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Abstract

Let V be a finite dimension vector space. For a linear operator on V , f , D(f ) denotes the restriction of
the derivation associated with f to the mth Grassmann space of V . In [J.A. Dias da Silva, Y.O. Hamidoune,
Cyclic spaces for Grassmann derivatives and aditive theory, Bull. London Math. Soc., 26 (1994) 140–146]
Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f ),
over an arbitrary field. Over a field of zero characteristic that lower bound is given by

deg(PD(f )) � m(deg(Pf ) − m) + 1.

Using additive number theory results, results on the elementary divisors of D(f ) and methods presented
by Marcus and Ali in [Marvin Marcus, M. Shafqat Ali, Minimal polynomials of additive commutators and
Jordan products, J. Algebra 22 (1972) 12–33] we obtain a characterization of equality cases in the former
inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues
of f .
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1. Introduction

Let F be a field of zero characteristic and let V be a finite dimension vector space over F such
that dim V � m � 2, where m is an integer. Let Sm be the symmetric group of degree m. For
σ ∈ Sm, P(σ) denotes the unique linear operator on the mth tensor power product of V , ⊗mV ,
such that

P(σ)(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m)

for all v1, v2, . . . , vm ∈ V .
Let ε be the alternating character on Sm and consider the symmetrizer defined on ⊗mV by

Tε = 1

m!
∑
σ∈Sm

ε(σ )P (σ ).

The mth Grassmann space of V is ∧mV = Tε(⊗mV ). For v1, v2, . . . , vm ∈ V , v1 ∧ v2 ∧ · · · ∧ vm

denotes Tε(v1 ⊗ v2 ⊗ · · · ⊗ vm).
For a linear operator, g, on a vector space over F, Pg denotes the minimal polynomial of g and

deg(Pg) denotes its degree. The spectrum of g, i.e., the set of all eigenvalues of g in the algebraic
closure of F, is denoted by σ(g).

We are going to use the well known fact that, for a simple structure linear operator, the degree
of its minimal polynomial is equal to the cardinality of its spectrum.

Let f be a linear operator on V . The derivation associated with f is the linear operator on
⊗mV ,

f ⊗ IV ⊗ · · · ⊗ IV + IV ⊗ f ⊗ · · · ⊗ IV + · · · + IV ⊗ IV ⊗ · · · ⊗ f.

The derivation associated with f commutes with Tε [2, Section 3.2]. Hence, ∧mV is an invariant
subspace of the derivation associated with f . Let D(f ) denote the restriction of the derivation
associated with f to ∧mV . In [1] Dias da Silva and Hamidoune obtained a lower bound for
the degree of the minimal polynomial of D(f ), over an arbitrary field. Over a field of zero
characteristic that lower bound is given by

deg(PD(f )) � m(deg(Pf ) − m) + 1. (1)

Using additive number theory results, results on the elementary divisors of D(f ) and methods
presented in [3] we shall obtain a characterization of equality cases in (1) (for zero characteristic),
whenever m does not exceed the number of distinct eigenvalues of f .

2. Additive number theory results

Let k and r be positive integers. By Qk,r we denote the set of all strictly increasing maps
from {1, . . . , k} into {1, . . . , r}. If α ∈ Qk,r we use the k-tuple notation for α, that is, α =
(α(1), . . . , α(k)).

Let A = {a1, a2, . . . , ar} be a finite non-empty subset of F, such that |A| = r � m, where |A|
denotes the cardinality of A.

By ∧mA we denote the set of sums of m distinct elements in A, that is,

∧mA =
{

m∑
i=1

aα(i) : α ∈ Qm,r

}
.
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In [1] Dias da Silva and Hamidoune obtained a lower bound for the cardinality of ∧mA, for A

subset of an arbitrary field. In zero characteristic that lower bound is given by

| ∧m A| � m(|A| − m) + 1. (2)

For subsets of Q it is well known a characterization of equality cases in (2).

Lemma 1 [6, Theorem 1.10]. Let A be a finite subset of Q such that |A| � m � 2. Then

| ∧m A| = m(|A| − m) + 1

if and only if one of the following conditions holds:

(1) |A| ∈ {m, m + 1};
(2) A is an arithmetic progression;
(3) m = 2, |A| = 4 and there exist a ∈ Q, q, q ′ ∈ Q \ {0} such that q /= q ′, q + q ′ /= 0 and

A = a + {0, q, q ′, q + q ′}.

Next lemma will be used to adjust the proof of Lemma 1 in [6] to the case of an arbitrary field
of zero characteristic. It is a straightforward generalization of Lemma 2.1 from [3].

Lemma 2. Let m � 2 and let V be an n-dimensional vector space over a field of zero character-
istic, F. Let r ∈ N and let u1, . . . , ur ∈ V be distinct. Then there exists a basis {g1, . . . , gn} of
V ∗, such that, for each j ∈ {1, . . . , n}, gj (u1), . . . , gj (ur) are r distinct elements in F and∣∣∣∣∣

{
m∑

i=1

uα(i) : α ∈ Qm,r

}∣∣∣∣∣ � | ∧m {gj (u1), . . . , gj (ur)}| � m(r − m) + 1.

Proposition 1. Let F be a field of zero characteristic and let A be a finite subset of F such that
|A| � m � 2. Then

| ∧m A| = m(|A| − m) + 1

if and only if one of the following conditions holds:

(1) |A| ∈ {m, m + 1};
(2) A is an arithmetic progression;
(3) m = 2, |A| = 4 and there exist a ∈ F, q, q ′ ∈ F \ {0} such that q /= q ′, q + q ′ /= 0 and

A = a + {0, q, q ′, q + q ′}.

Proof. The sufficient condition’s proof is obvious, so we include only the necessary condition’s
proof. Suppose A = {a1, . . . , ar}, where r = |A| � m + 2 � 4, and | ∧m A| = m(r − m) + 1.

Consider the vector space over Q,

W =
{

r∑
i=1

βiai : βi ∈ Q

}

and let n = dimQ W � r . From Lemma 2 there exists a basis of W ∗, {g1, . . . , gn}, such that, for
t = 1, . . . , n,

|{gt (a1), . . . , gt (ar )}| = r.
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Without loss of generality we assume that a1, . . . , ar are ordered in such way that

g1(a1) < g1(a2) < · · · < g1(ar).

We consider the elements in ∧mA given by

bi,1 = a1 + · · · + am−1 + ai, i = m, . . . , r,

bi,j = a1 + · · · + am−j︸ ︷︷ ︸
m−j

+ ai + ar−j+2 + · · · + ar︸ ︷︷ ︸
j−1

,

i = m − j + 2, . . . , r − j + 1, j = 2, . . . , m

and the m subsets of ∧mA given by

B1 = {bi,1 : i = m, . . . , r},
Bj = {bi,j : i = m − j + 2, . . . , r − j + 1}, j = 2, . . . , m.

Since g1(a1) < g1(a2) < · · · < g1(ar), we have

g1(bm,1) < g1(bm+1,1) < · · · < g1(br,1) (3)

and

g1(br−j+2,j−1)<g1(bm−j+2,j )<g1(bm−j+3,j )< · · ·<g1(br−j+1,j )<g1(bm−j+1,j+1),

j = 2, . . . , m. (4)

Hence the setsB1, B2, . . . , Bm are pairwise disjoint and, from | ∧m A| = m(r − m) + 1, it follows
that

∧m A =
m⋃

j=1

Bj . (5)

Let j ∈ {1, . . . , m − 1}. For i = m − j + 2, . . . , r − j let

ci,j = a1 + · · · + am−j−1︸ ︷︷ ︸
m−j−1

+ am−j+1 + ai + ar−j+2 + · · · + ar︸ ︷︷ ︸
j−1

.

Suppose j � 2. Since ci,j ∈ ∧mA and g1(bm−j+2,j ) < g1(ci,j ) < g1(bm−j+1,j+1), it follows
that ci,j ∈ Bj \ {bm−j+2,j }.

Therefore, from g1(cm−j+2,j ) < g1(cm−j+3,j ) < · · · < g1(cr−j,j ) and (4), we have ci,j =
bi+1,j . Hence

am−j+1 + ai = am−j + ai+1, i = m − j + 2, . . . , r − j, j = 2, . . . , m − 1.

Next we prove that this is also true for j = 1. For m + 1 � i � r − 1 we have

g1(bm+1,1) < g1(ci,1) < g1(bm,2)

and so ci,1 ∈ B1 \ {bm,1, bm+1,1}. From g1(cm+1,1) < g1(cm+2,1) < · · · < g1(cr−1,1) and (3), we
have ci,1 = bi+1,1, that is, am + ai = am−1 + ai+1.

Thus we have proved that

at+1 − at = am−j+1 − am−j , j = 1, . . . , m − 1, t = m − j + 2, . . . , r − j. (6)
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(I) r � m + 3
First suppose m = 2. From (6) we have

ai+1 − ai = a2 − a1, i = 3, . . . , r − 1. (7)

Since r � 5 and

g1(a1 + at ) < g1(a3 + ar−1) < g1(at+1 + ar), t = 2, . . . , r − 1,

from (5) it follows that a3 + ar−1 ∈ {a1 + ar , a2 + ar}.
Then a3 + ar−1 = a2 + ar , since, from (7), a1 + ar = a2 + ar−1 �= a3 + ar−1.
Hence, for m = 2 we have

ai+1 − ai = a2 − a1, i = 1, 2, . . . , r − 1.

Next we prove that this is also true for m � 3. Suppose m � 3. For i ∈ {1, . . . , m − 2},
taking j = i and t = m − i + 2 in (6) we obtain am−i+3 − am−i+2 = am−i+1 − am−i .
Taking j = i + 1 and t = m − (i + 1) + 3 � r − (i + 1) in (6) we obtain am−i+3 −
am−i+2 = am−i − am−i−1.
Then am−i+1 − am−i = am−i − am−i−1, for i = 1, . . . , m − 2.
Hence

ai+1 − ai = a2 − a1, i = 1, . . . , m − 1.

Taking j = 2 and t = m in (6) we get am+1 − am = am−1 − am−2 = a2 − a1.
For i = m + 1, . . . , r − 1, taking j = 1 and t = i in (6) we have ai+1 − ai = am − am−1 =
a2 − a1.
Thus

ai+1 − ai = a2 − a1, i = 1, . . . , r − 1,

that is, A is an arithmetic progression with first term a1 and difference a2 − a1.
(II) r = m + 2

In this case, from (6), we have

am−j+3 − am−j+2 = am−j+1 − am−j , j = 1, . . . , m − 1.

That is,

am+2 − am+1 = am − am−1 = · · · =
{
a2 − a1, if m is even,

a3 − a2, if m is odd

and

am+1 − am = am−1 − am−2 = · · · =
{
a3 − a2, if m is even,

a2 − a1, if m is odd.

Let

d =
{
a2 − a1, if m is even,

a3 − a2, if m is odd,
and d ′ =

{
a3 − a2, if m is even,

a2 − a1, if m is odd.

If m = 2 then r = 4 and condition (2) or condition (3) holds according to d = d ′ or d �= d ′.
Suppose m � 3. Since r = m + 2, we have

B1 = {bm,1, bm+1,1, bm+2,1} = bm,1 + {0, d ′, d + d ′}
and
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B2 = {bm,2, bm+1,2} = bm,1 + {2d + d ′, 2d + 2d ′}.
Let z = a1 + · · · + am−3 + am−1 + am + am+1 = bm,1 + d + 2d ′ ∈ ∧mA.
From g1(z) < g1(bm−1,3) it follows that z ∈ B1 ∪̇ B2.
Then d + 2d ′ ∈ {0, d ′, d + d ′, 2d + d ′, 2d + 2d ′}. Analyzing the five possibilities we con-
clude that only d + 2d ′ = 2d + d ′ is admissible. Then d = d ′ = a2 − a1 and A is an arith-
metic progression with first term a1 and difference a2 − a1. �

3. Elementary divisors

Let m � 2, let F be a field of zero characteristic and let V be a finite dimension vector space
over F such that dim V � m. Let f be a linear operator on V . The following characterization of
the elementary divisors of D(f ) is well known [4,5].

Let

(X − μi)
ni , i = 1, 2, . . . , �

be the elementary divisors of f , where μ1, . . . , μ� ∈ F are not necessarily distinct. Let k1, k2, . . . ,

k� be nonnegative integers such that

k1 + k2 + · · · + k� = m and ki � ni, i = 1, 2, . . . , �. (8)

Let r1, r2, . . . , r� be nonnegative integers such that

2ri � ki(ni − ki), i = 1, 2, . . . , �. (9)

For s ∈ {1, 2, . . . , �} define

Es = ks(ns − ks) − 2rs + 1 and Es =
s∑

i=1

Ei.

For q1, q2, . . . , q�−1 integers such that

1 � qs � min{Es − 2(q1 + · · · + qs−1) + s − 1, Es+1}, s = 1, . . . , � − 1, (10)

define

η(r1, . . . , r�, q1, . . . , q�−1) = E� − 2(q1 + q2 + · · · + q�−1) + � − 1.

Let s ∈ {1, 2, . . . , �}. For each positive integer j we denote by ps,j the number of partitions of j

into not more than ks parts, each part at most ns − ks and define ps,0 = 1.
For each s ∈ {1, 2, . . . , �} let

cs =
{

1, if rs = 0,

ps,rs − ps,rs−1, if rs > 0.

Theorem 1 [4,5]. The elementary divisors of D(f ) are(
X −

�∑
s=1

ksμs

)η(r1,...,r�,q1,...,q�−1)

, c1c2 · · · c� times,

when k1, . . . , k�, r1, . . . , r�, q1, . . . , q�−1 run over the sets of nonnegative integers satisfying
(8)–(10).
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Remark 1. For k1, . . . , k�, r1, . . . , r�, q1, . . . , q�−1 satisfying (8)–(10), we have

η(r1, . . . , r�, q1, . . . , q�−1) � E� − � + 1 �
�∑

s=1

ks(ns − ks) + 1.

Remark 2. If we consider r1 = · · · = r� = 0 and q1 = · · · = q�−1 = 1, we obtain c1 = · · · =
c� = 1 and

η(0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
�−1

) =
�∑

s=1

ks(ns − ks) + 1.

It follows that, if k1 + · · · + k� = m and 0 � ki � ni , i = 1, . . . , �, then(
X −

�∑
s=1

ksμs

)∑�
s=1 ks(ns−ks)+1

is an elementary divisor of D(f ).

The following well known results can be obtained as corollaries from Theorem 1.

Corollary 1. If a1, . . . , ar ∈ F are the distinct eigenvalues of f and

(X − ai)
ni,j , j = 1, 2, . . . , si , i = 1, . . . , r

are the elementary divisors of f then

σ(D(f )) =
⎧⎨
⎩

r∑
i=1

miai : m1+· · ·+mr = m, mi ∈ N0 and mi �
si∑

j=1

ni,j , i = 1, . . . , r

⎫⎬
⎭ .

Corollary 2. If f is of simple structure then also D(f ) is of simple structure.

Corollary 3
1. ∧mσ(f ) ⊆ σ(D(f ));
2. If dim V = |σ(f )| then ∧mσ(f ) = σ(D(f )).

For m = 2 there is a considerably simpler characterization for the elementary divisors of D(f ).

Theorem 2 [2, Chapter 7, Theorem 2.6]. Let

(X − μi)
ni , i = 1, 2, . . . , �

be the elementary divisors of f, where μ1, . . . , μ� ∈ F are not necessarily distinct. The elementary
divisors of the restriction of the derivation associated with f to ∧2V are:

(X − 2μi)
k, k = 2ni − 3, 2ni − 7, . . . ,

{
1, if ni is even,

3, if ni is odd,
1 � i � �

and

(X − μi − μj )
ni+nj −2t+1, 1 � t � min{ni, nj }, 1 � i < j � �.
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4. Main result

Theorem 3. Let m � 2 and let V be a finite dimension vector space over a field of zero charac-
teristic, F, such that dim V � m. Let f be a linear operator on V such that r :=|σ(f )| � m. Let
D(f ) be the restriction of the derivation associated with f to ∧mV. Then

deg(PD(f )) = m(deg(Pf ) − m) + 1

if and only if one of the following conditions holds:

(1) r = m = dim V ;
(2) r = m + 1 = dim V ;
(3) The elementary divisors of f are

X − b1, . . . , X − bm−1, (X − bm)2,

where b1, . . . , bm ∈ F are distinct;
(4) r � m + 1 and the elementary divisors of f are

X − bi, si t imes, i = 1, . . . , r,

where b1, . . . , br is an arithmetic progression with first term b1, s1 = · · · = sm−1 = 1 and
sr−m+2 = · · · = sr = 1;

(5) m = 2 and the elementary divisors of f are

X − b, (X − b − q)2, X − b − 2q,

where b, q ∈ F and q /= 0;
(6) m = 2 and the elementary divisors of f are

X − b, X − b − q, X − b − q ′, X − b − q − q ′,
where b ∈ F, q, q ′ ∈ F \ {0}, q /= q ′ and q + q ′ /= 0;

(7) m = 2 and the elementary divisors of f are

(X − b1)
2, (X − b2)

2,

where b1, b2 ∈ F and b1 /= b2.

Proof
Sufficient condition

(1), (2) and (6) In any of these cases f is of simple structure and dim V = |σ(f )|. Then
(Corollaries 2, 3 and Proposition 1)

deg(PD(f )) = |σ(D(f ))| = | ∧m σ(f )| = m(r − m) + 1 = m(deg(Pf ) − m) + 1.

(3) From Corollary 1, the eigenvalues of D(f ) are the m elements

zi = bm +
m∑

j = 1
j /= i

bj , i = 1, . . . , m

and (Remark 2) X − z1, X − z2, . . . , X − zm−1, (X − zm)2 are elementary divisors of

D(f ). Since dim ∧mV =
(

m + 1
m

)
= m + 1, it follows that
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PD(f ) = (X − zm)2
m−1∏
i=1

(X − zi)

and deg(PD(f )) = m + 1 = m(deg(Pf ) − m) + 1.
(4) Suppose bi = b1 + (i − 1)q, where q ∈ F \ {0}. From Corollary 1,

σ(D(f ))=
{

mb1+q

r∑
i=1

mi(i − 1) : m1+· · · + mr =m and 0�mi �si, i =1, . . . , r

}
.

Since s1 = · · · = sm−1 = 1 and sr−m+2 = · · · = sr = 1,{
r∑

i=1
mi(i − 1) : m1 + · · · + mr = m and 0 � mi � si, i = 1, . . . , r

}

=
[

m(m−1)
2 , mr − m(m+1)

2

]
∩ N.

Then

σ(D(f )) =
{
mb1 + qz : z ∈

[
m(m − 1)

2
, mr − m(m + 1)

2

]
∩ N

}
= ∧mσ(f ).

Since f is of simple structure, also D(f ) is of simple structure and deg(PD(f )) =
|σ(D(f ))| = rm − m2 + 1 = m deg(Pf ) − m2 + 1.

(5) From Theorem 2 the elementary divisors of D(f ) are

(X − 2b − q)2, X − 2b − 2q, X − 2b − 2q, (X − 2b − 3q)2.

Then PD(f ) = (X − 2b − 2q)(X − 2b − q)2(X − 2b − 3q)2 and deg(PD(f )) = 5 =
2 deg(Pf ) − 3.

(7) In this case PD(f ) = (X − 2b1)(X − 2b2)(X − b1 − b2)
3 and deg(PD(f )) = 5 =

2 deg(Pf ) − 3.

Necessary condition

Suppose deg(PD(f )) = m deg(Pf ) − m2 + 1. Let a1, . . . , ar ∈ F (where r � m) be the dis-
tinct eigenvalues of f and let

(X − ai)
ni,j , j = 1, 2, . . . , ti , i = 1, . . . , r

be the elementary divisors of f , where, for each i, ni :=ni,1 � ni,2 � · · · � ni,ti . Then Pf =
(X − a1)

n1 · · · (X − ar)
nr .

Consider the Q-vector space, W = {∑r
i=1 βiai : βi ∈ Q

}
. Let d be its dimension and let

{g1, . . . , gd} be a basis of W ∗ satisfying the conditions in Lemma 2, for the distinct elements in
W , a1, a2, . . . , ar .

From Lemma 2, g1(a1), g1(a2), . . . , g1(ar) are distinct rational numbers. Without loss of
generality we assume that a1, a2, . . . , ar are ordered in such way that

g1(a1) < g1(a2) < · · · < g1(ar). (11)

We consider two cases: r � m + 1 and r = m.
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(I) r � m + 1
As in the proof of Proposition 1 we consider the m subsets of W given by

B1 = {a1 + · · · + am−1 + ai : i = m, . . . , r},

Bj =

⎧⎪⎨
⎪⎩a1 + · · · + am−j︸ ︷︷ ︸

m−j

+ ai + ar−j+2 + · · · + ar︸ ︷︷ ︸
j−1

: i = m − j + 2, . . . , r − j + 1

⎫⎪⎬
⎪⎭ ,

j = 2, . . . , m.

For j = 1, . . . , m let φj and �j be, respectively, the minimum and the maximum of g1(Bj ), that
is,

φ1 = g1(a1) + · · · + g1(am),

�1 = g1(a1) + · · · + g1(am−1) + g1(ar),

φj = g1(a1) + · · · + g1(am−j )︸ ︷︷ ︸
m−j

+ g1(am−j+2) + g1(ar−j+2) + · · · + g1(ar)︸ ︷︷ ︸
j−1

,

j =2, . . . , m,

�j = g1(a1) + · · · + g1(am−j )︸ ︷︷ ︸
m−j

+ g1(ar−j+1) + g1(ar−j+2) + · · · + g1(ar)︸ ︷︷ ︸
j−1

,

j =2, . . . , m.

As we have seen in Proposition 1, φ1 < �1 < φ2 < �2 < · · · < φm < �m.
Hence the elements in the disjoint union

⋃m
j=1 Bj are m(r − m) + 1 distinct eigenvalues of

D(f ), with associated elementary divisors

(
X − ai −

m−1∑
k=1

ak

)∑m−1
k=1 (nk−1)+(ni−1)+1

, i = m, . . . , r;
⎛
⎝X − ai −

m−j∑
k=1

ak −
r∑

k=r−j+2

ak

⎞
⎠
∑m−j

k=1 (nk−1)+∑r
k=r−j+2(nk−1)+(ni−1)+1

,

i = m − j + 2, . . . , r − j + 1, j = 2, . . . , m.

Let t (X) be the product of these elementary divisors. Then

deg(t (X)) = (r − m + 1)

(
m−1∑
k=1

nk − m + 1

)
+

r∑
i=m

ni

+
m∑

j=2

r−j+1∑
i=m−j+2

⎛
⎝m−j∑

k=1

nk +
r∑

k=r−j+2

nk + ni − m + 1

⎞
⎠

= (r − m)

m−1∑
k=1

nk + deg(Pf ) + (−m + 1)(rm − m2 + 1)

+ (r − m − 1)

m∑
j=2

⎛
⎝m−j∑

k=1

nk +
r∑

k=r−j+2

nk

⎞
⎠+

m∑
j=2

(deg(Pf ) − nm−j+1)
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= (r − m − 1)

m−1∑
k=1

nk + m deg(Pf ) + (−m + 1)(rm − m2 + 1)

+ (r − m − 1)

m∑
j=2

⎛
⎝m−j∑

k=1

nk +
r∑

k=r−j+2

nk

⎞
⎠ .

Since ni � 1, for all i, we have

deg(t (X)) � (r − m − 1)(m − 1) + m deg(Pf ) + (−m + 1)(rm − m2 + 1)

+ (r − m − 1)(m − 1)2

� m deg(Pf ) − m2 + 1.

From deg(PD(f )) = m deg(Pf ) − m2 + 1 it follows that PD(f ) = t (X) and

σ(D(f )) =
m⋃

j=1

Bj . (12)

Suppose that n� � 2 or t� � 2 for some � ∈ {1, . . . , m − 1}. Then

c = 2a� +
m−1∑
j =1
j /=�

aj ∈ σ(D(f )).

Since

g1(c) = g1(a�) +
m−1∑
i=1

g1(ai) <

m∑
i=1

g1(ai) = φ1,

we obtain a contradiction with (12).
Suppose that n� � 2 or t� � 2, for some � ∈ {r − m + 2, . . . , r}. Then

d = 2a� +
r∑

j =r−m+2
j /=�

aj ∈ σ(D(f ))

and, from

g1(d) = g1(a�) +
r∑

j=r−m+2

g1(aj ) >

r∑
j=r−m+1

g1(aj ) = �m,

we obtain a contradiction with (12).
Hence

ni = ti = 1 for i ∈ {1, . . . , m − 1} ∪ {r − m + 2, . . . , r}. (13)

From |σ(D(f ))| = m(|σ(f )| − m) + 1 � | ∧m σ(f )| and ∧mσ(f ) ⊆ σ(D(f )) we conclude
that

σ(D(f )) = ∧mσ(f ) (14)

and | ∧m σ(f )| = m(|σ(f )| − m) + 1.
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Then (Proposition 1) one of the following conditions holds:

(a) r = m + 1:
If m � 3 then, from (13), we have ni = ti = 1, i = 1, . . . , r . Condition (2) holds. If m = 2
then r = 3 and, from (13), n1 = n3 = t1 = t3 = 1. If n2 = t2 = 1 then condition (2) holds.
Suppose n2 � 2 or t2 � 2. Then, from (14) and Corollary 1, we have

2a2 ∈ σ(D(f )) = {a1 + a2, a1 + a3, a2 + a3}.
Therefore 2a2 = a1 + a3 and σ(f ) is an arithmetic progression with first term a1 and
difference a2 − a1. If n2 = 1 condition (4) holds.
Suppose n2 � 2. From deg(Pf ) = n2 + 2 it follows that deg(PD(f )) = 2n2 + 1.
Hence

PD(f ) = (X − a1 − a2)
n2(X − a1 − a3)(X − a2 − a3)

n2 .

Since 2a2 = a1 + a3 and (X − 2a2)
2n2−3 is an elementary divisor of D(f ) we get n2 =

2. Suppose t2 � 2. Then (X − a2)
2 and (X − a2)

n2,2 are elementary divisors of f and
(X − 2a2)

n2,2+1 = (X − a1 − a3)
n2,2+1 is an elementary divisor of D(f ) and this leads to

a contradiction. Then t2 = 1 and condition (5) holds.
(b) σ(f ) is an arithmetic progression:

Let b and d be, respectively, the first term and the difference of that arithmetic progression.
Since b, b + d ∈ W , then also d ∈ W and g1(b), g1(b + d), . . . , g1(b + (r − 1)d) is an
arithmetic progression in Q with difference g1(d) /= 0 (from (11)).
If g1(d) > 0 then g1(b) < g1(b + d) < · · · < g1(b + (r − 1)d) and so, from (11), we have
ai = b + (i − 1)d , for i = 1, . . . , r .
If g1(d) < 0 then ai = b + (r − i)d , for i = 1, . . . , r .
From (13) we have ni = ti = 1 for all i ∈ {1, . . . , m − 1} ∪ {r − m + 2, . . . , m}. If f is of
simple structure then condition (4) holds.
Suppose f is not of simple structure. Then, from (13), it follows that r − m + 1 � m and
n� � 2 for some � ∈ {m, . . . , r − m + 1}. Let � be the smallest element in {m, . . . , r − m +
1} such that n� � 2. Notice that � � r − m + 1 � r − 1. Suppose � � r − 2 and consider

xi =
m−1∑
j=1

aj + ai, i = m, . . . , �;

yi =
m−2∑
j=1

aj + ai + ar , i = � + 1, . . . , r − 1; (15)

vi =
m−2∑
j=1

aj + a� + ai, i = m, . . . , r.

Since g1(xm) < g1(xm+1) < · · · < g1(x�) < g1(vm) < g1(vm+1) < · · · < g1(vr ) <

g1(y�+1) < · · · < g1(yr−1) < φ3, the elements in (15) are 2r − 2m + 1 distinct eigen-
values of D(f ), not in

⋃m
j=3 Bj .

From (13) and n1 = · · · = n�−1 = 1, we conclude that

(X − xi), i = m, . . . , � − 1;
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(X − x�)
n�;

(X − yi)
ni , i = � + 1, . . . , r − 1;

(X − vi)
n�+ni−1, i = m, . . . , r, i /= �;

(X − v�)
2n�−3

are elementary divisors of D(f ).
Then

m deg(Pf ) − m2 + 1 � � − m + n� +
r−1∑

i=�+1

ni +
r∑

i =m

i /=�

(n� + ni − 1)

+ 2n� − 3 +
m∑

j=3

r−j+1∑
i=m−j+2

ni

⇒ m deg(Pf ) − m2 + 1 � � − m − 3 +
r−1∑
i=�

ni +
r∑

i=m

ni + (r − m)(n� − 1)

+ n� +
m∑

j=3

r−j+1∑
i=m−j+2

ni

⇒ m deg(Pf ) − m2 + 1 � � − m − 3 + (deg(Pf ) − �) + (deg(Pf ) − m + 1)

+ (r − m + 1)n� − r + m +
m∑

j=3

r−j+1∑
i=m−j+2

ni.

For 3 � j � m we have m − j � m − 3 and r − j � r − m. So, if i � m − j + 1 or i �
r − j + 2 then ni = 1. Hence

∑r−j+1
i=m−j+2 ni = deg(Pf ) − m and

m deg(Pf ) − m2 + 1 � 2 deg(Pf ) − m − 2 − r + (r − m + 1)n�

+ (m − 2)(deg(Pf ) − m)

⇒ −m2 + 1 � (r − m + 1)n� − r − m − m2 + 2m − 2

⇒ (r − m + 1)n� � r − m + 3.

From the last inequality, since we are assuming that n� � 2, we have r = m + 1 and,
from � � r − 2 = m − 1, we obtain a contradiction with (13). Then � = r − 1 and, from
� � r − m + 1, it follows that m = 2.
So, if f is not of simple structure then m = 2, nr−1 � 2 and

ni = ti = 1 for i ∈ {1, . . . , r} \ {r − 1}.
In this case,

xi = a1 + ai, i = 2, . . . , r − 1;
vi = ar−1 + ai, i = 2, . . . , r
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are 2r − 3 distinct eigenvalues of D(f ). Since ni = 1 for i /= r − 1 we obtain

2 deg(Pf ) − 3 �
r−1∑
i=2

ni +
r∑

i =2
i /=r−1

(nr−1 + ni − 1) + 2nr−1 − 3

⇒ 2 deg(Pf )−3 � deg(Pf )−2+(r−2)(nr−1−1)+deg(Pf )−nr−1−1+2nr−1−3

⇒ 2 � (r − 1)(nr−1 − 1).

Since r � m + 1 = 3, it follows that r = 3 and n2 = 2. From (13) we have t1 = t3 = 1.
Suppose t2 � 2. Then (X − a2)

2 and (X − a2)
n2,2 are elementary divisors of f and

(X − a1 − a2)
2, (X − a2 − a3)

2, (X − 2a2)
n2,2+1

are elementary divisors of D(f ) associated to distinct eigenvalues. Hence 5 =
deg(PD(f )) � 5 + n2,2, which leads to a contradiction. Then t2 = 1 and condition (5) holds.

(c) m = 2, r = 4 and σ(f ) = a + {0, q, q ′, q + q ′}, for some a ∈ F, q, q ′ ∈ F \ {0} such that
q /= q ′ and q + q ′ /= 0.
First we prove that f is of simple structure. From (13) n1 = n4 = 1. Hence Pf = (X −
a1)(X − a2)

n2(X − a3)
n3(X − a4) and deg(PD(f )) = 2n2 + 2n3 + 1.

On the other hand, since a2 + a3 ∈ ∧2σ(f ) = σ(D(f )) and

σ(D(f )) = B1 ∪ B2 = {a1 + a2, a1 + a3, a1 + a4, a2 + a4, a3 + a4},
it follows that a2 + a3 = a1 + a4 and, from Theorem 2, we have

PD(f ) =(X−a1−a2)
n2(X−a1−a3)

n3(X−a2−a3)
n2+n3−1(X−a2−a4)

n2(X−a3−a4)
n3 .

Then n2 = n3 = 1 and f is of simple structure.
From σ(f ) = a + {0, q, q ′, q + q ′} it follows that

σ(D(f )) = ∧2σ(f ) = 2a + {q, q ′, q + q ′, 2q + q ′, q + 2q ′}.
Let

X − a, s1 times

X − a − q, s2 times

X − a − q ′, s3 times

X − a − q − q ′, s4 times

be the elementary divisors of f . From (13) we know that, at least, two of the numbers
s1, s2, s3, s4 are equal to 1.
If s1 = s2 = s3 = s4 = 1 then condition (6) holds.
Suppose s1 � 2. Then 2a ∈ σ(D(f )). Hence 2q + q ′ = 0 or q + 2q ′ = 0. Then σ(f ) is an
arithmetic progression. Similarly, if si � 2 for some i ∈ {2, 3, 4}, then σ(f ) is an arithmetic
progression. As we have seen in (b), condition (4) holds.

(II) r = m:
First we assume that f is not of simple structure. Then ni � 2 for some i ∈ {1, . . . , m}. Let �

be the greatest element in {1, . . . , m} such that

n� = max{ni : i = 1, . . . , m} � 2.
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Let

zi = a� +
m∑

j =1
j /= i

aj , i = 1, . . . , m.

z1, . . . , zm are distinct eigenvalues of D(f ) and, since n� � 2, (X − z�)
∑m

j=1(nj −1)+1 and

(X − zi)

∑m

j =1
j /= i

j /=�

(nj −1)+2(n�−2)+1

, i = 1, . . . , m, i /= �

are elementary divisors of D(f ).
Then, for some monic polynomial q(X) ∈ F[X] \ {0},

PD(f ) = q(X)(X − z�)
∑m

j=1(nj −1)+1
m∏

i =1
i /=�

(X − zi)

∑m

j =1
j /= i

j /=�

(nj −1)+2(n�−2)+1

(16)

and

deg(q(X)) = m deg(Pf )−m2+1−deg(Pf )+m−1−
m∑

i =1
i /=�

m∑
j =1
j /=�

j /= i

(nj −1)−(m−1)(2n�−3)

= (m−1) deg(Pf )−m2+m−
m∑

i =1
i /=�

m∑
j =1
j /=�

j /= i

nj +(m−1)(m−2)−(m−1)(2n�−3)

= (m−1) deg(Pf )−m2−
m∑

i =1
i /=�

(deg(Pf )−ni −n�)−2(m−1)n�+m2+m−1

= deg(Pf ) − mn� + m − 1. (17)

We consider two subcases:

(i) ni = 1, for all i /= �:
In this case deg(Pf ) = n� + m − 1 and, from (17), we obtain 0 � deg(q(X)) =
(n� − 2)(1 − m). Then n� = 2, deg(q(X)) = 0 and

PD(f ) = (X − z�)
2

m∏
i = 1
i /= �

(X − zi).

Suppose tq � 2 for some q ∈ {1, . . . , m} \ {�}. Then, for i = 1, . . . , m, yi = aq +∑m
j =1
j /= i

aj

is an eigenvalue of D(f ) and g1(y1) > g1(y2) > · · · > g1(ym). Since σ(D(f )) = {z1, . . . ,

zm} and g1(z1) > g1(z2) > · · · > g1(zm), it has to be zi = yi , for all i, which contradicts
aq /= a�. Then tq = 1, for all q ∈ {1, . . . , m} \ {�}.
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Now suppose t� � 2. Then (X − a�)
2 and (X − a�)

n�,2 are elementary divisors of f . If
� � 2 then

(X − z1)

∑m

j =2
j /=�

(nj −1)+(n�−1)+(n�,2−1)+1

is an elementary divisor of D(f ), with degree n� + n�,2 − 1 � 2 and we obtain a contra-
diction. Then � = 1 and

(X − z2)
∑m

j=3(nj −1)+(n1−1)+(n1,2−1)+1

is an elementary divisor of D(f ) with degree n1 + n1,2 − 1 � 2. Once more, we obtain a
contradiction. Then ti = 1 for all i ∈ {1, 2, . . . , m} and condition (3) holds.

(ii) ni � 2, for some i /= �:
Let k be the greatest element in {1, . . . , m} \ {�} such that

nk = max{ni : i = 1, . . . , � − 1, � + 1, . . . , m}.
From the definition of k, n� � nk � 2 and deg(Pf ) � n� + (m − 1)nk . Then 0 �
deg(q(X)) � (m − 1)(nk − n� + 1) and so nk ∈ {n�, n� − 1}. Suppose nk = n� − 1. Then
deg(q(X)) = 0 and

σ(D(f )) = {z1, . . . , zm}. (18)

If k < � then

w1 = ak + a1 + · · · + am−1 = 2ak +
m−1∑
j =1
j /=k

aj

is an eigenvalue of D(f ) such that g1(w1) < g1(zm) < · · · < g1(z1) and this contradicts
(18).
If k > � then

w2 = ak + a2 + · · · + am = 2ak +
m∑

j =2
j /=k

aj

is an eigenvalue of D(f ) such that g1(w2) > g1(z1) > · · · > g1(zm) and this contradicts
(18).
Then nk = n� � 2 and, from the definitions of k and �, we have k < �. Also in this case

w1 = ak + a1 + · · · + am−1 = 2ak +
m−1∑
j =1
j /=k

aj

is an eigenvalue of D(f ) not in {z1, . . . , zm}. Therefore

(X − w1)

∑m−1
j =1
j /=k

(nj −1)+2(nk−2)+1

divides q(X) and, from (17), it follows that
m−1∑
j =1
j /=k

(nj − 1) + 2(nk − 2) + 1 � deg(Pf ) − mn� + m − 1,
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that is,

deg(Pf ) − nk − nm − m + 2 + 2nk − 3 � deg(Pf ) − mn� + m − 1.

Since nk = n� � nm, we obtain mn� � 2m and nk = n� = 2. Then m + 2 � deg(Pf ) �
2m.
If m = 2 then Pf = (X − a1)

2(X − a2)
2, σ(D(f )) = {2a1, 2a2, a1 + a2} and (Theorem

2) (X − a1 − a2)
3 is an elementary divisor ofD(f ). Since deg(PD(f )) = 5 we havePD(f ) =

(X − 2a1)(X − 2a2)(X − a1 − a2)
3. Suppose t1 � 2. Then (X − a1)

n1,2 is another ele-
mentary divisor of f associated with a1. Hence (X − 2a1)

2+n1,2−1 is an elementary divisor
of D(f ) and this contradicts n1,2 � 1. Then t1 = 1 and, similarly, t2 = 1. Condition (7)
holds.
Assume now thatm � 3. Supposenq = 2 for someq ∈ {1, . . . , m} \ {�, k}. Then deg(Pf ) �
m + 3. From the definitions of � and k we have q < k < �. Then

w1 = ak + a1 + · · · + am−1 = 2ak +
m−1∑
j =1
j /=k

aj

and

w3 = aq + a1 + · · · + am−1 = 2aq +
m−1∑
j =1
j /=q

aj

are eigenvalues of D(f ) such that g1(w3) < g1(w1) < g1(zm) < · · · < g1(z1).
Therefore,

(X − w1)

∑m−1
j =1
j /=k

(nj −1)+2(nk−2)+1

(X − w3)

∑m−1
j =1
j /=q

(nj −1)+2(nq−2)+1

has degree, at most, equal to the degree of q(X), that is,

2 deg(Pf ) − 2m − 2nm + nk + nq − 2 � deg(Pf ) − mn� + m − 1,

which contradicts deg(Pf ) � m + 3, since n� = nk = nq = 2 and nm � 2.
So, for r = m � 3 and nk � 2 it must be nk = n� = 2 and ni = 1 for i ∈ {1, . . . , m} \
{�, k}. Then deg(Pf ) = m + 2 and deg(q(X)) = 1. From w1 ∈ σ(D(f )) \ {z1, . . . , zm}, it
follows that q(X) = X − w1. Since

(X − w1)

∑m−1
j =1
j /=k

(nj −1)+2(nk−2)+1

is an elementary divisor of D(f ) it follows that � = m and, from (16), we have

PD(f ) = (X − w1)(X − zk)(X − zm)3
m−1∏
i =1
i /=k

(X − zi)
2.

If k � m − 2, then

w4 = ak + a1 + · · · + am−2 + am = 2ak + am +
m−2∑
j =1
j /=k

aj
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is also an eigenvalue of D(f ), and again we have a contradiction, since g1(w1) < g1(w4) <

g1(zm) < · · · < g1(z1).
Then k = m − 1. If m � 4 then w5 = a3 + · · · + am−2 + 2am−1 + 2am is also an eigen-
value of D(f ) and, from g1(w1) < g1(zm) < · · · < g1(z1) < g1(w5), we have a contra-
diction.
Then m = 3, � = 3, k = 2, Pf = (X − a1)(X − a2)

2(X − a3)
2 and

PD(f ) = (X − z3)
3(X − z1)

2(X − z2)(X − w1).

Since (X − 2a2 − a3)
2 is an elementary divisor of D(f ), 2a2 + a3 ∈ {z1, z3} = {a2 +

2a3, a1 + a2 + a3}, and, once more, we obtain a contradiction.
So if r = m and f is not of simple structure then conditions (3) or (7) hold.
For r = m it remains to consider the case f is of simple structure.

Suppose t� � 2 for some � ∈ {1, . . . , m}. Then z1, . . . , zm, defined as before, are m distinct
eigenvalues of D(f ), to which X − zi, i = 1, . . . , m, are associated elementary divisors. Then
m deg(Pf ) − m2 + 1 � m and this contradicts deg(Pf ) = m. It follows that t1 = · · · = tm = 1
and condition (1) holds. �
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