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Abstract

Let A be a complex n × n matrix and let SO(n) be the group of real orthogonal matrices of determinant
one. Define �(A) = {det(A ◦ Q) : Q ∈ SO(n)}, where ◦ denotes the Hadamard product of matrices. For
a permutation σ on {1, . . . , n}, define zσ = dσ (A) = ∏n

i=1 aiσ (i). It is shown that if the equation zσ =
det(A ◦ Q) has in SO(n) only the obvious solutions (Q = (εiδσ i,j ), εi = ±1 such that ε1 · · · εn = sgnσ ),
then the local shape of �(A) in a vicinity of zσ resembles a truncated cone whose opening angle equals
zσ1 ẑσ zσ2 , where σ1, σ2 differ from σ by transpositions. This lends further credibility to the well known de
Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n × n matrices. We
deduce the mentioned fact from a general result concerning multivariate power series and also use some
elementary algebraic topology.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Notation

Our notation is standard where advisable. Here are listed in telegram style the notations and
definitions that may need clarification.
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R�0, Rn
>0, Ṙ, etc. reals� 0, (R>0)

n, extended reals: R ∪ {∞}, etc.
Sn,T, i ∈ τ symmetric group on {1, . . . , n}, set T = {(i, j) : 1 � i < j � n}

often identified with the set of transpositions
in Sn; i ∈ τ = 〈k, l〉 ∈ T means i = k or i = l

so(n), su(n) the Lie-algebras of (real) skew-symmetric and (complex)
skew-hermitian n × n matrices of trace 0

SO(n), SU(n) Lie-groups of orthogonal and unitary n×n matrices of determinant 1
A;Q an arbitrary n × n complex matrix mostly fixed, a matrix in

SO(n) respectively
dσ (M), zσ , zid the diagonal product of matrix M associated to permutation

σ. dσ (M) = ∏n
i=1 miσ(i), in particular did(M) = m11m22 · · · mnn.

For the particular matrix A mentioned before,
we sometimes use zσ := dσ (A)

|u| mostly the norm of an element u in a normed space; Rn, C
carry euclidean norm

B(z, ρ), B(x, ρ) open balls of radius ρ > 0 centers z or x, in C or Rn respectively
|B|; Pσ ;Pσ the matrix (|bij |); for σ ∈ Sn the matrix (δσ i,j ); the set

{Q ∈ SO(n) : |Q| = Pσ }.
A ◦ B the Hadamard product of matrices A, B of same size: (A ◦ B)ij =

aij bij

lhs(.), rhs(.), mid(.) left hand side, right hand side, mid of an expression
l+, px+, px a ray; for points p, x, the ray with origin p containing x;

segment joining p to x

f 	 g; X ≈ Y homotope maps; homoeomorphic spaces
clX, or X the topological closure of a subset X of the plane
S1 the 1-sphere (unit circle) in R2

diameter(U) for U ⊆ Rn the supremum sup{|u − u′| : u, u′ ∈ U}
p, x, 0; x, 0 points p, x, 0 in the complex plane; a point in Rn, dimension n

will follow from context; the zero of Rn

min b; max b minimum/maximum of entries of real n-tuple b = (b1, . . . , bn)

[9, p45c-3] example of reference to book or article: see [9] page 45, about
3cm from last text row.

coneZ; coZ for a set Z ⊆ C, the set (cone) {∑k
i=1 rizi : k ∈ Z�1, ri � 0, zi ∈ Z};

the similarly constructed set (convex hull) with additional
restriction

∑
i ri = 1

monomial cix
i; |i| an expression of the form ci1i2···inx

i1
1 · · · xin

n .|i| = i1 + · · · + in
is its degree

powerseries a sum of possibly infinitely many monomials formally summed
in any order

1.2. Content and outline of results

LetA = (aij )be a complexn × n-matrix. Since SO(n) = Lie group of unitaryn × nmatrices of
determinant 1 is a compact connected set [9, pp.104c-4, 147c-1], the region �(A) = {det(A ◦ Q) :
Q ∈ SO(n)} is a compact connected set in the complex plane. Let zσ = zσ (A) = ∏n

i=1 aiσ i be the
(unsigned) diagonal product of A associated to σ ∈ Sn. The following formulation of a slightly
weakened form of the Oliveira Marcus Conjecture [2] appears first implicitly in [6]; OMC itself
claims the same thing to be true even if �(A) is defined using SU(n) instead of SO(n).
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Conjecture (OMC for SO(n)). If A is a rank 2 matrix, then

�(A) ⊆ co{zσ (A) : σ ∈ Sn}.

Example. Although experiments indicate that the inclusion seems to remain true in many cases
in which rankA > 2, this is not so in general: consider the case A = diag(1, 1, 1) and choose Q

as the matrix

Q = 1

3

⎡⎣−1 2 2
2 −1 2
2 2 −1

⎤⎦ .

In this article we prove a result, see Theorem 11, related to the shape of �(A) near points
zσ (A) ∈ C.

In Section 2 we compute the first terms of the power series det(A ◦ exp S) in the real and
imaginary parts of the entries of S ∈ su(n) around the zero matrix. The salient feature is that the
nontrivial homogeneous component of lowest degree of this series is a linear combination of the
squares of these parts with coefficients that are simple expressions in the dσ (A). Section 3 defines
the concept of a corner of a region in the plane. An archetypical corner is a disk-sector of angle
measure < π. We show that under natural restrictions a set valued map defined on such a sector
and deviating from the identity by small enough a quantity as its argument approaches its vertex
has as image region approximately the sector. The proof employs some elementary algebraic
topology. Section 4 gives a lemma on power series of the type encountered for det(A ◦ exp S). It
assures that such power series defines in a natural manner a set valued map of the type considered
previously. This is used to deduce the main result, Theorem 11, in Section 5. We end with some
remarks.

2. A power series

Recall that so(n) = Lie�algebra of real skew-symmetric n × n matrices S is associated to
SO(n) via the exponential map: indeed, by [9, p147c-2] (or [1, p165c4]), every Q ∈ SO(n) can
be written Q = exp(S) for some S ∈ so(n). Hence

�(A) = {det(A ◦ Q) : Q ∈ SO(n)} = {det(A ◦ exp S) : S ∈ so(n)}.
For the proper understanding of the theory of absolutely summable series in a Banach space, and
in particular function spaces and power series, as referred below, see [3, pp. 94–95, 127–128,
193–197]. For the formal background to these (of lesser importance here), see [10].

Note that the matrices S ∈ su(n) are precisely the matrices of the form S = A + iB where
A is a real skew symmetric and B is real symmetric of trace 0. Hence there enter (n2 − n)/2 +
(n2 − n)/2 + (n − 1) = n2 − 1 real variables. By a polynomial in the entries of S, we mean a
polynomial in these real variables; in particular the square of the modulus of such entries is a
polynomial of degree 2 in these variables. Finally recall that if τ = 〈i, j〉 ∈ T, then we permit
sτ as a shorthand for sij , i < j.

Theorem 1. Let A be a complex n × n matrix and let S be a matrix in su(n). For τ ∈ T put
d̃τ (A) = dτ (A) − did(A). Then we have a development

det(A ◦ exp(S)) = did(A) +
∑
τ∈T

d̃τ (A)|sτ |2 +
∑
k�3

pk(S).
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Here each pk(S) as well as |sτ |2 is either 0 or a homogeneous polynomial of degree k respec-
tively 2, in � n2 − 1 real variables. There is for any neighbourhood U0 of the zero (matrix) in

su(n) ≈ Rn2−1, a constant M, so that for every monomial m(·) occuring in this power series,
and every S ∈ U0, there holds |m(S)| � M.

Proof. Since the matrix S = (sij ), satisfies for all i, j ∈ {1, . . . , n}, the relations sij = −sji , in
particular sii ∈ √−1R, we find that the (i, i)-entry of S2 is given by

n∑
ν=1

siνsνi = −|sii |2 −
∑
τ :i∈τ

|sτ |2.

Since exp S = I + S + 1
2S2 + · · · , and since the nonzero entries of Sk are homogeneous

polynomials of degree k in the sij , we find

(exp S)ij =
{

1 + sii − 1
2 |sii |2 − 1

2

∑
τ :i∈τ

|sτ |2 + pii(S), if i = j,

sij + pij (S), if i /= j,

where the power series pii(S) has under-degree � 3, while for i /= j, pij (S) has under-
degree � 2. From this we extract information about the diagonal products dσ (exp S). First, using∑

i sii = 0, and hence also 0 = (
∑

i sii )
2 = 2

∑
l<k sllskk −∑

i |sii |2, we find

did(exp S)=
n∏

i=1

(
1 + sii − 1

2
|sii |2 − 1

2

∑
τ :i∈τ

|sτ |2 + pii(S)

)

=1 +
∑

i

sii +
∑
i<j

siisjj − 1

2

∑
i

|sii |2 − 1

2

∑
i

∑
τ :i∈τ

|sτ |2 + pid(S)

=1 − 1

2

∑
i

∑
τ :i∈τ

|sτ |2 + pid(S)

=1 −
∑
τ∈T

|sτ |2 + pid(S),

where the power series pid(S) has under-degree � 3. The diagonal products corresponding to
transpositions are given as follows.

d〈i,j〉(exp S)=
⎛⎝ n∏

l /=i,j

(
1 + sll − 1

2
|sll |2 − 1

2

∑
τ :l∈τ

|sτ |2 + pll(S)

)⎞⎠
×(sij + pij (S))(−sij + pji(S))

=−|sij |2 + p′
ij (S),

where p′
ij (S) has under-degree � 3. Finally, what concerns the diagonal products corresponding

to σ �∈ {id} ∪ T, the set {i : σ(i) /= i} contains at least three elements. It follows that an associated
diagonal product yields a power series of under-degree � 3. Consequently
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det(A ◦ exp S)=
∑
σ∈Sn

sgnσdσ (A)dσ (exp S)

= did(A)

(
1 −

∑
τ

|sτ |2 + pid(S)) −
∑
τ∈T

dτ (A)(−|sτ |2 + p′
τ (S)

)
+

∑
σ �∈T∪{id}

sgnσdσ (A)dσ (exp S).

This formula and the degree properties of pid(S), p′
τ (S), dσ (exp S) imply the formal expression

given for det(A ◦ exp S). Now each of the n2 functions su(n) � S �→ (exp S)ij , i, j = 1, . . . , n,

is a power series of complex coefficients in n2 − 1 real variables. Since the exponential series
converges absolutely on U0 [9, p. 25], the family of monomials in these variables occuring in
the power series (exp S)ij is absolutely (or normally) summable on U0 in the sense of [3, p95c7,
p128]. Since det(.) is a polynomial in the entries of a matrix, the claim concerning m(S) is easily
inferred. �

3. A set valued map

Definition 2
(a) Call a cone in the sense of the notation section degenerate if it is one of these: the plane C,

a half plane, a ray, or a straight line.
(b) A closed (convex) non-degenerate cone will be called a cnd-cone, for short. It is an

exercise in plane geometry to show that a cnd-cone can be uniquely written in the form
C = cone{eiθ1 , eiθ2}with θ1, θ2 ∈ ] − π, π ], satisfying 0 < α = min{2π − |θ1 − θ2|, |θ1 −
θ2|} < π. The real α is the usual measure of the angle the cone defines.

(c) An angular region (or cone) at z is a set given by ar = z + C, with C a cnd-cone.
(d) The (disk-)sector of radius ρ given by this ar is S(ar, ρ) = ar ∩ B(z, ρ).

(e) Let ar be a (nondegenerate) angular region at z with angle α > 0 and let ε > 0 be such
that 0 < α − 2ε < α < α + 2ε < π. We call the two angular regions with the same vertex
z and bissector as ar, but by a small angle 2ε > 0 smaller/wider than α the ε-contraction
ar−ε/ ε�extension ar+ε of ar.

The central definition for this paper is that of a corner of a subset of the plane.

Definition 3. Let � be a subset of C, and let z ∈ �. The point z is called a corner of �, if there
exists a nondegenerate angular region ar at z such that:

for every small ε > 0 there existsa δ > 0 so that S(ar−ε, δ) ⊆ � ∩ B(z, δ) ⊆ S(ar+ε, δ).

In this case we also may say � has in z the corner ar.

Example 4. The idea of what a corner is, can be gleaned from the following series of pictures:
the shaded regions (a) and (b) have in z corners whose angular regions ar are indicated by tangent
lines. The region (c) has in z no corner. Similarly region (d) has in z no corner, since it has a
sequence of ‘holes’ converging towards z. Assume a boundary curve of � near z exists. If it is
strictly convex (‘inward bounded’) then as ε → 0, δ has to go to 0 to satisfy the second inclusion,
while if it is concave, δ → 0 is required to satisfy the first inclusion.
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Z
Z Z Z

Observation 5. Let �, �′, �′′ be subsets of the plane.

(a) If � ⊆ �′ ⊆ �
′′

and � and �
′′

have in z the corner ar then �′ has in z the corner ar.
(b) � has in z the corner ar iff � ∩ B(z, r) has for some small r > 0 the corner ar.
(c) If � has in z the corner ar, then u + � has in u + z the corner u + ar.

Proof. The simple considerations necessary are left to the reader. �

Let P(R2) = family of subsets (i.e. powerset) of R2.

Theorem 6. Let S = S(ar, ρ) be a disk sector with vertex in 0 and let F : S → P(R2) be a set
valued map with the following further properties:

(i) For some function r : S → Ṙ�0, satisfying limx → 0 r(x)/|x| = 0 and r(0) = 0, there holds
F(x) ⊆ B(x, r(x)) for all x ∈ S.

(ii) There exists a continuous selection S � x �→ f (x) ∈ F(x).

Then for all small r ′ > 0, the set F(S(ar, r ′)) has ar as a corner at 0.

Proof

The figure shows the boundaries Cr1 , Cr2 of two disk-sectors which we think of being Īr1 =
clS(ar−ε, r1), Īr2 = clS(ar, r2). Of ε, r1, r2 we require in the moment only that ε be small enough
so that ar−ε is nontrivial, and that the radii are assumed to satisfy 0 < r1/ cos ε < r2 � ρ. We
dispense with proving that Cr1 , Cr2 are rectifiable curves; that the Jordan curve theorem [7,
p31] applies to them; that their respective Jordan-interiors [7, p36c-1; Enc. 93B&K] Ir1 , Ir2 ,

as well as Īr1 , Īr2 are (convex) disk sectors; that Cr2 \ {0} lies in the Jordan-exterior of Cr1;
and that we have a homeomorphism Īr2 ≈ closed unit disc, which induces a homeomorphism
Cr2 ≈ S1.
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Let L = perimeter of Cr2 and parametrize Cr2 by traversing it counterclockwise from 0 to 0
and defining l : Cr2 → [0, L[ by l(x) = arc�length from 0 to x; also let d(x) = distance from
x ∈ Cr2 to Cr1 . Note that l is a continuous bijection. Simple geometry, in particular the cosine
theorem, yields the following:

d(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l(x) sin(ε) for l(x) ∈ [0, r1/ cos ε],√
l(x)2 + r2

1 − 2l(x)r1 cos ε for l(x) ∈ [r1/ cos ε, r2],√
r2

1 + r2
2 − 2r1r2 cos(1 + ε − (l(x)/r2)) for l(x) ∈ [r2, r2(1 + ε)],

r2 − r1 for l(x) ∈ [r2(1 + ε), L
2 ],

d(l−1(L − l(x))) for l(x) ∈ [L
2 , L[.

The graph l(x)-versus-d(x) for the example shown above is the figure at the left for l(x) � L/2.

The requirement r1/ cos ε < r2 (instead of simply r1 < r2) was made to simplify analysability of
d(x).

We define the function [0, ρ] � t �→ r̃(t) := sup{r(x) : x ∈ S, |x| = t} ∈ Ṙ�0. From the
hypothesis on r we get ∗1 : limt↓0 r̃(t)/t = 0 . Now fix an ε satisfying 0 < ε � min{0.9, α/2,

(π − α)/2}.

Fact 1. For small r2, there exists r1 with 0 < r1/ cos ε < r2 so that for x ∈ Cr2 \ {0}, r(x) <

d(x).

By ∗1 we find for small r2 � ρ that for all 0 < t � r2, r̃(t) < sin ε
1+sin ε

t. Choose such
an r2 and put r1 = r2/(1 + sin ε). Then from the hypothesis on ε one checks that we have
r2 > r1/ cos ε > r1. Note that for x ∈ Cr2 , |x| = min{l(x), r2} � r2. Then from the formulae

for d(x) one finds by routine checks for x ∈ Cr2 \ {0}, that r(x) � r̃(|x|) < sin ε
1+sin ε

|x| � d(x).

Let r1 < r2 be as in Fact 1; it implies for x ∈ Cr2 \ {0}, that F(x) ∩ Cr1 = ∅. Since, when
connecting x by a segment to a point p ∈ Ir1 we cross Cr1 , it follows that |x − p| > d(x). So
p �∈ F(x). This shows ∗2 : Īr1 ∩ F(Cr2) = {0}.

Fact 2. Every point in Īr1 \ {0} lies in the image of Ir2 under F : Īr1 \ {0} ⊆ F(Ir2).

Assume there exists a point p ∈ Īr1 \ {0} so that p �∈ F(Ir2). Then p /= f (x) for all x ∈ Ir2 .

It is also clear by ∗2 that p �∈ f (Cr2). So we have a continuous map f |Īr2 : Īr2

f→ R2 \ {p}.
Let β : R2 \ {p} → Cr2 be the standard retraction map that carries each x ∈ R2 \ {p} to the
unique intersection of the ray px+ with Cr2 : β(x) = px+ ∩ Cr2 . Then we get a continuous
map β ◦ f |Īr2 : Īr2 → Cr2 extending β ◦ f |Cr2 : Cr2 → Cr2 . By Spanier [8, p27] this means
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that β ◦ f |Cr2 is nullhomotopic. Note that we can write f (x) = x + e(x) for some continuous
map e(x) satisfying |e(x)| � r(x). Since for t ∈ [0, 1], |te(x)| � |e(x)|, by Fact 1 we have a

homotopy Cr2 × [0, 1] � (x, t)
H�→ x + te(x) ∈ R2 \ {p} showing idCr2

	 f |Cr2 as t : 0 ↗ 1.

But since Cr2 ≈ S1 and idS1 is not nullhomotopic (as follows from the observations [8, pp25c-
7, 56c4, 59c5, 23c6]), we get that idCr2

is not nullhomotopic. Now β ◦ H yields a homotopy

idCr2
= β ◦ idCr2

	 β ◦ f |Cr2; so we get a contradiction, proving the claim.

Fact 3. For all small r2 > 0 there exists r1 > 0 so that

∗3 : S(ar−ε, r1) ⊆ F(S(ar, r2)) ∩ B(0, r1) ⊆ S(ar+ε, r1).

Recall that Īr1 = clS(ar−ε, r1). Also, by i, F(0) = {0}. So for given ε, as above, Facts
1 and 2 yield that for all small r2 there exists an r1 > 0, so that S(ar−ε, r1) ⊆ F(S(ar, r2)).

Intersecting both sides with B(0, r1) yields the left of the inclusions. Next let u ∈| (∗3). Then
u ∈ F(x) for some x ∈ S(ar, r2). As in the proof of Fact 1 we have observed that this means r(x) �

sin ε
1+sin ε

|x| < |x| sin ε. Consequently u ∈ B(x, |x| sin ε). Suppose u �∈ ar+ε. Since x ∈ ar ⊆ ar+ε,

u �∈ ar. It follows that the segment ux has to contain a point in a side of ar and another in a side
of ar+ε. These two sides define an angle �ε with vertex 0. Consequently |u − x| � |x| sin ε.

Contradiction. Hence u ∈ ar+ε. Since also |u| � r1, we get u ∈ rhs(∗3).

With Fact 3 the theorem is proved. �

4. A lemma on power series

Lemma 7. Let f (x) = ∑
k�2 fk(x) be a power series over C where every fk is either 0 or a

homogeneous polynomial of degree k. Assume that

(i) f2(x) = ∑n
i=1 cix

2
i , with coefficients satisfying 0 �∈ co{ci : i = 1, . . . , n};

(ii) there exist M > 0, and b ∈ Rn
>0, so that |cib

i | < M for all monomials cix
i of f (x).

For any real positive r < min b, we have a continuous function [−r, r]n � x �→ f (x) ∈ C.

Furthermore, |f2(x)| → 0, x ∈ [−r, r]n, implies
∑

k�3 fk(x)/|f2(x)| → 0.

Proof. That f defines in the closed cube [−r, r]n a continuous function is a consequence of [3,
p194c1..5]. From i we get that there exist 0 < ρ1 < ρ2 = max{|ci | : i = 1, . . . , n} such that

ρ1 �

∣∣∣∣∣∣
n∑

j=1

cj

x2
j

x2
1 + · · · + x2

n

∣∣∣∣∣∣
and hence : ρ1(x

2
1 + · · · + x2

n) � |f2(x)| � ρ2(x
2
1 + · · · + x2

n) (*)

for the set of values the expression
∑

. . . assumes as x varies over any neighbourhood of 0 is just
the convex hull of c1, . . . , cn. Henceforth, we assume fk(x) = ∑

|i|=k cix
i , k = 3, . . .

We put

Lk = {i : |i| = k, iν � 1 for all ν}, Qk = {i : |i| = k, iν � 2 for some ν}.
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Case i ∈ Lk. Then exactly k of the iνs are 1, say iν1 = · · · = iνk
= 1. We have the estimates

xiν1
· · · xiνk

� 1

k
(|xiν1

|k + · · · + |xiνk
|k); and

|xi |k
x2

1 + · · · + x2
n

� |xi |k−2,

i = 1, . . . , n, the first following from the arithmetic geometric mean inequality, the second being
trivial. These inequalities imply∣∣∣∣∣ci

xi

x2
1 + · · · + x2

n

∣∣∣∣∣ � 1

k

∑
ν:iν=1

|ci ||xiν |k−2.

Case i ∈ Qk. Then, for a definite choice, we can define j = j (i) = min{ν : iν � 2}, and find∣∣∣∣∣ci

xi

x2
1 + · · · + x2

n

∣∣∣∣∣ =|ci | |xj |2
x2

1 + · · · + x2
n

|x1|i1 · · · |xj |ij −2 · · · |xn|in

� |ci ||x1|i1 · · · |xj |ij −2 · · · |xn|in .
Now put m(x) = max{|x1|, . . . , |xn|}. Then∣∣∣∣∣∣

∑
k�3

fk(x)/f2(x)

∣∣∣∣∣∣ � 1

ρ1

∑
k�3

|fk(x)|/(x2
1 + · · · + x2

n)

� 1

ρ1

∑
k�3

⎛⎝∑
i∈Lk

1

k

∑
ν:iν=1

|ci ||xiν |k−2 +
∑
i∈Qk

|ci ||x1|i1 · · · |xj (i)|ij (i)−2 · · · |xn|in
⎞⎠

� 1

ρ1

∑
k�3

∑
i:|i|=k

|ci |(max{|x1|, . . . , |xn|})k−2

= 1

ρ1

∑
k�3

∑
i:|i|=k

|ci |m(x)k−2 = 1

ρ1

∑
i:|i|�3

|ci |m(x)|i|−2.

The last equality sign is justified as follows: let b = min{b1, . . . , bn}. By hypothesis (ii) we know
|ci |b|i|−2 � M/b2. Put q = r/b. For all x ∈] − r, r[n, m(x)/b � q, and so

|ci |m(x)|i|−2 � |ci |q |i|−2b|i|−2 � M/b2q |i|−2.

Now ∑
i:|i|�3

q |i|−2 � 1/q2
∑

i∈Zn
�0

q |i| = (1 − q)−n−2.

Therefore, by [3, p95c4..8], the denumerable family (|ci |m(x)|i|−2)i:|i|�3 of bounded continuous
functions on polycylinder ] − r, r[n is absolutely summable. Furthermore, by [3, pp 128c7,129c3]
it is continuous. Since m(0) = 0, we have that, as x → 0, the right hand side converges to 0. This
proves the lemma. �

Example 8. Consider the polynomial f (x, y) = x2 + y3 as a power series in x, y. Here,
f2(x) → 0 does not imply f3(x) → 0. So hypothesis (i) of Lemma 7 cannot be weakened to
0 �∈ co{ci : ci /= 0, i = 1, . . . , n}.

Note that if Lemma 7 holds for a certain r > 0, then it holds also when formulated with a
neighbourhood U ⊆ [−r, r]n of 0 instead of [−r, r]n.
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Corollary 9. Assume the hypotheses and notation of Lemma 7 in force and additionally that the
ci are not collinear. Then for all small neighbourhoods U of 0 ∈ Rn, f (U) has in 0 the angular
region ar = cone{c1, . . . , cn} as a corner.

Proof. The noncollinearity condition, ensures that ar obeys the nondegeneracy condition implicit
in Definition 2. We prove next two general facts.

Fact 1. For every neighbourhood U of 0 ∈ Rn we can find 0 < r1 = r1(U) and 0 < r2 = r2(U)

such that S(ar, r1) ⊆ f2(U) ⊆ S(ar, r2) and so that diameter(U) → 0 implies r2(U) → 0.

Recall that according to inequality (∗) in the proof of Lemma 7 there exist two constants
0 < ρ1 < ρ2 so that ρ1|x|2 � |f2(x)| � ρ2|x|2. Choose balls B(0, ρ) ⊆ U ⊆ B(0, ρ′) with ρ′ =
diameter(U) ∈ Ṙ. Define r1 = ρ1ρ

2, r2 = ρ2ρ
′2. Let x ∈ S(ar, r1). Since from the very definition

of a cone it follows that f2(R
n) = ar, there is an x ∈ Rn so that x = f2(x). Hence ρ1|x|2 �

|x| � r1. Consequently |x|2 � ρ2. This shows S(ar, r1) ⊆ f2(B(0, ρ)) ⊆ f2(U). Next, assume
x ∈ f2(U). Then there exists x ∈ U, hence |x| � ρ′, so that x = f2(x). So |x| � ρ2ρ

′2 = r2 and

so we have f2(U) ⊆ S(ar, r2). The remaining claim follows from the definitions of r2, ρ
′.

Now we define for any neighbourhood U of 0 ∈ Rn with U ⊆ ] − r, r[n, for x ∈ f2(U):

C(x) = {x ∈ U : f2(x) = x}, S(x) =
⎧⎨⎩∑

k�3

fk(x) : x ∈ C(x)

⎫⎬⎭ , and F(x) = x + S(x).

Fact 2. f (U) = F(f2(U)).

Choose any x ∈ U. Put x = f2(x). Then x ∈ f2(U), x ∈ C(x), and f (x) = f2(x) +∑
k�3

fk(x) ∈ x + S(x) = F(x). This shows f (U) ⊆ F(f2(U)). Now choose any x ∈ f2(U). Next
choose any s ∈ S(x). Then s = ∑

k�3 fk(x) for some x ∈ C(x); so that x = f2(x). Hence x +
s = f2(x) +∑

k�3 fk(x) = f (x). Since x ∈ U, we have x + s ∈ f (U). This shows x + S(x) ⊆
f (U) and F(f2(U)) ⊆ f (U).

We emphasize that Facts 1 and 2 hold for an arbitrary neighbourhood U of 0 ∈ Rn with
U ⊆ ] − r, r[n and f2(U), S(x), C(x), are conditioned by this choice.

We now fix U to be a neighbourhood satisfying U ⊆ ] − r, r[n, r being chosen as in Lemma
7. The set valued map F can by Fact 1 be restricted to a disc-sector D of type ar contained in
f2(U): ∗1: D ⊆ f2(U).

Fact 3. F : D → P(R2) satisfies the hypotheses of Theorem 6.

Define for x ∈ D the function r(x) = 1.1 · sup{|s| : s ∈ S(x)}. Then S(x) ⊆ B(0, r(x)). By
lemma 7 we know that for all ε > 0, there exists a δ > 0 such that |f2(x)| < δ → |∑k�3 fk(x)| �
ε|f2(x)|. Now fix an ε > 0, and choose an associated δ > 0 accordingly. Let x ∈ D, |x| < δ. By
∗1, x = f2(x) for all x ∈ C(x). Hence |∑k�3 fk(x)| � ε|x| for all x ∈ C(x). This means r(x) �
ε|x|. Since ε > 0 here is arbitrary, we have shown, r(x)/|x| → 0 as x → 0. Also, S(0) = {0}.
Since F(x) = x + S(x) we see F(x) ⊆ B(x, r(x)), so F satisfies hypothesis (i) of Theorem 6.
To see (ii), we use that there exist two ci, c1 and c2, say so that ar = cone{c1, c2}. We can then
write each x ∈ D in a unique way as x = c1x

2
1 + c2x

2
2 . Clearly the coordinate functions x1 =
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x1(x), x2 = x2(x) depend continuously on x. So D � x �→ f ((x1(x), x2(x), 0n−2)) ∈ F(x) is a

continuous selection, showing (ii).
There exists, by Theorem 6, an r2 �radius of D so that for all 0 < r ′ � r2 the set F(S(ar, r ′))

has in 0 a corner of type ar. By (the arguments which proved) Fact 1, we can choose a neigh-
bourhood U ′ ⊆ U of 0, and an r1 > 0 so that S(ar, r1) ⊆ f2(U

′) ⊆ S(ar, r2). Upon applying F,

we get F(S(ar, r1)) ⊆ F(f2(U
′)) ⊆ F(S(ar, r2)). The left and the right subsets of this inclusion

are corners of type ar. Hence, by observation 5a, F(f2(U
′)) = f (U ′) also has ar as a corner in

0. This was to prove. �

5. The main result

Lemma 10. Let A, Q, D, Pσ be n × n matrices, D diagonal, σ, ρ ∈ Sn, Pσ , Pρ the associated
permutation matrices. Then there hold the following computational rules.

Pρσ = Pσ Pρ, dσ (PρA) = dρ−1σ (A), D(A ◦ Q) = A ◦ (DQ) = (DA) ◦ Q,

Pσ (A ◦ Q) = (Pσ A) ◦ (Pσ Q), det(A ◦ Pσ ) = sgnσdσ (A).

Proof. The easy proofs are left to the reader; see also [5, p304]. �

Let Pσ = {Q ∈ SO(n) : |Q| = Pσ }. Clearly each Q ∈ Pσ can be written Q = DPσ , with
D = diag(ε1, . . . , εn), εi ∈ {−1, +1}, det(D) = sgnσ. One consequence of Lemma 10 is that if
Q ∈ Pσ , then det(A ◦ Q) = dσ (A).

Theorem 11. Let A be a complex n × n matrix, and let σ ∈ Sn. Assume that the only matrices
Q ∈ SO(n) for which det(A ◦ Q) = dσ (A) are the matrices inPσ ; and that the complex numbers
d̃σ τ (A) = dστ (A) − dσ (A), τ ∈ T, lie in an open half plane whose support contains the origin,

and that they are not all collinear with 0. Then �(A) = {det(A ◦ Q) : Q ∈ SO(n)} has in dσ (A)

the corner dσ (A) + cone{d̃σ τ (A) : τ ∈ T}.

Proof. Case σ = id. The essentials lie in the proof for this case. By the theory of Lie-groups
[9, pp31c5, 145c4] we can choose small open neighbourhoods, U0 of 0 ∈ so(n) and UI of I ∈
SO(n) so that the map U0 � S �→ exp(S) ∈ UI delivers a bijection. Also, by [9, p91c-5], if
D = diag(ε1, . . . , εn) ∈ SO(n), then, UD = DUI is a neighbourhood of D. Let K = SO(n) \⋃{UD : D = diag(ε1, . . . , εn) ∈ SO(n)}. Then K is compact.

On so(n) and SO(n), respectively, define the maps f, ϕ by

so(n) � S
f�→ det(A ◦ exp S) − did(A) ∈ C and SO(n) � Q

ϕ�→ det(A ◦ Q) ∈ C.

From the hypothesis we find that ϕK is a compact set not containing did(A). Since the distance
between compact disjoint sets is positive [3, p61c-2], we can find a ball around did(A) having
with ϕK empty intersection. Now for every of the diagonal matrices D here present, and every
Q ∈ SO(n), ϕ(DQ) = ϕ(Q),

So

�(A)=ϕ(SO(n)) = ϕ
(
K ∪

⋃
D

UD

)
= ϕK ∪

⋃
D

ϕ(DUI )

=ϕK ∪ ϕUI = ϕK ∪ (ϕ ◦ exp U0)

=ϕK ∪ (f (U0) + did(A)).
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For small r > 0, we now have �(A) ∩ B(did(A), r) = did(A) + (f (U0) ∩ B(0, r)). From The-
orem 1 we know that for S ∈ U0, f (S) = ∑

τ∈T d̃τ (A)|sτ |2 +∑
k�3 pk(S), and this can be

rewritten as a real variable power series with complex coefficients, precisely in the form required
in Lemma 7. This yields by Corollary 9 and the observation 5bc that � has in did(A) the corner
claimed.

Case σ ∈ Sn arbitrary. As one may expect this case can be reduced to the previous one. Let
Ã = Pσ−1A and let Q ∈ SO(n). Choose a diagonal matrix D so that DPσ−1 ∈ Pσ−1 and put
Q̃ = DPσ−1Q. Then det(Ã ◦ Q̃) = det(Pσ−1A ◦ (DPσ−1Q)) = det(DPσ−1) det(A ◦ Q) =
det(A ◦ Q) and dσ (A) = did(Ã). Now

Q̃ ∈ Pid iff Q ∈ Pσ (easy),

iff det(A ◦ Q) = dσ (A) (by hypotheses),

iff det(Ã ◦ Q̃) = did(Ã) (by the equations above).

So we can apply the first case to the matrix Ã. So �(Ã) has in did(Ã) the corner ar =
did(Ã) + cone{d̃τ (Ã) : τ ∈ Sn}. Now for any Q ∈ SO(n), det(Ã ◦ Q) = det((DPσ−1A) ◦ Q) =
det(A ◦ (Pσ DQ)). Since Pσ DSO(n) = SO(n), we can infer �(Ã) = {det(Ã ◦ Q) : Q ∈
SO(n)} = �(A). Furthermore did(Ã) = dσ (A), and dτ (Ã) = dτ (Pσ−1A) = dστ (A). From this
we get ar = dσ (A) + cone{dστ (A) − dσ (A) : τ ∈ T}. The theorem is proved. �

We end with three remarks.

Remark 12
(a) For technical reasons (in particular what concerns the reasoning employed in Theorem 6,

Fact 2) we have restricted the formulation of the main result to the case that the d̃τ (A)

are not all collinear with 0. It seems to us that with obvious modifications it will also hold
without this restriction (and indeed the proof will be easier).

(b) For c, s reals satisfying c2 + s2 = 1, define Q = Q(c, s) ∈ SO(3), the matrix at the left.
Then det(I ◦ Q(c, s)) = 0 = dσ (I ) for all admissible c, s and σ /= id. So the hypothesis
of Theorem 11 usually is not satisfied.

Q(c, s) =
⎡⎣ c 0 s

−s 0 c

0 −1 0

⎤⎦ .

At the other hand, the condition of Theorem 11 is certainly not empty. For example
det(I ◦ Q) = 1 will happen only if Q ∈ SO(n) is a signed identity matrix. Some proofs
of the special cases of OMC already available provide more examples; see e.g. [4]. Indeed
it seems to us that answering the question for which pairs Q ∈ SO(n), and permutations
σ ∈ Sn equations det(A ◦ Q) = dσ (A) can happen would mean – in case rankA = 2 at
least – to go a long way towards deciding OMC.

(c) The reader may well ask why we have not formulated Theorem 11 for SU(n). The reason
is that the diagonal entries of an S ∈ su(n) do not enter in the homogeneus part of degree
2 in the real variable power series of complex coefficients, f (S) = det(A ◦ exp S). So
in terms of Lemma 7, see also Example 8, we do not know whether f2(S) → 0 implies∑

k�3 fk(S)/f2(S) → 0; hence we cannot apply our reasoning to these cases.
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