

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 426 (2007) 96-108

www.elsevier.com/locate/laa

On the corners of certain determinantal ranges

Alexander Kovacec^{a,*}, Natália Bebiano^a, João da Providência^b

^a Departamento de Mathemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
^b Departamento de Física, Universidade de Coimbra, 3001-454 Coimbra, Portugal

Received 20 December 2006; accepted 10 April 2007 Available online 22 April 2007 Submitted by R.A. Brualdi

Abstract

Let *A* be a complex $n \times n$ matrix and let SO(*n*) be the group of real orthogonal matrices of determinant one. Define $\Delta(A) = \{\det(A \circ Q) : Q \in SO(n)\}$, where \circ denotes the Hadamard product of matrices. For a permutation σ on $\{1, \ldots, n\}$, define $z_{\sigma} = d_{\sigma}(A) = \prod_{i=1}^{n} a_{i\sigma(i)}$. It is shown that if the equation $z_{\sigma} =$ $\det(A \circ Q)$ has in SO(*n*) only the obvious solutions $(Q = (\varepsilon_i \delta_{\sigma i, j}), \varepsilon_i = \pm 1 \text{ such that } \varepsilon_1 \cdots \varepsilon_n = \operatorname{sgn} \sigma)$, then the local shape of $\Delta(A)$ in a vicinity of z_{σ} resembles a truncated cone whose opening angle equals $z_{\sigma_1} \hat{z_{\sigma}} z_{\sigma_2}$, where σ_1, σ_2 differ from σ by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal $n \times n$ matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A15

Keywords: Determinantal range; Hadamard product; Power series; Corners; Oliveira Marcus Conjecture

1. Introduction

1.1. Notation

Our notation is standard where advisable. Here are listed in telegram style the notations and definitions that may need clarification.

0024-3795/\$ - see front matter $_{\odot}$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2007.04.010

^{*} Corresponding author.

E-mail addresses: kovacec@mat.uc.pt (A. Kovacec), bebiano@mat.uc.pt (N. Bebiano), providencia@teor.fis.uc.pt (J. da Providência).

$\mathbb{R}_{\geq 0}, \mathbb{R}^{n}_{>0}, \dot{\mathbb{R}}, $ etc.	reals ≥ 0 , $(\mathbb{R}_{>0})^n$, extended reals: $\mathbb{R} \cup \{\infty\}$, etc.
$S_n, \mathscr{T}, i \in \tau$	symmetric group on $\{1, \ldots, n\}$, set $\mathcal{T} = \{(i, j) : 1 \le i < j \le n\}$
	often identified with the set of transpositions
	in S_n ; $i \in \tau = \langle k, l \rangle \in \mathcal{T}$ means $i = k$ or $i = l$
so(n), su(n)	the Lie-algebras of (real) skew-symmetric and (complex)
	skew-hermitian $n \times n$ matrices of trace 0
SO(n), SU(n)	Lie-groups of orthogonal and unitary $n \times n$ matrices of determinant 1
A;Q	an arbitrary $n \times n$ complex matrix mostly fixed, a matrix in
	SO(n) respectively
$d_{\sigma}(M), z_{\sigma}, z_{id}$	the diagonal product of matrix M associated to permutation
	σ . $d_{\sigma}(M) = \prod_{i=1}^{n} m_{i\sigma(i)}$, in particular $d_{id}(M) = m_{11}m_{22}\cdots m_{nn}$.
	For the particular matrix A mentioned before,
	we sometimes use $z_{\sigma} := d_{\sigma}(A)$
u	mostly the norm of an element u in a normed space; \mathbb{R}^n , \mathbb{C}
	carry euclidean norm
$B(z, \rho), B(\underline{x}, \rho)$	open balls of radius $\rho > 0$ centers z or <u>x</u> , in \mathbb{C} or \mathbb{R}^n respectively
$ B ; P_{\sigma}; \mathscr{P}_{\sigma}$	the matrix (b_{ij}) ; for $\sigma \in S_n$ the matrix $(\delta_{\sigma i,j})$; the set
	$\{Q \in \mathrm{SO}(n) : Q = P_{\sigma}\}.$
$A \circ B$	the Hadamard product of matrices A, B of same size: $(A \circ B)_{ij} =$
	$a_{ij}b_{ij}$
lhs(.), rhs(.), mid(.)	left hand side, right hand side, mid of an expression
l^+, px^+, px	a ray; for points p, x , the ray with origin p containing x ;
	segment joining p to x
$f \simeq g; X \approx Y$	homotope maps; homoeomorphic spaces
clX , or \overline{X}	the topological closure of a subset X of the plane
S^1	the 1-sphere (unit circle) in \mathbb{R}^2
diameter(U)	for $U \subseteq \mathbb{R}^n$ the supremum $\sup\{ u - u' : u, u' \in U\}$
$p, x, 0; \underline{x}, \underline{0}$	points \overline{p} , x , 0 in the complex plane; a point in \mathbb{R}^n , dimension n
	will follow from context; the zero of \mathbb{R}^n
min <u>b;</u> max <u>b</u>	minimum/maximum of entries of real <i>n</i> -tuple $\underline{b} = (b_1, \ldots, b_n)$
[9, p45c-3]	example of reference to book or article: see [9] page 45, about
	3cm from last text row.
$\operatorname{cone} Z$; $\operatorname{co} Z$	for a set $Z \subseteq \mathbb{C}$, the set (cone) { $\sum_{i=1}^{k} r_i z_i : k \in \mathbb{Z}_{\geq 1}, r_i \geq 0, z_i \in Z$ };
	the similarly constructed set (convex hull) with additional
	restriction $\sum_{i} r_i = 1$
monomial $c_i \underline{x}^{\underline{i}}; \underline{i} $	an expression of the form $c_{i_1i_2\cdots i_n}x_1^{i_1}\cdots x_n^{i_n}$. $ \underline{i} = i_1 + \cdots + i_n$
<u>-</u> / 1_1	is its degree
powerseries	a sum of possibly infinitely many monomials formally summed
	in any order

1.2. Content and outline of results

Let $A = (a_{ij})$ be a complex $n \times n$ -matrix. Since SO(n) = Lie group of unitary $n \times n$ matrices of determinant 1 is a compact connected set [9, pp.104c-4, 147c-1], the region $\Delta(A) = \{\det(A \circ Q) : Q \in SO(n)\}$ is a compact connected set in the complex plane. Let $z_{\sigma} = z_{\sigma}(A) = \prod_{i=1}^{n} a_{i\sigma i}$ be the (unsigned) diagonal product of A associated to $\sigma \in S_n$. The following formulation of a slightly weakened form of the Oliveira Marcus Conjecture [2] appears first implicitly in [6]; OMC itself claims the same thing to be true even if $\Delta(A)$ is defined using SU(n) instead of SO(n).

Conjecture (*OMC* for SO(n)). If A is a rank 2 matrix, then

 $\Delta(A) \subseteq \operatorname{co}\{z_{\sigma}(A) : \sigma \in S_n\}.$

Example. Although experiments indicate that the inclusion seems to remain true in many cases in which rank A > 2, this is not so in general: consider the case A = diag(1, 1, 1) and choose Q as the matrix

$$Q = \frac{1}{3} \begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}.$$

In this article we prove a result, see Theorem 11, related to the shape of $\Delta(A)$ near points $z_{\sigma}(A) \in \mathbb{C}$.

In Section 2 we compute the first terms of the power series $det(A \circ exp S)$ in the real and imaginary parts of the entries of $S \in su(n)$ around the zero matrix. The salient feature is that the nontrivial homogeneous component of lowest degree of this series is a linear combination of the squares of these parts with coefficients that are simple expressions in the $d_{\sigma}(A)$. Section 3 defines the concept of a corner of a region in the plane. An archetypical corner is a disk-sector of angle measure $< \pi$. We show that under natural restrictions a set valued map defined on such a sector and deviating from the identity by small enough a quantity as its argument approaches its vertex has as image region approximately the sector. The proof employs some elementary algebraic topology. Section 4 gives a lemma on power series of the type encountered for det $(A \circ exp S)$. It assures that such power series defines in a natural manner a set valued map of the type considered previously. This is used to deduce the main result, Theorem 11, in Section 5. We end with some remarks.

2. A power series

Recall that so(n) = Lie-algebra of real skew-symmetric $n \times n$ matrices S is associated to SO(n) via the exponential map: indeed, by [9, p147c-2] (or [1, p165c4]), every $Q \in SO(n)$ can be written Q = exp(S) for some $S \in so(n)$. Hence

$$\Delta(A) = \{\det(A \circ Q) : Q \in \mathrm{SO}(n)\} = \{\det(A \circ \exp S) : S \in \mathrm{so}(n)\}.$$

For the proper understanding of the theory of absolutely summable series in a Banach space, and in particular function spaces and power series, as referred below, see [3, pp. 94–95, 127–128, 193–197]. For the formal background to these (of lesser importance here), see [10].

Note that the matrices $S \in \mathfrak{su}(n)$ are precisely the matrices of the form S = A + iB where A is a real skew symmetric and B is real symmetric of trace 0. Hence there enter $(n^2 - n)/2 + (n^2 - n)/2 + (n - 1) = n^2 - 1$ real variables. By a polynomial in the entries of S, we mean a polynomial in these real variables; in particular the square of the modulus of such entries is a polynomial of degree 2 in these variables. Finally recall that if $\tau = \langle i, j \rangle \in \mathcal{T}$, then we permit s_{τ} as a shorthand for s_{ij} , i < j.

Theorem 1. Let A be a complex $n \times n$ matrix and let S be a matrix in su(n). For $\tau \in \mathcal{T}$ put $\tilde{d}_{\tau}(A) = d_{\tau}(A) - d_{id}(A)$. Then we have a development

$$\det(A \circ \exp(S)) = d_{id}(A) + \sum_{\tau \in \mathscr{T}} \tilde{d}_{\tau}(A) |s_{\tau}|^2 + \sum_{k \ge 3} p_k(S).$$

Here each $p_k(S)$ as well as $|s_{\tau}|^2$ is either 0 or a homogeneous polynomial of degree k respectively 2, $in \leq n^2 - 1$ real variables. There is for any neighbourhood U_0 of the zero (matrix) in $su(n) \approx \mathbb{R}^{n^2-1}$, a constant M, so that for every monomial $m(\cdot)$ occuring in this power series, and every $S \in U_0$, there holds $|m(S)| \leq M$.

Proof. Since the matrix $S = (s_{ij})$, satisfies for all $i, j \in \{1, ..., n\}$, the relations $s_{ij} = -\overline{s}_{ji}$, in particular $s_{ii} \in \sqrt{-1}\mathbb{R}$, we find that the (i, i)-entry of S^2 is given by

$$\sum_{\nu=1}^{n} s_{i\nu} s_{\nu i} = -|s_{ii}|^2 - \sum_{\tau:i\in\tau} |s_{\tau}|^2.$$

Since $\exp S = I + S + \frac{1}{2}S^2 + \cdots$, and since the nonzero entries of S^k are homogeneous polynomials of degree k in the s_{ij} , we find

$$(\exp S)_{ij} = \begin{cases} 1 + s_{ii} - \frac{1}{2}|s_{ii}|^2 - \frac{1}{2}\sum_{\tau:i\in\tau} |s_{\tau}|^2 + p_{ii}(S), & \text{if } i = j, \\ s_{ij} + p_{ij}(S), & \text{if } i \neq j, \end{cases}$$

where the power series $p_{ii}(S)$ has under-degree ≥ 3 , while for $i \ne j$, $p_{ij}(S)$ has underdegree ≥ 2 . From this we extract information about the diagonal products $d_{\sigma}(\exp S)$. First, using $\sum_{i} s_{ii} = 0$, and hence also $0 = (\sum_{i} s_{ii})^2 = 2 \sum_{l < k} s_{ll} s_{kk} - \sum_{i} |s_{ii}|^2$, we find

$$\begin{split} d_{id}(\exp S) &= \prod_{i=1}^{n} \left(1 + s_{ii} - \frac{1}{2} |s_{ii}|^2 - \frac{1}{2} \sum_{\tau:i \in \tau} |s_{\tau}|^2 + p_{ii}(S) \right) \\ &= 1 + \sum_{i} s_{ii} + \sum_{i < j} s_{ii} s_{jj} - \frac{1}{2} \sum_{i} |s_{ii}|^2 - \frac{1}{2} \sum_{i} \sum_{\tau:i \in \tau} |s_{\tau}|^2 + p_{id}(S) \\ &= 1 - \frac{1}{2} \sum_{i} \sum_{\tau:i \in \tau} |s_{\tau}|^2 + p_{id}(S) \\ &= 1 - \sum_{\tau \in \mathcal{T}} |s_{\tau}|^2 + p_{id}(S), \end{split}$$

where the power series $p_{id}(S)$ has under-degree ≥ 3 . The diagonal products corresponding to transpositions are given as follows.

$$d_{\langle i,j \rangle}(\exp S) = \left(\prod_{l \neq i,j}^{n} \left(1 + s_{ll} - \frac{1}{2} |s_{ll}|^2 - \frac{1}{2} \sum_{\tau:l \in \tau} |s_{\tau}|^2 + p_{ll}(S) \right) \right)$$

× $(s_{ij} + p_{ij}(S))(-\overline{s}_{ij} + p_{ji}(S))$
= $-|s_{ij}|^2 + p'_{ij}(S),$

where $p'_{ij}(S)$ has under-degree ≥ 3 . Finally, what concerns the diagonal products corresponding to $\sigma \notin \{id\} \cup \mathcal{T}$, the set $\{i : \sigma(i) \neq i\}$ contains at least three elements. It follows that an associated diagonal product yields a power series of under-degree ≥ 3 . Consequently

$$det(A \circ \exp S) = \sum_{\sigma \in S_n} \operatorname{sgn}\sigma d_{\sigma}(A) d_{\sigma}(\exp S)$$
$$= d_{id}(A) \left(1 - \sum_{\tau} |s_{\tau}|^2 + p_{id}(S)) - \sum_{\tau \in \mathscr{T}} d_{\tau}(A) (-|s_{\tau}|^2 + p'_{\tau}(S)) \right)$$
$$+ \sum_{\sigma \notin \mathscr{T} \cup \{id\}} \operatorname{sgn}\sigma d_{\sigma}(A) d_{\sigma}(\exp S).$$

This formula and the degree properties of $p_{id}(S)$, $p'_{\tau}(S)$, $d_{\sigma}(\exp S)$ imply the formal expression given for det $(A \circ \exp S)$. Now each of the n^2 functions $\operatorname{su}(n) \ni S \mapsto (\exp S)_{ij}$, $i, j = 1, \ldots, n$, is a power series of complex coefficients in $n^2 - 1$ real variables. Since the exponential series converges absolutely on U_0 [9, p. 25], the family of monomials in these variables occuring in the power series $(\exp S)_{ij}$ is absolutely (or normally) summable on U_0 in the sense of [3, p95c7, p128]. Since det(.) is a polynomial in the entries of a matrix, the claim concerning m(S) is easily inferred. \Box

3. A set valued map

Definition 2

- (a) Call a cone in the sense of the notation section *degenerate* if it is one of these: the plane C, a half plane, a ray, or a straight line.
- (b) A closed (convex) non-degenerate cone will be called a *cnd-cone*, for short. It is an exercise in plane geometry to show that a cnd-cone can be uniquely written in the form $C = \text{cone}\{e^{i\theta_1}, e^{i\theta_2}\}$ with $\theta_1, \theta_2 \in [-\pi, \pi]$, satisfying $0 < \alpha = \min\{2\pi |\theta_1 \theta_2|, |\theta_1 \theta_2|\} < \pi$. The real α is the usual measure of the angle the cone defines.
- (c) An *angular region* (or cone) at z is a set given by ar = z + C, with C a cnd-cone.
- (d) The (disk-)sector of radius ρ given by this ar is $S(ar, \rho) = ar \cap B(z, \rho)$.
- (e) Let ar be a (nondegenerate) angular region at z with angle $\alpha > 0$ and let $\varepsilon > 0$ be such that $0 < \alpha 2\varepsilon < \alpha < \alpha + 2\varepsilon < \pi$. We call the two angular regions with the same *vertex* z and bissector as ar, but by a small angle $2\varepsilon > 0$ smaller/wider than α the ε -contraction $ar_{-\varepsilon}/\varepsilon$ -extension $ar_{+\varepsilon}$ of ar.

The central definition for this paper is that of a corner of a subset of the plane.

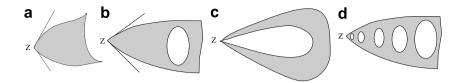
Definition 3. Let Δ be a subset of \mathbb{C} , and let $z \in \Delta$. The point z is called a *corner* of Δ , if there exists a nondegenerate angular region ar at z such that:

for every small $\varepsilon > 0$ there exists $\delta > 0$ so that $S(ar_{-\varepsilon}, \delta) \subseteq \Delta \cap B(z, \delta) \subseteq S(ar_{+\varepsilon}, \delta)$.

In this case we also may say Δ has in z the corner ar.

Example 4. The idea of what a corner is, can be gleaned from the following series of pictures: the shaded regions (a) and (b) have in z corners whose angular regions ar are indicated by tangent lines. The region (c) has in z no corner. Similarly region (d) has in z no corner, since it has a sequence of 'holes' converging towards z. Assume a boundary curve of Δ near z exists. If it is strictly convex ('inward bounded') then as $\varepsilon \to 0$, δ has to go to 0 to satisfy the second inclusion, while if it is concave, $\delta \to 0$ is required to satisfy the first inclusion.

100



Observation 5. Let Δ , Δ' , Δ'' be subsets of the plane.

- (a) If $\Delta \subseteq \Delta' \subseteq \Delta''$ and Δ and Δ'' have in z the corner ar then Δ' has in z the corner ar.
- (b) Δ has in z the corner ar iff $\Delta \cap B(z, r)$ has for some small r > 0 the corner ar.

(c) If Δ has in z the corner ar, then $u + \Delta$ has in u + z the corner u + ar.

Proof. The simple considerations necessary are left to the reader. \Box

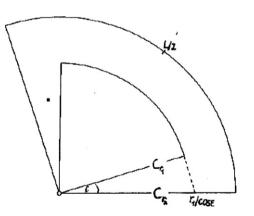
Let $\mathscr{P}(\mathbb{R}^2)$ = family of subsets (i.e. powerset) of \mathbb{R}^2 .

Theorem 6. Let $S = S(ar, \rho)$ be a disk sector with vertex in 0 and let $F : S \to \mathscr{P}(\mathbb{R}^2)$ be a set valued map with the following further properties:

- (i) For some function $r: S \to \dot{\mathbb{R}}_{\geq 0}$, satisfying $\lim_{x \to 0} r(x)/|x| = 0$ and r(0) = 0, there holds $F(x) \subseteq B(x, r(x))$ for all $x \in S$.
- (ii) There exists a continuous selection $S \ni x \mapsto f(x) \in F(x)$.

Then for all small r' > 0, the set F(S(ar, r')) has at as a corner at 0.

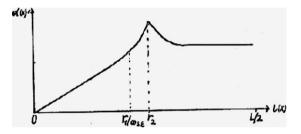
Proof



The figure shows the boundaries C_{r_1} , C_{r_2} of two disk-sectors which we think of being $\bar{I}_{r_1} = clS(ar_{-\varepsilon}, r_1)$, $\bar{I}_{r_2} = clS(ar, r_2)$. Of ε , r_1 , r_2 we require in the moment only that ε be small enough so that $ar_{-\varepsilon}$ is nontrivial, and that the radii are assumed to satisfy $0 < r_1/\cos \varepsilon < r_2 \leq \rho$. We dispense with proving that C_{r_1} , C_{r_2} are rectifiable curves; that the Jordan curve theorem [7, p31] applies to them; that their respective Jordan-interiors [7, p36c-1; Enc. 93B&K] I_{r_1} , I_{r_2} , as well as \bar{I}_{r_1} , \bar{I}_{r_2} are (convex) disk sectors; that $C_{r_2} \setminus \{0\}$ lies in the Jordan-exterior of C_{r_1} ; and that we have a homeomorphism $\bar{I}_{r_2} \approx$ closed unit disc, which induces a homeomorphism $C_{r_2} \approx S^1$.

Let L = perimeter of C_{r_2} and parametrize C_{r_2} by traversing it counterclockwise from 0 to 0 and defining $l: C_{r_2} \rightarrow [0, L[$ by l(x) =arc-length from 0 to x; also let d(x) = distance from $x \in C_{r_2}$ to C_{r_1} . Note that l is a continuous bijection. Simple geometry, in particular the cosine theorem, yields the following:

$$d(x) = \begin{cases} l(x)\sin(\varepsilon) & \text{for } l(x) \in [0, r_1/\cos\varepsilon], \\ \sqrt{l(x)^2 + r_1^2 - 2l(x)r_1\cos\varepsilon} & \text{for } l(x) \in [r_1/\cos\varepsilon, r_2], \\ \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(1 + \varepsilon - (l(x)/r_2))} & \text{for } l(x) \in [r_2, r_2(1 + \varepsilon)] \\ r_2 - r_1 & \text{for } l(x) \in [r_2(1 + \varepsilon), \frac{L}{2}] \\ d(l^{-1}(L - l(x))) & \text{for } l(x) \in [\frac{L}{2}, L[. \end{cases}$$



The graph l(x)-versus-d(x) for the example shown above is the figure at the left for $l(x) \le L/2$. The requirement $r_1/\cos \varepsilon < r_2$ (instead of simply $r_1 < r_2$) was made to simplify analysability of d(x).

We define the function $[0, \rho] \ni t \mapsto \tilde{r}(t) := \sup\{r(x) : x \in S, |x| = t\} \in \mathbb{R}_{\geq 0}$. From the hypothesis on r we get $*_1 : \lim_{t \downarrow 0} \tilde{r}(t)/t = 0$. Now fix an ε satisfying $0 < \varepsilon \leq \min\{0.9, \alpha/2, (\pi - \alpha)/2\}$.

Fact 1. For small r_2 , there exists r_1 with $0 < r_1/\cos \varepsilon < r_2$ so that for $x \in C_{r_2} \setminus \{0\}, r(x) < d(x)$.

▷ By $*_1$ we find for small $r_2 \leq \rho$ that for all $0 < t \leq r_2$, $\tilde{r}(t) < \frac{\sin \varepsilon}{1+\sin \varepsilon} t$. Choose such an r_2 and put $r_1 = r_2/(1 + \sin \varepsilon)$. Then from the hypothesis on ε one checks that we have $r_2 > r_1/\cos \varepsilon > r_1$. Note that for $x \in C_{r_2}$, $|x| = \min\{l(x), r_2\} \leq r_2$. Then from the formulae for d(x) one finds by routine checks for $x \in C_{r_2} \setminus \{0\}$, that $r(x) \leq \tilde{r}(|x|) < \frac{\sin \varepsilon}{1+\sin \varepsilon} |x| \leq d(x)$.

Let $r_1 < r_2$ be as in Fact 1; it implies for $x \in C_{r_2} \setminus \{0\}$, that $F(x) \cap C_{r_1} = \emptyset$. Since, when connecting x by a segment to a point $p \in I_{r_1}$ we cross C_{r_1} , it follows that |x - p| > d(x). So $p \notin F(x)$. This shows $*_2 : \overline{I_{r_1}} \cap F(C_{r_2}) = \{0\}$.

Fact 2. Every point in $\overline{I}_{r_1} \setminus \{0\}$ lies in the image of I_{r_2} under $F: \overline{I}_{r_1} \setminus \{0\} \subseteq F(I_{r_2})$.

Assume there exists a point $p \in \overline{I}_{r_1} \setminus \{0\}$ so that $p \notin F(I_{r_2})$. Then $p \neq f(x)$ for all $x \in I_{r_2}$. It is also clear by $*_2$ that $p \notin f(C_{r_2})$. So we have a continuous map $f | \overline{I}_{r_2} : \overline{I}_{r_2} \xrightarrow{f} \mathbb{R}^2 \setminus \{p\}$. Let $\beta : \mathbb{R}^2 \setminus \{p\} \to C_{r_2}$ be the standard retraction map that carries each $x \in \mathbb{R}^2 \setminus \{p\}$ to the unique intersection of the ray px^+ with $C_{r_2} : \beta(x) = px^+ \cap C_{r_2}$. Then we get a continuous map $\beta \circ f | \overline{I}_{r_2} : \overline{I}_{r_2} \to C_{r_2}$ extending $\beta \circ f | C_{r_2} : C_{r_2} \to C_{r_2}$. By Spanier [8, p27] this means that $\beta \circ f|C_{r_2}$ is nullhomotopic. Note that we can write f(x) = x + e(x) for some continuous map e(x) satisfying $|e(x)| \leq r(x)$. Since for $t \in [0, 1]$, $|te(x)| \leq |e(x)|$, by Fact 1 we have a homotopy $C_{r_2} \times [0, 1] \ni (x, t) \xrightarrow{H} x + te(x) \in \mathbb{R}^2 \setminus \{p\}$ showing $id_{C_{r_2}} \simeq f|C_{r_2}$ as $t : 0 \nearrow 1$. But since $C_{r_2} \approx S^1$ and id_{S^1} is not nullhomotopic (as follows from the observations [8, pp25c-7, 56c4, 59c5, 23c6]), we get that $id_{C_{r_2}}$ is not nullhomotopic. Now $\beta \circ H$ yields a homotopy $id_{C_{r_2}} = \beta \circ id_{C_{r_2}} \simeq \beta \circ f|C_{r_2}$; so we get a contradiction, proving the claim. \subseteq

Fact 3. For all small $r_2 > 0$ there exists $r_1 > 0$ so that

 $*_3: S(\operatorname{ar}_{-\varepsilon}, r_1) \subseteq F(S(\operatorname{ar}, r_2)) \cap B(0, r_1) \subseteq S(\operatorname{ar}_{+\varepsilon}, r_1).$

▷ Recall that $\bar{I}_{r_1} = clS(ar_{-\varepsilon}, r_1)$. Also, by $i, F(0) = \{0\}$. So for given ε , as above, Facts 1 and 2 yield that for all small r_2 there exists an $r_1 > 0$, so that $S(ar_{-\varepsilon}, r_1) \subseteq F(S(ar, r_2))$. Intersecting both sides with $B(0, r_1)$ yields the left of the inclusions. Next let $u \in |(*_3)$. Then $u \in F(x)$ for some $x \in S(ar, r_2)$. As in the proof of Fact 1 we have observed that this means $r(x) \leq \frac{\sin \varepsilon}{1+\sin \varepsilon} |x| < |x| \sin \varepsilon$. Consequently $u \in B(x, |x| \sin \varepsilon)$. Suppose $u \notin ar_{+\varepsilon}$. Since $x \in ar \subseteq ar_{+\varepsilon}$, $u \notin ar$. It follows that the segment ux has to contain a point in a side of ar and another in a side of $ar_{+\varepsilon}$. These two sides define an angle $\ge \varepsilon$ with vertex 0. Consequently $|u - x| \ge |x| \sin \varepsilon$.

Contradiction. Hence $u \in ar_{+\varepsilon}$. Since also $|u| \leq r_1$, we get $u \in rhs(*_3)$.

With Fact 3 the theorem is proved. \Box

4. A lemma on power series

Lemma 7. Let $f(\underline{x}) = \sum_{k \ge 2} f_k(\underline{x})$ be a power series over \mathbb{C} where every f_k is either 0 or a homogeneous polynomial of degree k. Assume that

(i) $f_2(\underline{x}) = \sum_{i=1}^n c_i x_i^2$, with coefficients satisfying $0 \notin co\{c_i : i = 1, ..., n\}$; (ii) there exist M > 0, and $\underline{b} \in \mathbb{R}_{>0}^n$, so that $|c_i \underline{b}^{\underline{i}}| < M$ for all monomials $c_i \underline{x}^{\underline{i}}$ of $f(\underline{x})$.

For any real positive $r < \min \underline{b}$, we have a continuous function $[-r, r]^n \ni \underline{x} \mapsto f(\underline{x}) \in \mathbb{C}$. Furthermore, $|f_2(\underline{x})| \to 0, \underline{x} \in [-r, r]^n$, implies $\sum_{k \ge 3} f_k(\underline{x}) / |f_2(\underline{x})| \to 0$.

Proof. That *f* defines in the closed cube $[-r, r]^n$ a continuous function is a consequence of [3, p194c1..5]. From *i* we get that there exist $0 < \rho_1 < \rho_2 = \max\{|c_i| : i = 1, ..., n\}$ such that

$$\rho_{1} \leqslant \left| \sum_{j=1}^{n} c_{j} \frac{x_{j}^{2}}{x_{1}^{2} + \dots + x_{n}^{2}} \right|$$

and hence : $\rho_{1}(x_{1}^{2} + \dots + x_{n}^{2}) \leqslant |f_{2}(\underline{x})| \leqslant \rho_{2}(x_{1}^{2} + \dots + x_{n}^{2})$ (*)

for the set of values the expression $\sum \dots$ assumes as \underline{x} varies over any neighbourhood of $\underline{0}$ is just the convex hull of c_1, \dots, c_n . Henceforth, we assume $f_k(\underline{x}) = \sum_{|i|=k} c_{\underline{i}} \underline{x}^{\underline{i}}, k = 3, \dots$

We put

 $L_k = \{\underline{i} : |\underline{i}| = k, i_\nu \leq 1 \text{ for all } \nu\}, \qquad Q_k = \{\underline{i} : |\underline{i}| = k, i_\nu \geq 2 \text{ for some } \nu\}.$

Case $\underline{i} \in L_k$. Then exactly k of the i_{ν} s are 1, say $i_{\nu_1} = \cdots = i_{\nu_k} = 1$. We have the estimates

$$x_{i_{\nu_1}}\cdots x_{i_{\nu_k}} \leq \frac{1}{k}(|x_{i_{\nu_1}}|^k + \dots + |x_{i_{\nu_k}}|^k); \text{ and } \frac{|x_i|^k}{x_1^2 + \dots + x_n^2} \leq |x_i|^{k-2},$$

i = 1, ..., n, the first following from the arithmetic geometric mean inequality, the second being trivial. These inequalities imply

$$\left|c_{\underline{i}}\frac{\underline{x}^{\underline{i}}}{x_1^2+\cdots+x_n^2}\right| \leqslant \frac{1}{k} \sum_{\nu:i_\nu=1} |c_{\underline{i}}| |x_{i_\nu}|^{k-2}$$

Case $\underline{i} \in Q_k$. Then, for a definite choice, we can define $j = j(\underline{i}) = \min\{\nu : i_\nu \ge 2\}$, and find

$$\begin{vmatrix} c_{\underline{i}} \frac{\underline{x}^{\underline{i}}}{x_1^2 + \dots + x_n^2} \end{vmatrix} = |c_{\underline{i}}| \frac{|x_j|^2}{x_1^2 + \dots + x_n^2} |x_1|^{i_1} \cdots |x_j|^{i_j - 2} \cdots |x_n|^{i_n} \\ \leq |c_{\underline{i}}| |x_1|^{i_1} \cdots |x_j|^{i_j - 2} \cdots |x_n|^{i_n}.$$

Now put $m(\underline{x}) = \max\{|x_1|, \ldots, |x_n|\}$. Then

$$\begin{split} \sum_{k \ge 3} f_k(\underline{x}) / f_2(\underline{x}) \middle| &\leqslant \frac{1}{\rho_1} \sum_{k \ge 3} |f_k(\underline{x})| / (x_1^2 + \dots + x_n^2) \\ &\leqslant \frac{1}{\rho_1} \sum_{k \ge 3} \left(\sum_{\underline{i} \in L_k} \frac{1}{k} \sum_{\nu: i_\nu = 1} |c_{\underline{i}}| |x_{i_\nu}|^{k-2} + \sum_{\underline{i} \in Q_k} |c_{\underline{i}}| |x_1|^{i_1} \dots |x_{j(\underline{i})}|^{i_{j(\underline{i})} - 2} \dots |x_n|^{i_n} \right) \\ &\leqslant \frac{1}{\rho_1} \sum_{k \ge 3} \sum_{\underline{i}: |\underline{i}| = k} |c_{\underline{i}}| (\max\{|x_1|, \dots, |x_n|\})^{k-2} \\ &= \frac{1}{\rho_1} \sum_{k \ge 3} \sum_{\underline{i}: |\underline{i}| = k} |c_{\underline{i}}| m(\underline{x})^{k-2} = \frac{1}{\rho_1} \sum_{\underline{i}: |\underline{i}| \ge 3} |c_{\underline{i}}| m(\underline{x})^{|\underline{i}| - 2}. \end{split}$$

The last equality sign is justified as follows: let $b = \min\{b_1, \ldots, b_n\}$. By hypothesis (ii) we know $|c_i|b^{|\underline{i}|-2} \leq M/b^2$. Put q = r/b. For all $\underline{x} \in]-r, r[^n, m(\underline{x})/b \leq q$, and so

$$|c_{\underline{i}}|m(\underline{x})^{|\underline{i}|-2} \leqslant |c_{\underline{i}}|q^{|\underline{i}|-2}b^{|\underline{i}|-2} \leqslant M/b^2q^{|\underline{i}|-2}.$$

Now

$$\sum_{\underline{i}:|\underline{i}| \ge 3} q^{|\underline{i}|-2} \leqslant 1/q^2 \sum_{\underline{i} \in \mathbb{Z}_{\ge 0}^n} q^{|\underline{i}|} = (1-q)^{-n-2}.$$

Therefore, by [3, p95c4..8], the denumerable family $(|c_{\underline{i}}|m(\underline{x})|^{\underline{i}|-2})_{\underline{i}:|\underline{i}|\geq 3}$ of bounded continuous functions on polycylinder] -r, $r[^n$ is absolutely summable. Furthermore, by [3, pp 128c7,129c3] it is continuous. Since $m(\underline{0}) = 0$, we have that, as $\underline{x} \to 0$, the right hand side converges to 0. This proves the lemma. \Box

Example 8. Consider the polynomial $f(x, y) = x^2 + y^3$ as a power series in x, y. Here, $f_2(\underline{x}) \to 0$ does not imply $f_3(\underline{x}) \to 0$. So hypothesis (i) of Lemma 7 cannot be weakened to $0 \notin co\{c_i : c_i \neq 0, i = 1, ..., n\}$.

Note that if Lemma 7 holds for a certain r > 0, then it holds also when formulated with a neighbourhood $U \subseteq [-r, r]^n$ of <u>0</u> instead of $[-r, r]^n$.

104

Corollary 9. Assume the hypotheses and notation of Lemma 7 in force and additionally that the c_i are not collinear. Then for all small neighbourhoods U of $\underline{0} \in \mathbb{R}^n$, f(U) has in 0 the angular region ar = cone $\{c_1, \ldots, c_n\}$ as a corner.

Proof. The noncollinearity condition, ensures that ar obeys the nondegeneracy condition implicit in Definition 2. We prove next two general facts.

Fact 1. For every neighbourhood U of $\underline{0} \in \mathbb{R}^n$ we can find $0 < r_1 = r_1(U)$ and $0 < r_2 = r_2(U)$ such that $S(ar, r_1) \subseteq f_2(U) \subseteq S(ar, r_2)$ and so that diameter(U) $\rightarrow 0$ implies $r_2(U) \rightarrow 0$.

▷ Recall that according to inequality (*) in the proof of Lemma 7 there exist two constants $0 < \rho_1 < \rho_2$ so that $\rho_1 |\underline{x}|^2 \leq |f_2(\underline{x})| \leq \rho_2 |\underline{x}|^2$. Choose balls $B(\underline{0}, \rho) \subseteq U \subseteq B(\underline{0}, \rho')$ with $\rho' =$ diameter(U) $\in \mathbb{R}$. Define $r_1 = \rho_1 \rho^2$, $r_2 = \rho_2 \rho'^2$. Let $x \in S(ar, r_1)$. Since from the very definition of a cone it follows that $f_2(\mathbb{R}^n) = ar$, there is an $\underline{x} \in \mathbb{R}^n$ so that $x = f_2(\underline{x})$. Hence $\rho_1 |\underline{x}|^2 \leq |x| \leq r_1$. Consequently $|\underline{x}|^2 \leq \rho^2$. This shows $S(ar, r_1) \subseteq f_2(B(\underline{0}, \rho)) \subseteq f_2(U)$. Next, assume $x \in f_2(U)$. Then there exists $\underline{x} \in U$, hence $|\underline{x}| \leq \rho'$, so that $x = f_2(\underline{x})$. So $|x| \leq \rho_2 \rho'^2 = r_2$ and

so we have $f_2(U) \subseteq S(\text{ar}, r_2)$. The remaining claim follows from the definitions of r_2, ρ' . Now we define for any neighbourhood U of $\underline{0} \in \mathbb{R}^n$ with $U \subseteq] - r, r[^n, \text{ for } x \in f_2(U)$:

$$C(x) = \{ \underline{x} \in U : f_2(\underline{x}) = x \}, \quad S(x) = \left\{ \sum_{k \ge 3} f_k(\underline{x}) : \underline{x} \in C(x) \right\}, \quad \text{and} \quad F(x) = x + S(x).$$

Fact 2. $f(U) = F(f_2(U))$.

Choose any $\underline{x} \in U$. Put $x = f_2(\underline{x})$. Then $x \in f_2(U)$, $\underline{x} \in C(x)$, and $f(\underline{x}) = f_2(\underline{x}) + \sum_{k \ge 3} f_k(\underline{x}) \in x + S(x) = F(x)$. This shows $f(U) \subseteq F(f_2(U))$. Now choose any $x \in f_2(U)$. Next choose any $s \in S(x)$. Then $s = \sum_{k \ge 3} f_k(\underline{x})$ for some $\underline{x} \in C(x)$; so that $x = f_2(\underline{x})$. Hence $x + s = f_2(\underline{x}) + \sum_{k \ge 3} f_k(\underline{x}) = f(\underline{x})$. Since $\underline{x} \in U$, we have $x + s \in f(U)$. This shows $x + S(x) \subseteq f(U)$ and $F(f_2(U)) \subseteq f(U)$.

We emphasize that Facts 1 and 2 hold for an arbitrary neighbourhood U of $\underline{0} \in \mathbb{R}^n$ with $U \subseteq]-r, r[^n \text{ and } f_2(U), S(x), C(x), \text{ are conditioned by this choice.}$

We now fix U to be a neighbourhood satisfying $U \subseteq] -r, r[^n, r]$ being chosen as in Lemma 7. The set valued map F can by Fact 1 be restricted to a disc-sector D of type ar contained in $f_2(U)$: $*_1: D \subseteq f_2(U)$.

Fact 3. $F: D \to \mathscr{P}(\mathbb{R}^2)$ satisfies the hypotheses of Theorem 6.

Define for $x \in D$ the function $r(x) = 1.1 \cdot \sup\{|s| : s \in S(x)\}$. Then $S(x) \subseteq B(0, r(x))$. By lemma 7 we know that for all $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f_2(x)| < \delta \rightarrow |\sum_{k \ge 3} f_k(\underline{x})| \le \varepsilon |f_2(\underline{x})|$. Now fix an $\varepsilon > 0$, and choose an associated $\delta > 0$ accordingly. Let $x \in D$, $|x| < \delta$. By $*_1, x = f_2(\underline{x})$ for all $\underline{x} \in C(x)$. Hence $|\sum_{k \ge 3} f_k(\underline{x})| \le \varepsilon |x|$ for all $\underline{x} \in C(x)$. This means $r(x) \le \varepsilon |x|$. Since $\varepsilon > 0$ here is arbitrary, we have shown, $r(x)/|x| \rightarrow 0$ as $x \rightarrow 0$. Also, $S(0) = \{0\}$. Since F(x) = x + S(x) we see $F(x) \subseteq B(x, r(x))$, so F satisfies hypothesis (i) of Theorem 6. To see (ii), we use that there exist two c_i , c_1 and c_2 , say so that ar $= \operatorname{cone}\{c_1, c_2\}$. We can then write each $x \in D$ in a unique way as $x = c_1x_1^2 + c_2x_2^2$. Clearly the coordinate functions $x_1 =$ $x_1(x), x_2 = x_2(x)$ depend continuously on x. So $D \ni x \mapsto f((x_1(x), x_2(x), 0_{n-2})) \in F(x)$ is a continuous selection, showing (ii). \trianglelefteq

There exists, by Theorem 6, an $r_2 \leq \text{radius}$ of D so that for all $0 < r' \leq r_2$ the set F(S(ar, r')) has in 0 a corner of type ar. By (the arguments which proved) Fact 1, we can choose a neighbourhood $U' \subseteq U$ of $\underline{0}$, and an $r_1 > 0$ so that $S(\text{ar}, r_1) \subseteq f_2(U') \subseteq S(\text{ar}, r_2)$. Upon applying F, we get $F(S(\text{ar}, r_1)) \subseteq F(f_2(U')) \subseteq F(S(\text{ar}, r_2))$. The left and the right subsets of this inclusion are corners of type ar. Hence, by observation 5a, $F(f_2(U')) = f(U')$ also has ar as a corner in 0. This was to prove. \Box

5. The main result

Lemma 10. Let A, Q, D, P_{σ} be $n \times n$ matrices, D diagonal, σ , $\rho \in S_n$, P_{σ} , P_{ρ} the associated permutation matrices. Then there hold the following computational rules.

 $P_{\rho\sigma} = P_{\sigma} P_{\rho}, d_{\sigma}(P_{\rho}A) = d_{\rho^{-1}\sigma}(A), D(A \circ Q) = A \circ (DQ) = (DA) \circ Q,$ $P_{\sigma}(A \circ Q) = (P_{\sigma}A) \circ (P_{\sigma}Q), \det(A \circ P_{\sigma}) = \operatorname{sgn}\sigma d_{\sigma}(A).$

Proof. The easy proofs are left to the reader; see also [5, p304].

Let $\mathscr{P}_{\sigma} = \{Q \in SO(n) : |Q| = P_{\sigma}\}$. Clearly each $Q \in \mathscr{P}_{\sigma}$ can be written $Q = DP_{\sigma}$, with $D = \text{diag}(\varepsilon_1, \ldots, \varepsilon_n), \varepsilon_i \in \{-1, +1\}, \text{det}(D) = \text{sgn}\sigma$. One consequence of Lemma 10 is that if $Q \in \mathscr{P}_{\sigma}$, then $\text{det}(A \circ Q) = d_{\sigma}(A)$.

Theorem 11. Let A be a complex $n \times n$ matrix, and let $\sigma \in S_n$. Assume that the only matrices $Q \in SO(n)$ for which $\det(A \circ Q) = d_{\sigma}(A)$ are the matrices in \mathcal{P}_{σ} ; and that the complex numbers $\tilde{d}_{\sigma\tau}(A) = d_{\sigma\tau}(A) - d_{\sigma}(A), \tau \in \mathcal{T}$, lie in an open half plane whose support contains the origin, and that they are not all collinear with 0. Then $\Delta(A) = \{\det(A \circ Q) : Q \in SO(n)\}$ has in $d_{\sigma}(A)$ the corner $d_{\sigma}(A) + \operatorname{cone}\{\tilde{d}_{\sigma\tau}(A) : \tau \in \mathcal{T}\}$.

Proof. Case $\sigma = id$. The essentials lie in the proof for this case. By the theory of Lie-groups [9, pp31c5, 145c4] we can choose small open neighbourhoods, U_0 of $0 \in so(n)$ and U_I of $I \in SO(n)$ so that the map $U_0 \ni S \mapsto exp(S) \in U_I$ delivers a bijection. Also, by [9, p91c-5], if $D = diag(\varepsilon_1, \ldots, \varepsilon_n) \in SO(n)$, then, $U_D = DU_I$ is a neighbourhood of D. Let $K = SO(n) \setminus \bigcup \{U_D : D = diag(\varepsilon_1, \ldots, \varepsilon_n) \in SO(n)\}$. Then K is compact.

On so(*n*) and SO(*n*), respectively, define the maps f, φ by

$$\operatorname{so}(n) \ni S \xrightarrow{J} \det(A \circ \exp S) - d_{id}(A) \in \mathbb{C} \text{ and } \operatorname{SO}(n) \ni Q \xrightarrow{\psi} \det(A \circ Q) \in \mathbb{C}.$$

From the hypothesis we find that φK is a compact set not containing $d_{id}(A)$. Since the distance between compact disjoint sets is positive [3, p61c-2], we can find a ball around $d_{id}(A)$ having with φK empty intersection. Now for every of the diagonal matrices D here present, and every $Q \in SO(n), \varphi(DQ) = \varphi(Q),$

So

$$\begin{aligned} \Delta(A) = \varphi(\mathrm{SO}(n)) &= \varphi\Big(K \cup \bigcup_D U_D\Big) = \varphi K \cup \bigcup_D \varphi(DU_I) \\ &= \varphi K \cup \varphi U_I = \varphi K \cup (\varphi \circ \exp U_0) \\ &= \varphi K \cup (f(U_0) + d_{id}(A)). \end{aligned}$$

For small r > 0, we now have $\Delta(A) \cap B(d_{id}(A), r) = d_{id}(A) + (f(U_0) \cap B(0, r))$. From Theorem 1 we know that for $S \in U_0$, $f(S) = \sum_{\tau \in \mathcal{F}} \tilde{d}_{\tau}(A)|s_{\tau}|^2 + \sum_{k \ge 3} p_k(S)$, and this can be rewritten as a real variable power series with complex coefficients, precisely in the form required in Lemma 7. This yields by Corollary 9 and the observation 5bc that Δ has in $d_{id}(A)$ the corner claimed.

Case $\sigma \in S_n$ arbitrary. As one may expect this case can be reduced to the previous one. Let $\tilde{A} = P_{\sigma^{-1}}A$ and let $Q \in SO(n)$. Choose a diagonal matrix D so that $DP_{\sigma^{-1}} \in \mathscr{P}_{\sigma^{-1}}$ and put $\tilde{Q} = DP_{\sigma^{-1}}Q$. Then $\det(\tilde{A} \circ \tilde{Q}) = \det(P_{\sigma^{-1}}A \circ (DP_{\sigma^{-1}}Q)) = \det(DP_{\sigma^{-1}})\det(A \circ Q) = \det(A \circ Q)$ and $d_{\sigma}(A) = d_{id}(\tilde{A})$. Now

$$\tilde{Q} \in \mathscr{P}_{id}$$
 iff $Q \in \mathscr{P}_{\sigma}$ (easy),
iff $\det(A \circ Q) = d_{\sigma}(A)$ (by hypotheses),
iff $\det(\tilde{A} \circ \tilde{Q}) = d_{id}(\tilde{A})$ (by the equations above).

So we can apply the first case to the matrix \tilde{A} . So $\Delta(\tilde{A})$ has in $d_{id}(\tilde{A})$ the corner ar = $d_{id}(\tilde{A}) + \operatorname{con}\{\tilde{d}_{\tau}(\tilde{A}) : \tau \in S_n\}$. Now for any $Q \in \operatorname{SO}(n)$, $\det(\tilde{A} \circ Q) = \det((DP_{\sigma^{-1}}A) \circ Q) = \det(A \circ (P_{\sigma}DQ))$. Since $P_{\sigma}D\operatorname{SO}(n) = \operatorname{SO}(n)$, we can infer $\Delta(\tilde{A}) = \{\det(\tilde{A} \circ Q) : Q \in \operatorname{SO}(n)\} = \Delta(A)$. Furthermore $d_{id}(\tilde{A}) = d_{\sigma}(A)$, and $d_{\tau}(\tilde{A}) = d_{\tau}(P_{\sigma^{-1}}A) = d_{\sigma\tau}(A)$. From this we get ar $= d_{\sigma}(A) + \operatorname{con}\{d_{\sigma\tau}(A) - d_{\sigma}(A) : \tau \in \mathcal{F}\}$. The theorem is proved. \Box

We end with three remarks.

Remark 12

- (a) For technical reasons (in particular what concerns the reasoning employed in Theorem 6, Fact 2) we have restricted the formulation of the main result to the case that the $\tilde{d}_{\tau}(A)$ are not all collinear with 0. It seems to us that with obvious modifications it will also hold without this restriction (and indeed the proof will be easier).
- (b) For c, s reals satisfying $c^2 + s^2 = 1$, define $Q = Q(c, s) \in SO(3)$, the matrix at the left. Then $det(I \circ Q(c, s)) = 0 = d_{\sigma}(I)$ for all admissible c, s and $\sigma \neq id$. So the hypothesis of Theorem 11 usually is not satisfied.

$$Q(c,s) = \begin{bmatrix} c & 0 & s \\ -s & 0 & c \\ 0 & -1 & 0 \end{bmatrix}.$$

At the other hand, the condition of Theorem 11 is certainly not empty. For example $\det(I \circ Q) = 1$ will happen only if $Q \in SO(n)$ is a signed identity matrix. Some proofs of the special cases of OMC already available provide more examples; see e.g. [4]. Indeed it seems to us that answering the question for which pairs $Q \in SO(n)$, and permutations $\sigma \in S_n$ equations $\det(A \circ Q) = d_{\sigma}(A)$ can happen would mean – in case rankA = 2 at least – to go a long way towards deciding OMC.

(c) The reader may well ask why we have not formulated Theorem 11 for SU(*n*). The reason is that the diagonal entries of an $S \in su(n)$ do *not* enter in the homogeneus part of degree 2 in the real variable power series of complex coefficients, $f(S) = det(A \circ exp S)$. So in terms of Lemma 7, see also Example 8, we do not know whether $f_2(S) \rightarrow 0$ implies $\sum_{k \ge 3} f_k(S)/f_2(S) \rightarrow 0$; hence we cannot apply our reasoning to these cases.

Acknowledgment

The comments of the referee are gratefully acknowledged.

References

- [1] T. Broecker, T. tom Dieck, GTM 98, Springer, 1985.
- [2] G.N. de Oliveira, Research problem: normal matrices, Linear and Multilinear Algebra 12 (1982) 153-154.
- [3] J. Dieudonné, Foundations of Modern Analysis, Academic Press, 1960.
- [4] M. Fiedler, Bounds for the determinant of the sum of two Hermitian matrices, Proc. Amer. Math. Soc. 30 (1971) 27–31.
- [5] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge, 1991.
- [6] J.F. Queiró, A. Kovačec, A bound for the determinant of the sum of two normal matrices, Linear and Multilinear Algebra 33 (1993) 171–173.
- [7] E.F. Moise, Geometric Topology in Dimensions 2 and 3, Springer, 1978.
- [8] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
- [9] A. Sagle, R.E. Walde, Introduction to Lie Groups and Lie Algebras, Academic Press, 1973.
- [10] O. Zariski, P. Samuel, Commutative Algebra I, II, Van Nostrand, 1960.

108