + t)m , for all t ≥ 0.

Let u be a solution of (1λ,p). If f (u) ∈ Lq(Ω) for some q ≥ 1 satisfying(
1 − p − 1

m

)
N < qp,

then

‖u‖∞ ≤ C,

where C is a constant depending only on N, m, p, q, |Ω |, c, and ‖λ f (u)‖q .

3. Preliminaries

The proof of all the results stated in the introduction is based in the following proposition.

Proposition 10. Assume (2) and (3), and define f̃ (t) := f (t)− f (0). If there exists γ ≥ 1/(p−1)
such that

lim sup
t→+∞

(p − 1)γ 2

∫ t
0 f̃ (s)2γ−2 f ′(s)2ds

f̃ (t)2γ−1 f ′(t)
< 1, (21)

then u∗ = limλ↑λ∗ uλ is a solution of (1λ∗,p). Moreover, the following assertions hold:
(i) If N < (2γ + 1)p then u∗ ∈ L∞(Ω). In particular f (u∗) ∈ L∞(Ω).
(ii) If N ≥ (2γ + 1)p then u∗ ∈ Lq (Ω), for all 1 ≤ q < q̃0, and f (u∗) ∈ Lq(Ω), for all
1 ≤ q < q̃1, where

q̃0 := ((p − 1)(2γ + 1)− 1)N

N − (2γ + 1)p
and q̃1 := (2γ + 1 − 1/(p − 1))N

N − p/(p − 1)
.

Remark 11. First, we note that for N = (2γ + 1)p, we have q̃0 = +∞ and hence, in this case,
one obtains that u∗ ∈ Lq(Ω) for all 1 ≤ q < +∞.

On the other hand, we want to explain the relation between assumptions (3) and (21). Let
h(t) = f̃ (t)1/(p−1). By (3), h is a convex function in [0,+∞). In particular, h′(t) ≥ h(t)/t for
all t > 0, or equivalently,

f ′(t) ≥ (p − 1)
f̃ (t)

t
, for all t > 0. (22)

Therefore, under assumption (2), we obtain that f ′(t) > 0 for all t > 0.
Moreover, since h′(s) ≤ h′(t), for all 0 < s < t , we have

f ′(s) ≤
(

f̃ (t)

f̃ (s)

) 2−p
p−1

f ′(t), for all 0 < s < t .
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From this inequality, we obtain∫ t

0
f̃ (s)2γ−2 f ′(s)2ds ≤

(
2γ − 1

p − 1

)−1

f̃ (t)2γ−1 f ′(t), for all t > 0,

and as a consequence, we get

lim sup
t→+∞

(p − 1)γ 2

∫ t
0 f̃ (s)2γ−2 f ′(s)2ds

f̃ (t)2γ−1 f ′(t)
≤ (p − 1)γ 2

2γ − 1/(p − 1)
. (23)

We note that the right-hand side of this inequality is one for γ = 1/(p − 1). In this sense,
hypothesis (21) is not very restrictive whenever (3) holds.

Finally, we have to mention that hypothesis (p − 2)/(p − 1) < τ− in our main results may
be replaced by the weakest assumption (21) (see Lemma 12 below). However, for the sake of
clarity, it seems better to consider (p − 2)/(p − 1) < τ− instead of (21). We also note that in
Proposition 10 it is not necessary to assume that f is a C2 function, but only C1. Moreover, as a
consequence of Proposition 10(i), one obtains that u∗ is bounded if N < p + 2 p/(p − 1), since
γ ≥ 1/(p − 1).

Proof of Proposition 10. Let f̃ (t) = f (t) − f (0), λ ∈ (0, λ∗), and let uλ be the minimal
solution of (1λ,p). Recalling that uλ ∈ C1,α(Ω̄) and the definition of Auλ given in Definition 8,
it is easy to check that ψ := f̃ (uλ)γ ∈ Auλ , since γ ≥ 1/(p − 1). Therefore, taking ψ in the
semi-stability condition (20), we obtain

λ

∫
Ω

f̃ (uλ)
2γ f ′(uλ) dx ≤ (p − 1)γ 2

∫
Ω

f̃ (uλ)
2γ−2 f ′(uλ)2|∇uλ|p dx . (24)

Let g′(t) := f̃ (t)2γ−2 f ′(t)2. Taking ϕ = g(uλ) as a test function in (4), we have∫
Ω

f̃ (uλ)
2γ−2 f ′(uλ)2|∇uλ|p dx = λ

∫
Ω

f̃ (uλ)g(uλ) dx + λ f (0)
∫
Ω

g(uλ) dx . (25)

From (24) and (25), we obtain∫
Ω

f̃ (uλ)
2γ f ′(uλ) dx ≤ (p − 1)γ 2

(∫
Ω

f̃ (uλ)g(uλ) dx + f (0)
∫
Ω

g(uλ) dx

)
. (26)

Using (21) and (23), we obtain that

lim sup
t→+∞

(p − 1)γ 2 f̃ (t)g(t)

f̃ (t)2γ f ′(t)
< 1

and

lim
t→+∞

g(t)

f̃ (t)2γ f ′(t)
= 0.

From these limits and (26), it follows that∫
Ω

f̃ (uλ)
2γ f ′(uλ) dx ≤ C,

where C , here and in the rest of the proof, is a constant independent of λ. Moreover, by (22), we
obtain∫

Ω

f̃ (uλ)2γ+1

uλ
dx ≤ C, (27)
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and hence, since f (t)1/(p−1) is superlinear at infinity by assumption (2), f (uλ) is uniformly
bounded in L2γ+1−1/(p−1)(Ω).

If N < (2γ + 1 − 1/(p − 1))p then, by Lemma 5(i), uλ is uniformly bounded in L∞(Ω).
Therefore u∗ = limλ↑λ∗ uλ is a regular extremal solution of (1λ∗,p). This proves part of assertion
(i).

Assume N ≥ (2γ + 1 − 1/(p − 1))p. Using Lemma 5(ii)–(iii), we have that uλ is uniformly
bounded in Lr (Ω) for all

1 ≤ r < r0 := (p − 1)(2γ + 1 − 1/(p − 1))N

N − (2γ + 1 − 1/(p − 1))p
. (28)

We note that r0 ≥ p since γ ≥ 1/(p − 1).
We will do an iterative process starting with r0. Assume that there exists rn ≥ p such that uλ

is uniformly bounded in Lr (Ω) for all 1 ≤ r < rn . Let

αn := 2γ + 1

1 + rn

and set Ω = Ω1 ∪ Ω2, where

Ω1 := {x ∈ Ω : f̃ (uλ)
2γ+1/uλ > f̃ (uλ)

2γ+1−αn }
and

Ω2 := {x ∈ Ω : f̃ (uλ) ≤ u1/αn
λ }.

From (27) we have∫
Ω1

f̃ (uλ)
2γ+1−αn dx ≤ C.

On the other hand,∫
Ω2

f̃ (uλ)
r dx ≤

∫
Ω2

uλ
r
αn dx ≤ C, for all 1 ≤ r < αnrn .

Therefore,

f (uλ) ∈ Lr (Ω), for all 1 ≤ r < (2γ + 1)
rn

1 + rn
= 2γ + 1 − αn = αnrn . (29)

Using Lemma 5 again, the following assertions hold:

1. If (1 + rn)N < (2γ + 1)rn p then uλ is uniformly bounded in L∞(Ω). As a consequence,
u∗ = limλ↑λ∗ uλ is a solution of (1λ∗,p).

2. If (1 + rn)N ≥ (2γ + 1)rn p then uλ is uniformly bounded in Lr (Ω), for all

1 ≤ r < rn+1 := (p − 1)(2γ + 1)rn N

(1 + rn)N − (2γ + 1)rn p
.

We start the bootstrap argument with r0 given in (28). If N < (2γ +1)p then assertion 1 holds
for some n, and hence, part (i) in the proposition follows. If N ≥ (2γ + 1)p then we obtain, by
assertion 2, an increasing sequence with limit

r∞ = ((p − 1)(2γ + 1)− 1)N

N − (2γ + 1)p
.
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From this, assertion 2, and (29), it follows that

u∗ ∈ Lq (Ω) for all 1 ≤ q <
((p − 1)(2γ + 1)− 1)N

N − (2γ + 1)p
= q̃0

and

f (u∗) ∈ Lq(Ω) for all 1 ≤ q <
(2γ + 1 − 1/(p − 1))N

N − p/(p − 1)
= q̃1,

since all the estimates obtained for uλ and f (uλ) are independent of λ.
Finally, we prove that u∗ = limλ↑λ∗ uλ is a solution of (1λ∗,p). Using γ ≥ 1/(p −1), we have

q̃1 = (2γ + 1 − 1/(p − 1))N

N − p/(p − 1)
≥ p∗

p∗ − 1
,

where p∗ = N p/(N − p). Therefore, we obtain that f (uλ) converges to f (u∗) as λ ↑ λ∗ in
L p∗/(p∗−1)(Ω) and also in W−1,p′

(Ω), since L p∗/(p∗−1)(Ω) ⊂ W−1,p′
(Ω). The continuity of

(−�p)
−1 from W−1,p′

(Ω) to W 1,p
0 (Ω) gives that uλ converges, strongly in W 1,p

0 (Ω), to u∗ as

λ ↑ λ∗. Hence, we conclude that for each ϕ ∈ W 1,p
0 (Ω),∫

Ω
|∇u∗|p−2∇u∗ · ∇ϕ dx = lim

λ↑λ∗

∫
Ω

|∇uλ|p−2∇uλ · ∇ϕ dx

= lim
λ↑λ∗ λ

∫
Ω

f (uλ) dx = λ∗
∫
Ω

f (u∗)ϕ dx . �

4. Proof of Theorems 1 and 2

In order to prove Theorem 2 we need the following technical lemma.

Lemma 12. Assume (2) and (3). Let τ− be defined in (9). If τ− > (p − 2)/(p − 1) then every

γ ∈
(

1

p − 1
,

1 +√
1 − (p − 1)(1 − τ−)

p − 1

)

satisfies (21).

Proof. Let τ ∈ (0, 1). We have the following equivalence:

(p − 1)γ 2

∫ t
0 f̃ (s)2γ−2 f ′(s)2ds

f̃ (t)2γ−1 f ′(t)
< τ

if and only if

Gγ,τ (t) := (p − 1)γ 2
∫ t

0
f̃ (s)2γ−2 f ′(s)2ds − τ f̃ (t)2γ−1 f ′(t) < 0.

We note that

G′
γ,τ (t) =

[
(p − 1)γ 2 − τ (2γ − 1)− τ

f̃ (t) f ′′(t)
f ′(t)2

]
f̃ (t)2γ−2 f ′(t)2.

Let ε0 := τ− −(p−2)/(p−1) > 0 and note that for every ε ∈ (0, ε0) there exists t0 = t0(ε) > 0
such that

G′
γ,τ (t) ≤ [(p − 1)γ 2 − τ (2γ − 1 + τ− − ε)] f̃ (t)2γ−2 f ′(t)2, for all t ≥ t0. (30)
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Noting that τ0 := (p − 1)(1 − τ− + ε) < 1 (for all ε ∈ (0, ε0)), we obtain that

(p − 1)γ 2 − (2γ − 1 + τ− − ε)τ < 0, (31)

for all τ ∈ (τ0, 1) and

γ ∈
[

τ

p − 1
,
τ +√

τ (τ − (p − 1)(1 − τ− + ε))

p − 1

)
. (32)

Moreover, since f (t)1/(p−1) is superlinear at infinity and (22), we have

lim
t→+∞ f̃ (t)2γ−2 f ′(t)2 = +∞, for all γ ≥ 1

p − 1
.

Now, using the last limit, (30) and (31), we obtain

lim
t→+∞ G′

γ,τ (t) = −∞,

for all ε ∈ (0, ε0), τ ∈ (τ0, 1), and γ satisfying (32). In particular,

lim
t→+∞ Gγ,τ (t) = −∞

for the same range of parameters. The result follows from the last limit and the equivalence given
at the beginning of the proof, in view of the arbitrariness of ε and τ . �

As a consequence of Proposition 10 and Lemma 12 we prove Theorem 2.

Proof of Theorem 2. Assume τ− > (p − 2)/(p − 1). By Lemma 12, every

γ ∈
(

1

p − 1
,

1 +√
1 − (p − 1)(1 − τ−)

p − 1

)

satisfies (21). Therefore, u∗ is a solution of (1λ∗,p) by Proposition 10.
(i) If in addition N < N(p), where N(p) is defined in (11), then the boundedness of u∗

follows from Proposition 10(i) and the arbitrariness of γ .
(ii) If in addition N ≥ N(p), then Proposition 10(ii) and the arbitrariness of γ give that

u∗ ∈ Lq (Ω), for all 1 ≤ q < q0, and f (u∗) ∈ Lq(Ω), for all 1 ≤ q < q̄1, where

q0 =
(

p + 2
√

1 − (p − 1)(1 − τ−)
) N

N − N(p)

and

q̄1 =
(

p + 2
√

1 − (p − 1)(1 − τ−)
) N

(p − 1)N − p
.

Let q̃ = (p∗)′ be defined in (19). Noting that q̄1 ≤ N/p (since N ≥ N(p)) and q̃ < q̄1, we
have f (u∗) ∈ Lq (Ω) for all q̃ ≤ q < q̄1 ≤ N/p. Therefore, by Lemma 6, we obtain that
u∗ ∈ W 1,r

0 (Ω) with 1 ≤ r < (p − 1)Nq̄1/(N − q̄1). We conclude the proof by noting that the
exponent q1 given in (12) coincides with (p − 1)Nq̄1/(N − q̄1). �
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Now, we prove Theorem 1 as a corollary of Theorem 2.

Proof of Theorem 1. (i) Assume f convex and 1 < p < 2. Under these assumptions it is clear
that

p − 2

p − 1
< 0 ≤ τ−.

Therefore, from Theorem 2, we obtain that u∗ is a bounded solution of (1λ∗,p) if

N < N(p) = p + 2 p

p − 1

[
1 +√

1 − (p − 1)(1 − τ−)
]
.

We conclude by noting that

N(p) ≥ H (p) = p + 2 p

p − 1

[
1 +√

2 − p
]
> 6,

where H is given in (8).
(ii) Assume 0 < τ− and p = 2. By Theorem 2, we obtain that u∗ is a bounded solution of

(1λ∗,p) if

N < N(2) = 2 + 4
(
1 + √

τ−
)
.

The assertion and the theorem follow noting that N(2) > 6. �

5. Proof of Theorems 3 and 4

We start proving Theorem 3 as a consequence of Proposition 10 and Lemmas 12 and 9.

Proof of Theorem 3. Assume τ− > (p−2)/(p−1) and let N(p) be given in (11). If N < N(p)
then the assertion follows from Theorem 2(i). Thus, we may assume N ≥ N(p). It follows from
Lemma 12 and Proposition 10 that u∗ is a solution of (1λ∗,p) and

f (u∗) ∈ Lq(Ω) for all q < q̄1 =
(

p + 2
√

1 − (p − 1)(1 − τ−)
) N

(p − 1)N − p
.

By Lemma 9, we obtain that u∗ ∈ L∞(Ω) if(
1 − p − 1

m

)
N < pq̄1,

or equivalently, if (14) holds. �

In order to prove Theorem 4, we need the following technical result that states a relation
between assumptions (13) and τ+ < 1.

Lemma 13. Let f be a positive C2 function such that f ′(t) > 0, for all t > 0. Let τ+ be given
in (15). If τ+ < 1 then, for every ε ∈ (0, 1 − τ+), there exists a positive constant c depending on
ε such that

f (t) ≤ c(1 + t)
1

1−(τ++ε) , for all t ≥ 0.
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Proof. Let ε ∈ (0, 1 − τ+). By definition of τ+ there exists t0 = t0(ε) such that f̃ (t) f ′′(t) ≤
(τ+ + ε) f ′(t)2, for all t ≥ t0. Therefore

[ln f ′(t)]′ = f ′′(t)
f ′(t)

≤ (τ+ + ε)
f ′(t)
f̃ (t)

= (τ+ + ε)[ln f̃ (t)]′, for all t ≥ t0.

Integrating the last expression with respect to t , we obtain

ln

(
f ′(t)
f ′(t0)

)
≤ ln

(
f̃ (t)

f̃ (t0)

)τ++ε
, for all t > t0,

or equivalently,

f ′(t)
f̃ (t)τ++ε =

(
f̃ (t)1−(τ++ε)

1 − (τ+ + ε)

)′
≤ f ′(t0)

f̃ (t0)τ++ε , for all t > t0.

Integrating again, we obtain

f (t) ≤
[
(1 − (τ+ + ε))

f ′(t0)
f̃ (t0)τ++ε (t − t0)+ f̃ (t0)

1−(τ++ε)
] 1

1−(τ++ε) + f (0),

for all t ≥ t0. The lemma follows easily from the last inequality. �

Finally, we prove Theorem 4 as a consequence of the previous lemma, Theorems 2 and 3.

Proof of Theorem 4. Since τ− > (p − 2)/(p − 1), u∗ is a solution of (1λ∗,p) by Theorem 2.
(i) Assume τ+ < 1. By Lemma 13, for every ε ∈ (0, 1 − τ+), there exists a positive constant c
(depending on ε) such that

f (t) ≤ c(1 + t)
1

1−(τ++ε) , for all t ≥ 0.

Therefore, from Theorem 3 with m = 1/(1 − (τ+ + ε)), it follows that u∗ ∈ L∞(Ω) if

N <
p

p − 1

(
1 + p

1 − (p − 1)(1 − (τ+ + ε))
+ 2

√
1 − (p − 1)(1 − τ−)

1 − (p − 1)(1 − (τ+ + ε))

)
.

Hence, we obtain the assertion by the arbitrariness of ε.
(ii) It is clear from Theorem 2(i).
(iii) We conclude the proof by noting that the right-hand side of inequalities (16) and (17) is
bigger than or equal to F(p) = p + 4 p/(p − 1). �
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