Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces

Cristina Caldeira
Centro de Matemática da Universidade de Coimbra, Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

Received 25 July 2006; accepted 16 February 2007
Available online 25 February 2007
Submitted by R.A. Brualdi

Abstract

Let V be a finite dimension vector space. For a linear operator on $V, f, D(f)$ denotes the restriction of the derivation associated with f to the m th Grassmann space of V. In [J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and aditive theory, Bull. London Math. Soc., 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of $D(f)$, over an arbitrary field. Over a field of zero characteristic that lower bound is given by $$
\operatorname{deg}\left(P_{D(f)}\right) \geqslant m\left(\operatorname{deg}\left(P_{f}\right)-m\right)+1 .
$$

Using additive number theory results, results on the elementary divisors of $D(f)$ and methods presented by Marcus and Ali in [Marvin Marcus, M. Shafqat Ali, Minimal polynomials of additive commutators and Jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f. © 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A69

Keywords: Grassmann space; Derivation; Minimal polynomial

[^0]
1. Introduction

Let \mathbb{F} be a field of zero characteristic and let V be a finite dimension vector space over \mathbb{F} such that $\operatorname{dim} V \geqslant m \geqslant 2$, where m is an integer. Let S_{m} be the symmetric group of degree m. For $\sigma \in S_{m}, P(\sigma)$ denotes the unique linear operator on the m th tensor power product of $V, \otimes^{m} V$, such that

$$
P(\sigma)\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m}\right)=v_{\sigma^{-1}(1)} \otimes v_{\sigma^{-1}(2)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}
$$

for all $v_{1}, v_{2}, \ldots, v_{m} \in V$.
Let ε be the alternating character on S_{m} and consider the symmetrizer defined on $\otimes^{m} V$ by

$$
T_{\varepsilon}=\frac{1}{m!} \sum_{\sigma \in S_{m}} \varepsilon(\sigma) P(\sigma)
$$

The m th Grassmann space of V is $\wedge^{m} V=T_{\varepsilon}\left(\otimes^{m} V\right)$. For $v_{1}, v_{2}, \ldots, v_{m} \in V, v_{1} \wedge v_{2} \wedge \cdots \wedge v_{m}$ denotes $T_{\varepsilon}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m}\right)$.

For a linear operator, g, on a vector space over \mathbb{F}, P_{g} denotes the minimal polynomial of g and $\operatorname{deg}\left(P_{g}\right)$ denotes its degree. The spectrum of g, i.e., the set of all eigenvalues of g in the algebraic closure of \mathbb{F}, is denoted by $\sigma(g)$.

We are going to use the well known fact that, for a simple structure linear operator, the degree of its minimal polynomial is equal to the cardinality of its spectrum.

Let f be a linear operator on V. The derivation associated with f is the linear operator on $\otimes^{m} V$,

$$
f \otimes I_{V} \otimes \cdots \otimes I_{V}+I_{V} \otimes f \otimes \cdots \otimes I_{V}+\cdots+I_{V} \otimes I_{V} \otimes \cdots \otimes f
$$

The derivation associated with f commutes with T_{ε} [2, Section 3.2]. Hence, $\wedge^{m} V$ is an invariant subspace of the derivation associated with f. Let $D(f)$ denote the restriction of the derivation associated with f to $\wedge^{m} V$. In [1] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of $D(f)$, over an arbitrary field. Over a field of zero characteristic that lower bound is given by

$$
\begin{equation*}
\operatorname{deg}\left(P_{D(f)}\right) \geqslant m\left(\operatorname{deg}\left(P_{f}\right)-m\right)+1 \tag{1}
\end{equation*}
$$

Using additive number theory results, results on the elementary divisors of $D(f)$ and methods presented in [3] we shall obtain a characterization of equality cases in (1) (for zero characteristic), whenever m does not exceed the number of distinct eigenvalues of f.

2. Additive number theory results

Let k and r be positive integers. By $Q_{k, r}$ we denote the set of all strictly increasing maps from $\{1, \ldots, k\}$ into $\{1, \ldots, r\}$. If $\alpha \in Q_{k, r}$ we use the k-tuple notation for α, that is, $\alpha=$ $(\alpha(1), \ldots, \alpha(k))$.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a finite non-empty subset of \mathbb{F}, such that $|A|=r \geqslant m$, where $|A|$ denotes the cardinality of A.

By $\wedge^{m} A$ we denote the set of sums of m distinct elements in A, that is,

$$
\wedge^{m} A=\left\{\sum_{i=1}^{m} a_{\alpha(i)}: \alpha \in Q_{m, r}\right\}
$$

In [1] Dias da Silva and Hamidoune obtained a lower bound for the cardinality of $\wedge^{m} A$, for A subset of an arbitrary field. In zero characteristic that lower bound is given by

$$
\begin{equation*}
\left|\wedge^{m} A\right| \geqslant m(|A|-m)+1 \tag{2}
\end{equation*}
$$

For subsets of \mathbb{Q} it is well known a characterization of equality cases in (2).
Lemma 1 [6, Theorem 1.10]. Let A be a finite subset of \mathbb{Q} such that $|A| \geqslant m \geqslant 2$. Then

$$
\left|\wedge^{m} A\right|=m(|A|-m)+1
$$

if and only if one of the following conditions holds:
(1) $|A| \in\{m, m+1\}$;
(2) A is an arithmetic progression;
(3) $m=2,|A|=4$ and there exist $a \in \mathbb{Q}, q, q^{\prime} \in \mathbb{Q} \backslash\{0\}$ such that $q \neq q^{\prime}, q+q^{\prime} \neq 0$ and $A=a+\left\{0, q, q^{\prime}, q+q^{\prime}\right\}$.

Next lemma will be used to adjust the proof of Lemma 1 in [6] to the case of an arbitrary field of zero characteristic. It is a straightforward generalization of Lemma 2.1 from [3].

Lemma 2. Let $m \geqslant 2$ and let V be an n-dimensional vector space over a field of zero characteristic, \mathbb{F}. Let $r \in \mathbb{N}$ and let $u_{1}, \ldots, u_{r} \in V$ be distinct. Then there exists a basis $\left\{g_{1}, \ldots, g_{n}\right\}$ of V^{*}, such that, for each $j \in\{1, \ldots, n\}, g_{j}\left(u_{1}\right), \ldots, g_{j}\left(u_{r}\right)$ are r distinct elements in \mathbb{F} and

$$
\left|\left\{\sum_{i=1}^{m} u_{\alpha(i)}: \alpha \in Q_{m, r}\right\}\right| \geqslant\left|\wedge^{m}\left\{g_{j}\left(u_{1}\right), \ldots, g_{j}\left(u_{r}\right)\right\}\right| \geqslant m(r-m)+1
$$

Proposition 1. Let \mathbb{F} be a field of zero characteristic and let A be a finite subset of \mathbb{F} such that $|A| \geqslant m \geqslant 2$. Then

$$
\left|\wedge^{m} A\right|=m(|A|-m)+1
$$

if and only if one of the following conditions holds:
(1) $|A| \in\{m, m+1\}$;
(2) A is an arithmetic progression;
(3) $m=2,|A|=4$ and there exist $a \in \mathbb{F}, q, q^{\prime} \in \mathbb{F} \backslash\{0\}$ such that $q \neq q^{\prime}, q+q^{\prime} \neq 0$ and

$$
A=a+\left\{0, q, q^{\prime}, q+q^{\prime}\right\}
$$

Proof. The sufficient condition's proof is obvious, so we include only the necessary condition's proof. Suppose $A=\left\{a_{1}, \ldots, a_{r}\right\}$, where $r=|A| \geqslant m+2 \geqslant 4$, and $\left|\wedge^{m} A\right|=m(r-m)+1$.

Consider the vector space over \mathbb{Q},

$$
W=\left\{\sum_{i=1}^{r} \beta_{i} a_{i}: \beta_{i} \in \mathbb{Q}\right\}
$$

and let $n=\operatorname{dim}_{\mathbb{Q}} W \leqslant r$. From Lemma 2 there exists a basis of $W^{*},\left\{g_{1}, \ldots, g_{n}\right\}$, such that, for $t=1, \ldots, n$,

$$
\left|\left\{g_{t}\left(a_{1}\right), \ldots, g_{t}\left(a_{r}\right)\right\}\right|=r
$$

Without loss of generality we assume that a_{1}, \ldots, a_{r} are ordered in such way that

$$
g_{1}\left(a_{1}\right)<g_{1}\left(a_{2}\right)<\cdots<g_{1}\left(a_{r}\right) .
$$

We consider the elements in $\wedge^{m} A$ given by

$$
\begin{aligned}
b_{i, 1} & =a_{1}+\cdots+a_{m-1}+a_{i}, \quad i=m, \ldots, r, \\
b_{i, j} & =\underbrace{a_{1}+\cdots+a_{m-j}}_{m-j}+a_{i}+\underbrace{a_{r-j+2}+\cdots+a_{r}}_{j-1}, \\
i & =m-j+2, \ldots, r-j+1, \quad j=2, \ldots, m
\end{aligned}
$$

and the m subsets of $\wedge^{m} A$ given by

$$
\begin{aligned}
& B_{1}=\left\{b_{i, 1}: i=m, \ldots, r\right\} \\
& B_{j}=\left\{b_{i, j}: i=m-j+2, \ldots, r-j+1\right\}, \quad j=2, \ldots, m .
\end{aligned}
$$

Since $g_{1}\left(a_{1}\right)<g_{1}\left(a_{2}\right)<\cdots<g_{1}\left(a_{r}\right)$, we have

$$
\begin{equation*}
g_{1}\left(b_{m, 1}\right)<g_{1}\left(b_{m+1,1}\right)<\cdots<g_{1}\left(b_{r, 1}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
& g_{1}\left(b_{r-j+2, j-1}\right)<g_{1}\left(b_{m-j+2, j}\right)<g_{1}\left(b_{m-j+3, j}\right)<\cdots<g_{1}\left(b_{r-j+1, j}\right)<g_{1}\left(b_{m-j+1, j+1}\right), \\
& \quad j=2, \ldots, m . \tag{4}
\end{align*}
$$

Hence the sets $B_{1}, B_{2}, \ldots, B_{m}$ are pairwise disjoint and, from $\left|\wedge^{m} A\right|=m(r-m)+1$, it follows that

$$
\begin{equation*}
\wedge^{m} A=\bigcup_{j=1}^{m} B_{j} \tag{5}
\end{equation*}
$$

Let $j \in\{1, \ldots, m-1\}$. For $i=m-j+2, \ldots, r-j$ let

$$
c_{i, j}=\underbrace{a_{1}+\cdots+a_{m-j-1}}_{m-j-1}+a_{m-j+1}+a_{i}+\underbrace{a_{r-j+2}+\cdots+a_{r}}_{j-1} .
$$

Suppose $j \geqslant 2$. Since $c_{i, j} \in \wedge^{m} A$ and $g_{1}\left(b_{m-j+2, j}\right)<g_{1}\left(c_{i, j}\right)<g_{1}\left(b_{m-j+1, j+1}\right)$, it follows that $c_{i, j} \in B_{j} \backslash\left\{b_{m-j+2, j}\right\}$.

Therefore, from $g_{1}\left(c_{m-j+2, j}\right)<g_{1}\left(c_{m-j+3, j}\right)<\cdots<g_{1}\left(c_{r-j, j}\right)$ and (4), we have $c_{i, j}=$ $b_{i+1, j}$. Hence

$$
a_{m-j+1}+a_{i}=a_{m-j}+a_{i+1}, \quad i=m-j+2, \ldots, r-j, \quad j=2, \ldots, m-1
$$

Next we prove that this is also true for $j=1$. For $m+1 \leqslant i \leqslant r-1$ we have

$$
g_{1}\left(b_{m+1,1}\right)<g_{1}\left(c_{i, 1}\right)<g_{1}\left(b_{m, 2}\right)
$$

and so $c_{i, 1} \in B_{1} \backslash\left\{b_{m, 1}, b_{m+1,1}\right\}$. From $g_{1}\left(c_{m+1,1}\right)<g_{1}\left(c_{m+2,1}\right)<\cdots<g_{1}\left(c_{r-1,1}\right)$ and (3), we have $c_{i, 1}=b_{i+1,1}$, that is, $a_{m}+a_{i}=a_{m-1}+a_{i+1}$.

Thus we have proved that

$$
\begin{equation*}
a_{t+1}-a_{t}=a_{m-j+1}-a_{m-j}, \quad j=1, \ldots, m-1, \quad t=m-j+2, \ldots, r-j \tag{6}
\end{equation*}
$$

(I) $r \geqslant m+3$

First suppose $m=2$. From (6) we have
$a_{i+1}-a_{i}=a_{2}-a_{1}, \quad i=3, \ldots, r-1$.
Since $r \geqslant 5$ and
$g_{1}\left(a_{1}+a_{t}\right)<g_{1}\left(a_{3}+a_{r-1}\right)<g_{1}\left(a_{t+1}+a_{r}\right), \quad t=2, \ldots, r-1$,
from (5) it follows that $a_{3}+a_{r-1} \in\left\{a_{1}+a_{r}, a_{2}+a_{r}\right\}$.
Then $a_{3}+a_{r-1}=a_{2}+a_{r}$, since, from (7), $a_{1}+a_{r}=a_{2}+a_{r-1} \neq a_{3}+a_{r-1}$.
Hence, for $m=2$ we have
$a_{i+1}-a_{i}=a_{2}-a_{1}, \quad i=1,2, \ldots, r-1$.
Next we prove that this is also true for $m \geqslant 3$. Suppose $m \geqslant 3$. For $i \in\{1, \ldots, m-2\}$, taking $j=i$ and $t=m-i+2$ in (6) we obtain $a_{m-i+3}-a_{m-i+2}=a_{m-i+1}-a_{m-i}$.
Taking $j=i+1$ and $t=m-(i+1)+3 \leqslant r-(i+1)$ in (6) we obtain $a_{m-i+3}-$ $a_{m-i+2}=a_{m-i}-a_{m-i-1}$.
Then $a_{m-i+1}-a_{m-i}=a_{m-i}-a_{m-i-1}$, for $i=1, \ldots, m-2$.
Hence
$a_{i+1}-a_{i}=a_{2}-a_{1}, \quad i=1, \ldots, m-1$.
Taking $j=2$ and $t=m$ in (6) we get $a_{m+1}-a_{m}=a_{m-1}-a_{m-2}=a_{2}-a_{1}$.
For $i=m+1, \ldots, r-1$, taking $j=1$ and $t=i$ in (6) we have $a_{i+1}-a_{i}=a_{m}-a_{m-1}=$ $a_{2}-a_{1}$.
Thus
$a_{i+1}-a_{i}=a_{2}-a_{1}, \quad i=1, \ldots, r-1$,
that is, A is an arithmetic progression with first term a_{1} and difference $a_{2}-a_{1}$.
(II) $r=m+2$

In this case, from (6), we have
$a_{m-j+3}-a_{m-j+2}=a_{m-j+1}-a_{m-j}, \quad j=1, \ldots, m-1$.
That is,
$a_{m+2}-a_{m+1}=a_{m}-a_{m-1}=\cdots= \begin{cases}a_{2}-a_{1}, & \text { if } m \text { is even, } \\ a_{3}-a_{2}, & \text { if } m \text { is odd }\end{cases}$
and
$a_{m+1}-a_{m}=a_{m-1}-a_{m-2}=\cdots= \begin{cases}a_{3}-a_{2}, & \text { if } m \text { is even, } \\ a_{2}-a_{1}, & \text { if } m \text { is odd. }\end{cases}$
Let
$d=\left\{\begin{array}{ll}a_{2}-a_{1}, & \text { if } m \text { is even, } \\ a_{3}-a_{2}, & \text { if } m \text { is odd, }\end{array} \quad\right.$ and $\quad d^{\prime}= \begin{cases}a_{3}-a_{2}, & \text { if } m \text { is even, } \\ a_{2}-a_{1}, & \text { if } m \text { is odd. }\end{cases}$
If $m=2$ then $r=4$ and condition (2) or condition (3) holds according to $d=d^{\prime}$ or $d \neq d^{\prime}$. Suppose $m \geqslant 3$. Since $r=m+2$, we have
$B_{1}=\left\{b_{m, 1}, b_{m+1,1}, b_{m+2,1}\right\}=b_{m, 1}+\left\{0, d^{\prime}, d+d^{\prime}\right\}$
and

$$
B_{2}=\left\{b_{m, 2}, b_{m+1,2}\right\}=b_{m, 1}+\left\{2 d+d^{\prime}, 2 d+2 d^{\prime}\right\} .
$$

$$
\text { Let } z=a_{1}+\cdots+a_{m-3}+a_{m-1}+a_{m}+a_{m+1}=b_{m, 1}+d+2 d^{\prime} \in \wedge^{m} A
$$

From $g_{1}(z)<g_{1}\left(b_{m-1,3}\right)$ it follows that $z \in B_{1} \dot{\cup} B_{2}$.
Then $d+2 d^{\prime} \in\left\{0, d^{\prime}, d+d^{\prime}, 2 d+d^{\prime}, 2 d+2 d^{\prime}\right\}$. Analyzing the five possibilities we conclude that only $d+2 d^{\prime}=2 d+d^{\prime}$ is admissible. Then $d=d^{\prime}=a_{2}-a_{1}$ and A is an arithmetic progression with first term a_{1} and difference $a_{2}-a_{1}$.

3. Elementary divisors

Let $m \geqslant 2$, let \mathbb{F} be a field of zero characteristic and let V be a finite dimension vector space over \mathbb{F} such that $\operatorname{dim} V \geqslant m$. Let f be a linear operator on V. The following characterization of the elementary divisors of $D(f)$ is well known [4,5].

Let

$$
\left(X-\mu_{i}\right)^{n_{i}}, \quad i=1,2, \ldots, \ell
$$

be the elementary divisors of f, where $\mu_{1}, \ldots, \mu_{\ell} \in \overline{\mathbb{F}}$ are not necessarily distinct. Let k_{1}, k_{2}, \ldots, k_{ℓ} be nonnegative integers such that

$$
\begin{equation*}
k_{1}+k_{2}+\cdots+k_{\ell}=m \quad \text { and } \quad k_{i} \leqslant n_{i}, \quad i=1,2, \ldots, \ell . \tag{8}
\end{equation*}
$$

Let $r_{1}, r_{2}, \ldots, r_{\ell}$ be nonnegative integers such that

$$
\begin{equation*}
2 r_{i} \leqslant k_{i}\left(n_{i}-k_{i}\right), \quad i=1,2, \ldots, \ell . \tag{9}
\end{equation*}
$$

For $s \in\{1,2, \ldots, \ell\}$ define

$$
E_{s}=k_{s}\left(n_{s}-k_{s}\right)-2 r_{s}+1 \quad \text { and } \quad \mathscr{E}_{s}=\sum_{i=1}^{s} E_{i}
$$

For $q_{1}, q_{2}, \ldots, q_{\ell-1}$ integers such that

$$
\begin{equation*}
1 \leqslant q_{s} \leqslant \min \left\{\mathscr{E}_{s}-2\left(q_{1}+\cdots+q_{s-1}\right)+s-1, E_{s+1}\right\}, \quad s=1, \ldots, \ell-1, \tag{10}
\end{equation*}
$$

define

$$
\eta\left(r_{1}, \ldots, r_{\ell}, q_{1}, \ldots, q_{\ell-1}\right)=\mathscr{E}_{\ell}-2\left(q_{1}+q_{2}+\cdots+q_{\ell-1}\right)+\ell-1 .
$$

Let $s \in\{1,2, \ldots, \ell\}$. For each positive integer j we denote by $p_{s, j}$ the number of partitions of j into not more than k_{s} parts, each part at most $n_{s}-k_{s}$ and define $p_{s, 0}=1$.

For each $s \in\{1,2, \ldots, \ell\}$ let

$$
c_{s}= \begin{cases}1, & \text { if } r_{s}=0 \\ p_{s, r_{s}}-p_{s, r_{s}-1}, & \text { if } r_{s}>0\end{cases}
$$

Theorem 1 [4,5]. The elementary divisors of $D(f)$ are

$$
\left(X-\sum_{s=1}^{\ell} k_{s} \mu_{s}\right)^{\eta\left(r_{1}, \ldots, r_{\ell}, q_{1}, \ldots, q_{\ell-1}\right)}, \quad c_{1} c_{2} \cdots c_{\ell} \text { times }
$$

when $k_{1}, \ldots, k_{\ell}, r_{1}, \ldots, r_{\ell}, q_{1}, \ldots, q_{\ell-1}$ run over the sets of nonnegative integers satisfying (8)-(10).

Remark 1. For $k_{1}, \ldots, k_{\ell}, r_{1}, \ldots, r_{\ell}, q_{1}, \ldots, q_{\ell-1}$ satisfying (8)-(10), we have

$$
\eta\left(r_{1}, \ldots, r_{\ell}, q_{1}, \ldots, q_{\ell-1}\right) \leqslant \mathscr{E}_{\ell}-\ell+1 \leqslant \sum_{s=1}^{\ell} k_{s}\left(n_{s}-k_{s}\right)+1
$$

Remark 2. If we consider $r_{1}=\cdots=r_{\ell}=0$ and $q_{1}=\cdots=q_{\ell-1}=1$, we obtain $c_{1}=\cdots=$ $c_{\ell}=1$ and

$$
\eta(\underbrace{0, \ldots, 0}_{\ell}, \underbrace{1, \ldots, 1}_{\ell-1})=\sum_{s=1}^{\ell} k_{s}\left(n_{s}-k_{s}\right)+1 .
$$

It follows that, if $k_{1}+\cdots+k_{\ell}=m$ and $0 \leqslant k_{i} \leqslant n_{i}, i=1, \ldots, \ell$, then

$$
\left(X-\sum_{s=1}^{\ell} k_{s} \mu_{s}\right)^{\sum_{s=1}^{\ell} k_{s}\left(n_{s}-k_{s}\right)+1}
$$

is an elementary divisor of $D(f)$.
The following well known results can be obtained as corollaries from Theorem 1.
Corollary 1. If $a_{1}, \ldots, a_{r} \in \overline{\mathbb{F}}$ are the distinct eigenvalues of f and

$$
\left(X-a_{i}\right)^{n_{i, j}}, \quad j=1,2, \ldots, s_{i}, \quad i=1, \ldots, r
$$

are the elementary divisors of f then

$$
\sigma(D(f))=\left\{\sum_{i=1}^{r} m_{i} a_{i}: m_{1}+\cdots+m_{r}=m, m_{i} \in \mathbb{N}_{0} \text { and } m_{i} \leqslant \sum_{j=1}^{s_{i}} n_{i, j}, i=1, \ldots, r\right\} .
$$

Corollary 2. If f is of simple structure then also $D(f)$ is of simple structure.

Corollary 3

1. $\wedge^{m} \sigma(f) \subseteq \sigma(D(f))$;
2. If $\operatorname{dim} V=|\sigma(f)|$ then $\wedge^{m} \sigma(f)=\sigma(D(f))$.

For $m=2$ there is a considerably simpler characterization for the elementary divisors of $D(f)$.
Theorem 2 [2, Chapter 7, Theorem 2.6]. Let

$$
\left(X-\mu_{i}\right)^{n_{i}}, \quad i=1,2, \ldots, \ell
$$

be the elementary divisors of f, where $\mu_{1}, \ldots, \mu_{\ell} \in \overline{\mathbb{F}}$ are not necessarily distinct. The elementary divisors of the restriction of the derivation associated with f to $\wedge^{2} V$ are:

$$
\left(X-2 \mu_{i}\right)^{k}, \quad k=2 n_{i}-3,2 n_{i}-7, \ldots,\left\{\begin{array}{ll}
1, & \text { if } n_{i} \text { is even, }, \\
3, & \text { if } n_{i} \text { is odd },
\end{array} \quad 1 \leqslant i \leqslant \ell\right.
$$

and

$$
\left(X-\mu_{i}-\mu_{j}\right)^{n_{i}+n_{j}-2 t+1}, \quad 1 \leqslant t \leqslant \min \left\{n_{i}, n_{j}\right\}, \quad 1 \leqslant i<j \leqslant \ell
$$

4. Main result

Theorem 3. Let $m \geqslant 2$ and let V be a finite dimension vector space over a field of zero characteristic, \mathbb{F}, such that $\operatorname{dim} V \geqslant m$. Let f be a linear operator on V such that $r:=|\sigma(f)| \geqslant m$. Let $D(f)$ be the restriction of the derivation associated with f to $\wedge^{m} V$. Then

$$
\operatorname{deg}\left(P_{D(f)}\right)=m\left(\operatorname{deg}\left(P_{f}\right)-m\right)+1
$$

if and only if one of the following conditions holds:
(1) $r=m=\operatorname{dim} V$;
(2) $r=m+1=\operatorname{dim} V$;
(3) The elementary divisors of f are
$X-b_{1}, \ldots, X-b_{m-1},\left(X-b_{m}\right)^{2}$,
where $b_{1}, \ldots, b_{m} \in \overline{\mathbb{F}}$ are distinct;
(4) $r \geqslant m+1$ and the elementary divisors of f are
$X-b_{i}, \quad s_{i}$ times, $\quad i=1, \ldots, r$,
where b_{1}, \ldots, b_{r} is an arithmetic progression with first term $b_{1}, s_{1}=\cdots=s_{m-1}=1$ and $s_{r-m+2}=\cdots=s_{r}=1$;
(5) $m=2$ and the elementary divisors of f are
$X-b, \quad(X-b-q)^{2}, \quad X-b-2 q$,
where $b, q \in \overline{\mathbb{F}}$ and $q \neq 0$;
(6) $m=2$ and the elementary divisors of f are
$X-b, \quad X-b-q, \quad X-b-q^{\prime}, \quad X-b-q-q^{\prime}$,
where $b \in \overline{\mathbb{F}}, q, q^{\prime} \in \overline{\mathbb{F}} \backslash\{0\}, q \neq q^{\prime}$ and $q+q^{\prime} \neq 0$;
(7) $m=2$ and the elementary divisors of f are
$\left(X-b_{1}\right)^{2},\left(X-b_{2}\right)^{2}$,
where $b_{1}, b_{2} \in \overline{\mathbb{F}}$ and $b_{1} \neq b_{2}$.

Proof

Sufficient condition
(1), (2) and (6) In any of these cases f is of simple structure and $\operatorname{dim} V=|\sigma(f)|$. Then (Corollaries 2, 3 and Proposition 1)

$$
\operatorname{deg}\left(P_{D(f)}\right)=|\sigma(D(f))|=\left|\wedge^{m} \sigma(f)\right|=m(r-m)+1=m\left(\operatorname{deg}\left(P_{f}\right)-m\right)+1
$$

(3) From Corollary 1, the eigenvalues of $D(f)$ are the m elements
$z_{i}=b_{m}+\sum_{\substack{j=1 \\ j \neq i}}^{m} b_{j}, \quad i=1, \ldots, m$
and (Remark 2) $X-z_{1}, X-z_{2}, \ldots, X-z_{m-1},\left(X-z_{m}\right)^{2}$ are elementary divisors of $D(f)$. Since $\operatorname{dim} \wedge^{m} V=\binom{m+1}{m}=m+1$, it follows that

$$
P_{D(f)}=\left(X-z_{m}\right)^{2} \prod_{i=1}^{m-1}\left(X-z_{i}\right)
$$

and $\operatorname{deg}\left(P_{D(f)}\right)=m+1=m\left(\operatorname{deg}\left(P_{f}\right)-m\right)+1$.
(4) Suppose $b_{i}=b_{1}+(i-1) q$, where $q \in \overline{\mathbb{F}} \backslash\{0\}$. From Corollary 1,
$\sigma(D(f))=\left\{m b_{1}+q \sum_{i=1}^{r} m_{i}(i-1): m_{1}+\cdots+m_{r}=m\right.$ and $\left.0 \leqslant m_{i} \leqslant s_{i}, i=1, \ldots, r\right\}$.
Since $s_{1}=\cdots=s_{m-1}=1$ and $s_{r-m+2}=\cdots=s_{r}=1$,

$$
\begin{aligned}
& \left\{\sum_{i=1}^{r} m_{i}(i-1): m_{1}+\cdots+m_{r}=m \text { and } 0 \leqslant m_{i} \leqslant s_{i}, i=1, \ldots, r\right\} \\
& \quad=\left[\frac{m(m-1)}{2}, m r-\frac{m(m+1)}{2}\right] \cap \mathbb{N} .
\end{aligned}
$$

Then

$$
\sigma(D(f))=\left\{m b_{1}+q z: z \in\left[\frac{m(m-1)}{2}, m r-\frac{m(m+1)}{2}\right] \cap \mathbb{N}\right\}=\wedge^{m} \sigma(f)
$$

Since f is of simple structure, also $D(f)$ is of simple structure and $\operatorname{deg}\left(P_{D(f)}\right)=$ $|\sigma(D(f))|=r m-m^{2}+1=m \operatorname{deg}\left(P_{f}\right)-m^{2}+1$.
(5) From Theorem 2 the elementary divisors of $D(f)$ are
$(X-2 b-q)^{2}, \quad X-2 b-2 q, \quad X-2 b-2 q, \quad(X-2 b-3 q)^{2}$.
Then $P_{D(f)}=(X-2 b-2 q)(X-2 b-q)^{2}(X-2 b-3 q)^{2} \quad$ and $\quad \operatorname{deg}\left(P_{D(f)}\right)=5=$ $2 \operatorname{deg}\left(P_{f}\right)-3$.
(7) In this case $P_{D(f)}=\left(X-2 b_{1}\right)\left(X-2 b_{2}\right)\left(X-b_{1}-b_{2}\right)^{3}$ and $\operatorname{deg}\left(P_{D(f)}\right)=5=$ $2 \operatorname{deg}\left(P_{f}\right)-3$.

Necessary condition

Suppose $\operatorname{deg}\left(P_{D(f)}\right)=m \operatorname{deg}\left(P_{f}\right)-m^{2}+1$. Let $a_{1}, \ldots, a_{r} \in \overline{\mathbb{F}}$ (where $r \geqslant m$) be the distinct eigenvalues of f and let

$$
\left(X-a_{i}\right)^{n_{i, j}}, \quad j=1,2, \ldots, t_{i}, \quad i=1, \ldots, r
$$

be the elementary divisors of f, where, for each $i, n_{i}:=n_{i, 1} \geqslant n_{i, 2} \geqslant \cdots \geqslant n_{i, t_{i}}$. Then $P_{f}=$ $\left(X-a_{1}\right)^{n_{1}} \cdots\left(X-a_{r}\right)^{n_{r}}$.

Consider the \mathbb{Q}-vector space, $W=\left\{\sum_{i=1}^{r} \beta_{i} a_{i}: \beta_{i} \in \mathbb{Q}\right\}$. Let d be its dimension and let $\left\{g_{1}, \ldots, g_{d}\right\}$ be a basis of W^{*} satisfying the conditions in Lemma 2, for the distinct elements in $W, a_{1}, a_{2}, \ldots, a_{r}$.

From Lemma 2, $g_{1}\left(a_{1}\right), g_{1}\left(a_{2}\right), \ldots, g_{1}\left(a_{r}\right)$ are distinct rational numbers. Without loss of generality we assume that $a_{1}, a_{2}, \ldots, a_{r}$ are ordered in such way that

$$
\begin{equation*}
g_{1}\left(a_{1}\right)<g_{1}\left(a_{2}\right)<\cdots<g_{1}\left(a_{r}\right) \tag{11}
\end{equation*}
$$

We consider two cases: $r \geqslant m+1$ and $r=m$.
(I) $r \geqslant m+1$

As in the proof of Proposition 1 we consider the m subsets of W given by

$$
\begin{aligned}
B_{1} & =\left\{a_{1}+\cdots+a_{m-1}+a_{i}: i=m, \ldots, r\right\}, \\
B_{j} & =\{\underbrace{a_{1}+\cdots+a_{m-j}}_{m-j}+a_{i}+\underbrace{a_{r-j+2}+\cdots+a_{r}}_{j-1}: i=m-j+2, \ldots, r-j+1\}, \\
j & =2, \ldots, m .
\end{aligned}
$$

For $j=1, \ldots, m$ let ϕ_{j} and Φ_{j} be, respectively, the minimum and the maximum of $g_{1}\left(B_{j}\right)$, that is,

$$
\begin{aligned}
\phi_{1} & =g_{1}\left(a_{1}\right)+\cdots+g_{1}\left(a_{m}\right), \\
\Phi_{1} & =g_{1}\left(a_{1}\right)+\cdots+g_{1}\left(a_{m-1}\right)+g_{1}\left(a_{r}\right), \\
\phi_{j} & =\underbrace{g_{1}\left(a_{1}\right)+\cdots+g_{1}\left(a_{m-j}\right)}_{m-j}+g_{1}\left(a_{m-j+2}\right)+\underbrace{g_{1}\left(a_{r-j+2}\right)+\cdots+g_{1}\left(a_{r}\right)}_{j-1}, \\
j & =2, \ldots, m, \\
\Phi_{j} & =\underbrace{g_{1}\left(a_{1}\right)+\cdots+g_{1}\left(a_{m-j}\right)}_{m-j}+g_{1}\left(a_{r-j+1}\right)+\underbrace{g_{1}\left(a_{r-j+2}\right)+\cdots+g_{1}\left(a_{r}\right)}_{j-1}, \\
j & =2, \ldots, m .
\end{aligned}
$$

As we have seen in Proposition 1, $\phi_{1}<\Phi_{1}<\phi_{2}<\Phi_{2}<\cdots<\phi_{m}<\Phi_{m}$.
Hence the elements in the disjoint union $\bigcup_{j=1}^{m} B_{j}$ are $m(r-m)+1$ distinct eigenvalues of $D(f)$, with associated elementary divisors

$$
\begin{aligned}
& \left(X-a_{i}-\sum_{k=1}^{m-1} a_{k}\right)^{\sum_{k=1}^{m-1}\left(n_{k}-1\right)+\left(n_{i}-1\right)+1}, \quad i=m, \ldots, r ; \\
& \left(X-a_{i}-\sum_{k=1}^{m-j} a_{k}-\sum_{k=r-j+2}^{r} a_{k}\right)^{\sum_{k=1}^{m-j}\left(n_{k}-1\right)+\sum_{k=r-j+2}^{r}\left(n_{k}-1\right)+\left(n_{i}-1\right)+1}, \\
& \quad i=m-j+2, \ldots, r-j+1, \quad j=2, \ldots, m .
\end{aligned}
$$

Let $t(X)$ be the product of these elementary divisors. Then

$$
\begin{aligned}
\operatorname{deg}(t(X))= & (r-m+1)\left(\sum_{k=1}^{m-1} n_{k}-m+1\right)+\sum_{i=m}^{r} n_{i} \\
& +\sum_{j=2}^{m} \sum_{i=m-j+2}^{r-j+1}\left(\sum_{k=1}^{m-j} n_{k}+\sum_{k=r-j+2}^{r} n_{k}+n_{i}-m+1\right) \\
= & (r-m) \sum_{k=1}^{m-1} n_{k}+\operatorname{deg}\left(P_{f}\right)+(-m+1)\left(r m-m^{2}+1\right) \\
& +(r-m-1) \sum_{j=2}^{m}\left(\sum_{k=1}^{m-j} n_{k}+\sum_{k=r-j+2}^{r} n_{k}\right)+\sum_{j=2}^{m}\left(\operatorname{deg}\left(P_{f}\right)-n_{m-j+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(r-m-1) \sum_{k=1}^{m-1} n_{k}+m \operatorname{deg}\left(P_{f}\right)+(-m+1)\left(r m-m^{2}+1\right) \\
& +(r-m-1) \sum_{j=2}^{m}\left(\sum_{k=1}^{m-j} n_{k}+\sum_{k=r-j+2}^{r} n_{k}\right)
\end{aligned}
$$

Since $n_{i} \geqslant 1$, for all i, we have

$$
\begin{aligned}
\operatorname{deg}(t(X)) \geqslant & (r-m-1)(m-1)+m \operatorname{deg}\left(P_{f}\right)+(-m+1)\left(r m-m^{2}+1\right) \\
& +(r-m-1)(m-1)^{2} \\
\geqslant & m \operatorname{deg}\left(P_{f}\right)-m^{2}+1
\end{aligned}
$$

From $\operatorname{deg}\left(P_{D(f)}\right)=m \operatorname{deg}\left(P_{f}\right)-m^{2}+1$ it follows that $P_{D(f)}=t(X)$ and

$$
\begin{equation*}
\sigma(D(f))=\bigcup_{j=1}^{m} B_{j} \tag{12}
\end{equation*}
$$

Suppose that $n_{\ell} \geqslant 2$ or $t_{\ell} \geqslant 2$ for some $\ell \in\{1, \ldots, m-1\}$. Then

$$
c=2 a_{\ell}+\sum_{\substack{j=1 \\ j \neq \ell}}^{m-1} a_{j} \in \sigma(D(f))
$$

Since

$$
g_{1}(c)=g_{1}\left(a_{\ell}\right)+\sum_{i=1}^{m-1} g_{1}\left(a_{i}\right)<\sum_{i=1}^{m} g_{1}\left(a_{i}\right)=\phi_{1}
$$

we obtain a contradiction with (12).
Suppose that $n_{\ell} \geqslant 2$ or $t_{\ell} \geqslant 2$, for some $\ell \in\{r-m+2, \ldots, r\}$. Then

$$
d=2 a_{\ell}+\sum_{\substack{j=r-m+2 \\ j \neq \ell}}^{r} a_{j} \in \sigma(D(f))
$$

and, from

$$
g_{1}(d)=g_{1}\left(a_{\ell}\right)+\sum_{j=r-m+2}^{r} g_{1}\left(a_{j}\right)>\sum_{j=r-m+1}^{r} g_{1}\left(a_{j}\right)=\Phi_{m},
$$

we obtain a contradiction with (12).
Hence

$$
\begin{equation*}
n_{i}=t_{i}=1 \quad \text { for } \quad i \in\{1, \ldots, m-1\} \cup\{r-m+2, \ldots, r\} . \tag{13}
\end{equation*}
$$

From $|\sigma(D(f))|=m(|\sigma(f)|-m)+1 \leqslant\left|\wedge^{m} \sigma(f)\right|$ and $\wedge^{m} \sigma(f) \subseteq \sigma(D(f))$ we conclude that

$$
\begin{equation*}
\sigma(D(f))=\wedge^{m} \sigma(f) \tag{14}
\end{equation*}
$$

and $\left|\wedge^{m} \sigma(f)\right|=m(|\sigma(f)|-m)+1$.

Then (Proposition 1) one of the following conditions holds:
(a) $r=m+1$:

If $m \geqslant 3$ then, from (13), we have $n_{i}=t_{i}=1, i=1, \ldots, r$. Condition (2) holds. If $m=2$ then $r=3$ and, from (13), $n_{1}=n_{3}=t_{1}=t_{3}=1$. If $n_{2}=t_{2}=1$ then condition (2) holds. Suppose $n_{2} \geqslant 2$ or $t_{2} \geqslant 2$. Then, from (14) and Corollary 1, we have
$2 a_{2} \in \sigma(D(f))=\left\{a_{1}+a_{2}, a_{1}+a_{3}, a_{2}+a_{3}\right\}$.
Therefore $2 a_{2}=a_{1}+a_{3}$ and $\sigma(f)$ is an arithmetic progression with first term a_{1} and difference $a_{2}-a_{1}$. If $n_{2}=1$ condition (4) holds.
Suppose $n_{2} \geqslant 2$. From $\operatorname{deg}\left(P_{f}\right)=n_{2}+2$ it follows that $\operatorname{deg}\left(P_{D(f)}\right)=2 n_{2}+1$.
Hence
$P_{D(f)}=\left(X-a_{1}-a_{2}\right)^{n_{2}}\left(X-a_{1}-a_{3}\right)\left(X-a_{2}-a_{3}\right)^{n_{2}}$.
Since $2 a_{2}=a_{1}+a_{3}$ and $\left(X-2 a_{2}\right)^{2 n_{2}-3}$ is an elementary divisor of $D(f)$ we get $n_{2}=$ 2. Suppose $t_{2} \geqslant 2$. Then $\left(X-a_{2}\right)^{2}$ and $\left(X-a_{2}\right)^{n_{2,2}}$ are elementary divisors of f and $\left(X-2 a_{2}\right)^{n_{2,2}+1}=\left(X-a_{1}-a_{3}\right)^{n_{2,2}+1}$ is an elementary divisor of $D(f)$ and this leads to a contradiction. Then $t_{2}=1$ and condition (5) holds.
(b) $\sigma(f)$ is an arithmetic progression:

Let b and d be, respectively, the first term and the difference of that arithmetic progression. Since $b, b+d \in W$, then also $d \in W$ and $g_{1}(b), g_{1}(b+d), \ldots, g_{1}(b+(r-1) d)$ is an arithmetic progression in \mathbb{Q} with difference $g_{1}(d) \neq 0$ (from (11)).
If $g_{1}(d)>0$ then $g_{1}(b)<g_{1}(b+d)<\cdots<g_{1}(b+(r-1) d)$ and so, from (11), we have $a_{i}=b+(i-1) d$, for $i=1, \ldots, r$.
If $g_{1}(d)<0$ then $a_{i}=b+(r-i) d$, for $i=1, \ldots, r$.
From (13) we have $n_{i}=t_{i}=1$ for all $i \in\{1, \ldots, m-1\} \cup\{r-m+2, \ldots, m\}$. If f is of simple structure then condition (4) holds.
Suppose f is not of simple structure. Then, from (13), it follows that $r-m+1 \geqslant m$ and $n_{\ell} \geqslant 2$ for some $\ell \in\{m, \ldots, r-m+1\}$. Let ℓ be the smallest element in $\{m, \ldots, r-m+$ $1\}$ such that $n_{\ell} \geqslant 2$. Notice that $\ell \leqslant r-m+1 \leqslant r-1$. Suppose $\ell \leqslant r-2$ and consider

$$
x_{i}=\sum_{j=1}^{m-1} a_{j}+a_{i}, \quad i=m, \ldots, \ell
$$

$y_{i}=\sum_{j=1}^{m-2} a_{j}+a_{i}+a_{r}, \quad i=\ell+1, \ldots, r-1 ;$
$v_{i}=\sum_{j=1}^{m-2} a_{j}+a_{\ell}+a_{i}, \quad i=m, \ldots, r$.
Since $\quad g_{1}\left(x_{m}\right)<g_{1}\left(x_{m+1}\right)<\cdots<g_{1}\left(x_{\ell}\right)<g_{1}\left(v_{m}\right)<g_{1}\left(v_{m+1}\right)<\cdots<g_{1}\left(v_{r}\right)<$ $g_{1}\left(y_{\ell+1}\right)<\cdots<g_{1}\left(y_{r-1}\right)<\phi_{3}$, the elements in (15) are $2 r-2 m+1$ distinct eigenvalues of $D(f)$, not in $\bigcup_{j=3}^{m} B_{j}$.
From (13) and $n_{1}=\cdots=n_{\ell-1}=1$, we conclude that

$$
\left(X-x_{i}\right), \quad i=m, \ldots, \ell-1
$$

$$
\begin{aligned}
& \left(X-x_{\ell}\right)^{n_{\ell}} ; \\
& \left(X-y_{i}\right)^{n_{i}}, \quad i=\ell+1, \ldots, r-1 ; \\
& \left(X-v_{i}\right)^{n_{\ell}+n_{i}-1}, \quad i=m, \ldots, r, \quad i \neq \ell ; \\
& \left(X-v_{\ell}\right)^{2 n_{\ell}-3}
\end{aligned}
$$

are elementary divisors of $D(f)$.
Then

$$
\begin{aligned}
m \operatorname{deg}\left(P_{f}\right)-m^{2}+1 \geqslant \ell-m+n_{\ell} & +\sum_{i=\ell+1}^{r-1} n_{i}+\sum_{\substack{i=m \\
i \neq \ell}}^{r}\left(n_{\ell}+n_{i}-1\right) \\
& +2 n_{\ell}-3+\sum_{j=3}^{m} \sum_{i=m-j+2}^{r-j+1} n_{i} \\
\Rightarrow m \operatorname{deg}\left(P_{f}\right)-m^{2}+1 \geqslant & \ell-m-3+\sum_{i=\ell}^{r-1} n_{i}+\sum_{i=m}^{r} n_{i}+(r-m)\left(n_{\ell}-1\right) \\
& +n_{\ell}+\sum_{j=3}^{m} \sum_{i=m-j+2}^{r-j+1} n_{i} \\
\Rightarrow m \operatorname{deg}\left(P_{f}\right)-m^{2}+1 \geqslant & \ell-m-3+\left(\operatorname{deg}\left(P_{f}\right)-\ell\right)+\left(\operatorname{deg}\left(P_{f}\right)-m+1\right) \\
& +(r-m+1) n_{\ell}-r+m+\sum_{j=3}^{m} \sum_{i=m-j+2}^{r-j+1} n_{i} .
\end{aligned}
$$

For $3 \leqslant j \leqslant m$ we have $m-j \leqslant m-3$ and $r-j \geqslant r-m$. So, if $i \leqslant m-j+1$ or $i \geqslant$ $r-j+2$ then $n_{i}=1$. Hence $\sum_{i=m-j+2}^{r-j+1} n_{i}=\operatorname{deg}\left(P_{f}\right)-m$ and

$$
\begin{aligned}
& m \operatorname{deg}\left(P_{f}\right)-m^{2}+1 \geqslant 2 \operatorname{deg}\left(P_{f}\right)-m-2-r+(r-m+1) n_{\ell} \\
& +(m-2)\left(\operatorname{deg}\left(P_{f}\right)-m\right) \\
& \Rightarrow-m^{2}+1 \geqslant(r-m+1) n_{\ell}-r-m-m^{2}+2 m-2 \\
& \Rightarrow(r-m+1) n_{\ell} \leqslant r-m+3 \text {. }
\end{aligned}
$$

From the last inequality, since we are assuming that $n_{\ell} \geqslant 2$, we have $r=m+1$ and, from $\ell \leqslant r-2=m-1$, we obtain a contradiction with (13). Then $\ell=r-1$ and, from $\ell \leqslant r-m+1$, it follows that $m=2$.
So, if f is not of simple structure then $m=2, n_{r-1} \geqslant 2$ and
$n_{i}=t_{i}=1 \quad$ for $i \in\{1, \ldots, r\} \backslash\{r-1\}$.
In this case,
$x_{i}=a_{1}+a_{i}, \quad i=2, \ldots, r-1 ;$
$v_{i}=a_{r-1}+a_{i}, \quad i=2, \ldots, r$
are $2 r-3$ distinct eigenvalues of $D(f)$. Since $n_{i}=1$ for $i \neq r-1$ we obtain

$$
\begin{aligned}
& 2 \operatorname{deg}\left(P_{f}\right)-3 \geqslant \sum_{i=2}^{r-1} n_{i}+\sum_{\substack{i=2 \\
i \neq r-1}}^{r}\left(n_{r-1}+n_{i}-1\right)+2 n_{r-1}-3 \\
& \quad \Rightarrow 2 \operatorname{deg}\left(P_{f}\right)-3 \geqslant \operatorname{deg}\left(P_{f}\right)-2+(r-2)\left(n_{r-1}-1\right)+\operatorname{deg}\left(P_{f}\right)-n_{r-1}-1+2 n_{r-1}-3 \\
& \quad \Rightarrow 2 \geqslant(r-1)\left(n_{r-1}-1\right) .
\end{aligned}
$$

Since $r \geqslant m+1=3$, it follows that $r=3$ and $n_{2}=2$. From (13) we have $t_{1}=t_{3}=1$. Suppose $t_{2} \geqslant 2$. Then $\left(X-a_{2}\right)^{2}$ and $\left(X-a_{2}\right)^{n_{2,2}}$ are elementary divisors of f and

$$
\left(X-a_{1}-a_{2}\right)^{2}, \quad\left(X-a_{2}-a_{3}\right)^{2}, \quad\left(X-2 a_{2}\right)^{n_{2,2}+1}
$$

are elementary divisors of $D(f)$ associated to distinct eigenvalues. Hence $5=$ $\operatorname{deg}\left(P_{D(f)}\right) \geqslant 5+n_{2,2}$, which leads to a contradiction. Then $t_{2}=1$ and condition (5) holds.
(c) $m=2, r=4$ and $\sigma(f)=a+\left\{0, q, q^{\prime}, q+q^{\prime}\right\}$, for some $a \in \overline{\mathbb{F}}, q, q^{\prime} \in \overline{\mathbb{F}} \backslash\{0\}$ such that $q \neq q^{\prime}$ and $q+q^{\prime} \neq 0$.
First we prove that f is of simple structure. From (13) $n_{1}=n_{4}=1$. Hence $P_{f}=(X-$ $\left.a_{1}\right)\left(X-a_{2}\right)^{n_{2}}\left(X-a_{3}\right)^{n_{3}}\left(X-a_{4}\right)$ and $\operatorname{deg}\left(P_{D(f)}\right)=2 n_{2}+2 n_{3}+1$.
On the other hand, since $a_{2}+a_{3} \in \wedge^{2} \sigma(f)=\sigma(D(f))$ and
$\sigma(D(f))=B_{1} \cup B_{2}=\left\{a_{1}+a_{2}, a_{1}+a_{3}, a_{1}+a_{4}, a_{2}+a_{4}, a_{3}+a_{4}\right\}$,
it follows that $a_{2}+a_{3}=a_{1}+a_{4}$ and, from Theorem 2, we have
$P_{D(f)}=\left(X-a_{1}-a_{2}\right)^{n_{2}}\left(X-a_{1}-a_{3}\right)^{n_{3}}\left(X-a_{2}-a_{3}\right)^{n_{2}+n_{3}-1}\left(X-a_{2}-a_{4}\right)^{n_{2}}\left(X-a_{3}-a_{4}\right)^{n_{3}}$.
Then $n_{2}=n_{3}=1$ and f is of simple structure.
From $\sigma(f)=a+\left\{0, q, q^{\prime}, q+q^{\prime}\right\}$ it follows that
$\sigma(D(f))=\wedge^{2} \sigma(f)=2 a+\left\{q, q^{\prime}, q+q^{\prime}, 2 q+q^{\prime}, q+2 q^{\prime}\right\}$.
Let
$X-a, \quad s_{1}$ times
$X-a-q, \quad s_{2}$ times
$X-a-q^{\prime}, \quad s_{3}$ times
$X-a-q-q^{\prime}, \quad s_{4}$ times
be the elementary divisors of f. From (13) we know that, at least, two of the numbers $s_{1}, s_{2}, s_{3}, s_{4}$ are equal to 1 .
If $s_{1}=s_{2}=s_{3}=s_{4}=1$ then condition (6) holds.
Suppose $s_{1} \geqslant 2$. Then $2 a \in \sigma(D(f))$. Hence $2 q+q^{\prime}=0$ or $q+2 q^{\prime}=0$. Then $\sigma(f)$ is an arithmetic progression. Similarly, if $s_{i} \geqslant 2$ for some $i \in\{2,3,4\}$, then $\sigma(f)$ is an arithmetic progression. As we have seen in (b), condition (4) holds.
(II) $r=m$:

First we assume that f is not of simple structure. Then $n_{i} \geqslant 2$ for some $i \in\{1, \ldots, m\}$. Let ℓ be the greatest element in $\{1, \ldots, m\}$ such that

$$
n_{\ell}=\max \left\{n_{i}: i=1, \ldots, m\right\} \geqslant 2 .
$$

Let

$$
z_{i}=a_{\ell}+\sum_{\substack{j=1 \\ j \neq i}}^{m} a_{j}, \quad i=1, \ldots, m
$$

z_{1}, \ldots, z_{m} are distinct eigenvalues of $D(f)$ and, since $n_{\ell} \geqslant 2,(X-z \ell)^{\sum_{j=1}^{m}\left(n_{j}-1\right)+1}$ and

$$
\begin{aligned}
& \sum_{\substack{j=1 \\
j \neq i \\
j \neq \ell}}^{m}\left(n_{j}-1\right)+2\left(n_{\ell}-2\right)+1 \\
& i) \quad, \quad i=1, \ldots, m, \quad i \neq \ell
\end{aligned}
$$

are elementary divisors of $D(f)$.
Then, for some monic polynomial $q(X) \in \overline{\mathbb{F}}[X] \backslash\{0\}$,

$$
P_{D(f)}=q(X)(X-z \ell)^{\sum_{j=1}^{m}\left(n_{j}-1\right)+1} \prod_{\substack{i=1 \\
i \neq \ell}}^{m}\left(X-z_{i}\right)^{\substack{\sum_{\begin{subarray}{c}{j=1 \\
j \neq i \\
j \neq \ell} }}^{m}\left(n_{j}-1\right)+2\left(n_{\ell}-2\right)+1}\end{subarray}}
$$

and

$$
\begin{align*}
\operatorname{deg}(q(X)) & =m \operatorname{deg}\left(P_{f}\right)-m^{2}+1-\operatorname{deg}\left(P_{f}\right)+m-1-\sum_{\substack{i=1 \\
i \neq \ell \\
j \neq 1 \\
j \neq \ell \\
j \neq i}}^{m} \sum_{\substack{i=1 \\
i \neq \ell \\
j \neq \ell \\
j \neq i}}^{m}\left(n_{j}-1\right)-(m-1)\left(2 n_{\ell}-3\right) \\
& =(m-1) \operatorname{deg}\left(P_{f}\right)-m^{2}+m-\sum_{\substack{ \\
j=1}}^{m} n_{j}+(m-1)(m-2)-(m-1)\left(2 n_{\ell}-3\right) \\
& =(m-1) \operatorname{deg}\left(P_{f}\right)-m^{2}-\sum_{\substack{i=1 \\
i \neq \ell}}^{m}\left(\operatorname{deg}\left(P_{f}\right)-n_{i}-n_{\ell}\right)-2(m-1) n_{\ell}+m^{2}+m-1 \\
& =\operatorname{deg}\left(P_{f}\right)-m n_{\ell}+m-1 . \tag{17}
\end{align*}
$$

We consider two subcases:
(i) $n_{i}=1$, for all $i \neq \ell$:

In this case $\operatorname{deg}\left(P_{f}\right)=n_{\ell}+m-1$ and, from (17), we obtain $0 \leqslant \operatorname{deg}(q(X))=$ $\left(n_{\ell}-2\right)(1-m)$. Then $n_{\ell}=2, \operatorname{deg}(q(X))=0$ and

$$
P_{D(f)}=\left(X-z_{\ell}\right)^{2} \prod_{\substack{i=1 \\ i \neq \ell}}^{m}\left(X-z_{i}\right)
$$

Suppose $t_{q} \geqslant 2$ for some $q \in\{1, \ldots, m\} \backslash\{\ell\}$. Then, for $i=1, \ldots, m, y_{i}=a_{q}+\sum_{\substack{j=1 \\ j \neq i}}^{m} a_{j}$ is an eigenvalue of $D(f)$ and $g_{1}\left(y_{1}\right)>g_{1}\left(y_{2}\right)>\cdots>g_{1}\left(y_{m}\right)$. Since $\sigma(D(f))=\left\{z_{1}, \ldots\right.$, $\left.z_{m}\right\}$ and $g_{1}\left(z_{1}\right)>g_{1}\left(z_{2}\right)>\cdots>g_{1}\left(z_{m}\right)$, it has to be $z_{i}=y_{i}$, for all i, which contradicts $a_{q} \neq a_{\ell}$. Then $t_{q}=1$, for all $q \in\{1, \ldots, m\} \backslash\{\ell\}$.

Now suppose $t_{\ell} \geqslant 2$. Then $\left(X-a_{\ell}\right)^{2}$ and $\left(X-a_{\ell}\right)^{n_{\ell, 2}}$ are elementary divisors of f. If $\ell \geqslant 2$ then

$$
\left(X-z_{1}\right)^{\substack{j=2 \\ j \neq \ell}} \sum^{m}\left(n_{j}-1\right)+\left(n_{\ell}-1\right)+\left(n_{\ell, 2}-1\right)+1
$$

is an elementary divisor of $D(f)$, with degree $n_{\ell}+n_{\ell, 2}-1 \geqslant 2$ and we obtain a contradiction. Then $\ell=1$ and
$\left(X-z_{2}\right)^{\sum_{j=3}^{m}\left(n_{j}-1\right)+\left(n_{1}-1\right)+\left(n_{1,2}-1\right)+1}$
is an elementary divisor of $D(f)$ with degree $n_{1}+n_{1,2}-1 \geqslant 2$. Once more, we obtain a contradiction. Then $t_{i}=1$ for all $i \in\{1,2, \ldots, m\}$ and condition (3) holds.
(ii) $n_{i} \geqslant 2$, for some $i \neq \ell$:

Let k be the greatest element in $\{1, \ldots, m\} \backslash\{\ell\}$ such that
$n_{k}=\max \left\{n_{i}: i=1, \ldots, \ell-1, \ell+1, \ldots, m\right\}$.
From the definition of $k, n_{\ell} \geqslant n_{k} \geqslant 2$ and $\operatorname{deg}\left(P_{f}\right) \leqslant n_{\ell}+(m-1) n_{k}$. Then $0 \leqslant$ $\operatorname{deg}(q(X)) \leqslant(m-1)\left(n_{k}-n_{\ell}+1\right)$ and so $n_{k} \in\left\{n_{\ell}, n_{\ell}-1\right\}$. Suppose $n_{k}=n_{\ell}-1$. Then $\operatorname{deg}(q(X))=0$ and
$\sigma(D(f))=\left\{z_{1}, \ldots, z_{m}\right\}$.
If $k<\ell$ then

$$
w_{1}=a_{k}+a_{1}+\cdots+a_{m-1}=2 a_{k}+\sum_{\substack{j=1 \\ j \neq k}}^{m-1} a_{j}
$$

is an eigenvalue of $D(f)$ such that $g_{1}\left(w_{1}\right)<g_{1}\left(z_{m}\right)<\cdots<g_{1}\left(z_{1}\right)$ and this contradicts (18).

If $k>\ell$ then

$$
w_{2}=a_{k}+a_{2}+\cdots+a_{m}=2 a_{k}+\sum_{\substack{j=2 \\ j \neq k}}^{m} a_{j}
$$

is an eigenvalue of $D(f)$ such that $g_{1}\left(w_{2}\right)>g_{1}\left(z_{1}\right)>\cdots>g_{1}\left(z_{m}\right)$ and this contradicts (18).

Then $n_{k}=n_{\ell} \geqslant 2$ and, from the definitions of k and ℓ, we have $k<\ell$. Also in this case

$$
w_{1}=a_{k}+a_{1}+\cdots+a_{m-1}=2 a_{k}+\sum_{\substack{j=1 \\ j \neq k}}^{m-1} a_{j}
$$

is an eigenvalue of $D(f)$ not in $\left\{z_{1}, \ldots, z_{m}\right\}$. Therefore

$$
\left(X-w_{1}\right)^{\substack{\sum_{\begin{subarray}{c}{m=1 \\
j=1} }}^{m-1}\left(n_{j}-1\right)+2\left(n_{k}-2\right)+1}\end{subarray}}
$$

divides $q(X)$ and, from (17), it follows that

$$
\sum_{\substack{j=1 \\ j \neq k}}^{m-1}\left(n_{j}-1\right)+2\left(n_{k}-2\right)+1 \leqslant \operatorname{deg}\left(P_{f}\right)-m n_{\ell}+m-1,
$$

that is,
$\operatorname{deg}\left(P_{f}\right)-n_{k}-n_{m}-m+2+2 n_{k}-3 \leqslant \operatorname{deg}\left(P_{f}\right)-m n_{\ell}+m-1$.
Since $n_{k}=n_{\ell} \geqslant n_{m}$, we obtain $m n_{\ell} \leqslant 2 m$ and $n_{k}=n_{\ell}=2$. Then $m+2 \leqslant \operatorname{deg}\left(P_{f}\right) \leqslant$ $2 m$.
If $m=2$ then $P_{f}=\left(X-a_{1}\right)^{2}\left(X-a_{2}\right)^{2}, \sigma(D(f))=\left\{2 a_{1}, 2 a_{2}, a_{1}+a_{2}\right\}$ and (Theorem 2) $\left(X-a_{1}-a_{2}\right)^{3}$ is an elementary divisor of $D(f)$. Since $\operatorname{deg}\left(P_{D(f)}\right)=5$ we have $P_{D(f)}=$ $\left(X-2 a_{1}\right)\left(X-2 a_{2}\right)\left(X-a_{1}-a_{2}\right)^{3}$. Suppose $t_{1} \geqslant 2$. Then $\left(X-a_{1}\right)^{n_{1,2}}$ is another elementary divisor of f associated with a_{1}. Hence $\left(X-2 a_{1}\right)^{2+n_{1,2}-1}$ is an elementary divisor of $D(f)$ and this contradicts $n_{1,2} \geqslant 1$. Then $t_{1}=1$ and, similarly, $t_{2}=1$. Condition (7) holds.
Assume now that $m \geqslant 3$. Suppose $n_{q}=2$ for some $q \in\{1, \ldots, m\} \backslash\{\ell, k\}$. Then $\operatorname{deg}\left(P_{f}\right) \geqslant$ $m+3$. From the definitions of ℓ and k we have $q<k<\ell$. Then

$$
w_{1}=a_{k}+a_{1}+\cdots+a_{m-1}=2 a_{k}+\sum_{\substack{j=1 \\ j \neq k}}^{m-1} a_{j}
$$

and

$$
w_{3}=a_{q}+a_{1}+\cdots+a_{m-1}=2 a_{q}+\sum_{\substack{j=1 \\ j \neq q}}^{m-1} a_{j}
$$

are eigenvalues of $D(f)$ such that $g_{1}\left(w_{3}\right)<g_{1}\left(w_{1}\right)<g_{1}\left(z_{m}\right)<\cdots<g_{1}\left(z_{1}\right)$.
Therefore,

$$
)_{\substack{j=1 \\
j \neq k}}^{m-1\left(n_{j}-1\right)+2\left(n_{k}-2\right)+1}\left(X-w_{3}\right)^{\substack{\sum_{\begin{subarray}{c}{ \\
j=1 \\
j \neq q} }}^{m-1}\left(n_{j}-1\right)+2\left(n_{q}-2\right)+1}\end{subarray}}
$$

has degree, at most, equal to the degree of $q(X)$, that is,
$2 \operatorname{deg}\left(P_{f}\right)-2 m-2 n_{m}+n_{k}+n_{q}-2 \leqslant \operatorname{deg}\left(P_{f}\right)-m n_{\ell}+m-1$,
which contradicts $\operatorname{deg}\left(P_{f}\right) \geqslant m+3$, since $n_{\ell}=n_{k}=n_{q}=2$ and $n_{m} \leqslant 2$.
So, for $r=m \geqslant 3$ and $n_{k} \geqslant 2$ it must be $n_{k}=n_{\ell}=2$ and $n_{i}=1$ for $i \in\{1, \ldots, m\} \backslash$ $\{\ell, k\}$. Then $\operatorname{deg}\left(P_{f}\right)=m+2$ and $\operatorname{deg}(q(X))=1$. From $w_{1} \in \sigma(D(f)) \backslash\left\{z_{1}, \ldots, z_{m}\right\}$, it follows that $q(X)=X-w_{1}$. Since

$$
\left.\left(X-w_{1}\right)^{\substack{\begin{subarray}{c}{j=1 \\
j \neq k} }} \\
{j-1}\end{subarray}} n_{j}-1\right)+2\left(n_{k}-2\right)+1
$$

is an elementary divisor of $D(f)$ it follows that $\ell=m$ and, from (16), we have

$$
P_{D(f)}=\left(X-w_{1}\right)\left(X-z_{k}\right)\left(X-z_{m}\right)^{3} \prod_{\substack{i=1 \\ i \neq k}}^{m-1}\left(X-z_{i}\right)^{2}
$$

If $k \leqslant m-2$, then

$$
w_{4}=a_{k}+a_{1}+\cdots+a_{m-2}+a_{m}=2 a_{k}+a_{m}+\sum_{\substack{j=1 \\ j \neq k}}^{m-2} a_{j}
$$

is also an eigenvalue of $D(f)$, and again we have a contradiction, since $g_{1}\left(w_{1}\right)<g_{1}\left(w_{4}\right)<$ $g_{1}\left(z_{m}\right)<\cdots<g_{1}\left(z_{1}\right)$.
Then $k=m-1$. If $m \geqslant 4$ then $w_{5}=a_{3}+\cdots+a_{m-2}+2 a_{m-1}+2 a_{m}$ is also an eigenvalue of $D(f)$ and, from $g_{1}\left(w_{1}\right)<g_{1}\left(z_{m}\right)<\cdots<g_{1}\left(z_{1}\right)<g_{1}\left(w_{5}\right)$, we have a contradiction.
Then $m=3, \ell=3, k=2, P_{f}=\left(X-a_{1}\right)\left(X-a_{2}\right)^{2}\left(X-a_{3}\right)^{2}$ and
$P_{D(f)}=\left(X-z_{3}\right)^{3}\left(X-z_{1}\right)^{2}\left(X-z_{2}\right)\left(X-w_{1}\right)$.
Since $\left(X-2 a_{2}-a_{3}\right)^{2}$ is an elementary divisor of $D(f), 2 a_{2}+a_{3} \in\left\{z_{1}, z_{3}\right\}=\left\{a_{2}+\right.$ $\left.2 a_{3}, a_{1}+a_{2}+a_{3}\right\}$, and, once more, we obtain a contradiction.
So if $r=m$ and f is not of simple structure then conditions (3) or (7) hold.
For $r=m$ it remains to consider the case f is of simple structure.
Suppose $t_{\ell} \geqslant 2$ for some $\ell \in\{1, \ldots, m\}$. Then z_{1}, \ldots, z_{m}, defined as before, are m distinct eigenvalues of $D(f)$, to which $X-z_{i}, \quad i=1, \ldots, m$, are associated elementary divisors. Then $m \operatorname{deg}\left(P_{f}\right)-m^{2}+1 \geqslant m$ and this contradicts $\operatorname{deg}\left(P_{f}\right)=m$. It follows that $t_{1}=\cdots=t_{m}=1$ and condition (1) holds.

Acknowledgement

The author would like to thank an anonymous referee for the helpful suggestions.

References

[1] J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and aditive theory, Bull. London Math. Soc., 26 (1994) 140-146.
[2] M. Marcus, Finite Dimensional Multilinear Algebra - Parts I and II, Marcel Dekker, New York, 1973.
[3] Marvin Marcus, M. Shafqat Ali, Minimal polynomials of additive commutators and Jordan products, J. Algebra 22 (1972) 12-33.
[4] Marvin Marcus, William Watkins, Elementary divisors of derivations, Linear Multilinear Algebra 2 (1974) 65-80.
[5] J.D. McFall, Elementary divisors of transformations related to tensor powers, Linear Multilinear Algebra 7 (1979) 13-25.
[6] M.B. Nathanson, Additive Number Theory-Inverse Problems and the Geometry of Sumsets, Springer-Verlag, 1996.

[^0]: E-mail address: caldeira@mat.uc.pt
 0024-3795/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
 doi:10.1016/j.1aa.2007.02.021

