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Abstract

By introducing lattice-valued covers of a set, we present a general framework for uniform structures on very general L-valued
spaces (for L an integral commutative quantale). By showing, via an intermediate L-valued structure of uniformity, how filters of
covers may describe the uniform operators of Hutton, we prove that, when restricted to Girard quantales, this general framework
captures a significant class of Hutton’s uniform spaces. The categories of L-valued uniform spaces and L-valued uniform frames
here introduced provide (in the case L is a complete chain) the missing vertices in the commutative cube formed by the classical
categories of topological and uniform spaces and their corresponding pointfree counterparts (forming the base of the cube) and the
corresponding L-valued categories (forming the top of the cube).
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In classical topology, uniform structures are usually approached in terms of covers [33], via double powersets of
the form 22X

, or, equivalently, in terms of entourages [34], via powersets of the form 2X×X. Entourages, being binary
relations, may be also easily described by polarities (that is, Galois connections between power sets) and axialities (that
is, residuated pairs between power sets). This gives two more equivalent descriptions of uniform spaces.

One of the questions of interest in lattice-valued topology concerns well-founded definitions of uniform-type struc-
tures (see the introduction to [26]). The uniform structures of Hutton [15] have been regarded as the lattice-valued
counterpart to the classical covering uniformities of Tukey (see [29]), in opposition to the fuzzy uniform spaces of
Lowen [20], which are an extension of the entourage approach of Weil. It is well-known that, opposite to the classical
case, these two notions are not equivalent. In this paper we show that residuations rather than covers are the root of
Hutton’s approach, and how lattice-valued covers of a set may describe lattice-valued uniformities. This approach leads
to a new category of L-valued uniform spaces in which a significant class of Hutton uniform spaces fits nicely. It will
be apparent that this category is the natural generalization of the classical Tukey’s definition to the L-valued context.
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Some interesting observations about Hutton’s definition will appear along the way. Namely, it will be clear why and
when Hutton’s axiomatization, based on residuated maps (axialities [5]), can be equivalently seen as an L-residuated
uniformity. Also, an open question appears: what happens if Hutton’s axiomatization is formulated in terms of Galois
maps (polarities [5]), generalizing the meaning of being a reflexive relation (an entourage) in this contravariant case?

The motivation for this paper arose from an observation of Pultr and Rodabaugh in [26] that lattice-valued frames
may be useful in the establishment of well-founded definitions of uniform-type structures. To put this in perspective,
let us recall that a frame is a complete lattice M satisfying the infinite distributivity law

m ∧
∨

S =
∨
{m ∧ s | s ∈ S}

for all m ∈ M and S ⊆ M , and a frame homomorphism h : M → N is a map preserving finite meets (including the
top 1) and arbitrary joins (including the bottom 0). The resulting category will be denoted by Frm. The two-element
frame {0 < 1} will be denoted by 2.

If X is a topological space, the lattice O(X) of its open sets is a frame, and if f : X→ Y is a continuous map then
O(f ) : O(Y ) → O(X) defined by O(f )(U) = f−1(U) is a frame homomorphism. Thus, we have a contravariant
functor O : Top→ Frm. Finally, recall the standard spectrum construction

�(M) = ({p : M → 2 | p ∈ Frm}, {�m | m ∈ M})
for a frame M (where �m = {p | p(m) = 1}). Defining, for each frame homomorphism h : M → N , �(h) : �(N)→
�(M) by �(h)(p) = p · h, this constitutes a contravariant functor � : Frm → Top. The following are well-known
facts: � is a right adjoint for O, each �(M) is a sober space (i.e. a T0 space X whose only meet irreducible elements
are X \ {x}), the unit map X → �O(X) is a homeomorphism if and only if X is sober, and the unit homomorphism
O�(M)→ M is an isomorphism if and only if M is spatial i.e. isomorphic to the frame of open sets of some topological
space X. For more details about frames see, e.g. [17] or [23].

The above dual adjunction O�� between the category of frames and the category of topological spaces can be easily
adapted to the uniform setting, yielding a dual adjunction between the category UFrm of uniform frames (introduced
by Isbell [16], and studied in detail by Pultr [25] in terms of covers; for information about other different ways of
describing them see [6,22]) and the category Unif of uniform spaces of Weil [34] and Tukey [33]. Then, denoting by
F1 and F2, respectively, the forgetful functors Unif → Top and UFrm → Frm forgetting the uniform structure, the
diagram

Unif
O ��

F1

��

UFrm
�

��

F2

��
Top

O ��
Frm

�
��

(1.1)

commutes.
In [26], the authors introduced L-valued frames, for a linearly ordered L, which relate to frames in a way parallel

to that in which the �L functor (see [19,18]) relates L-valued topological spaces to topological spaces. There is a dual
adjunction between L-Top and L-Frm that shows that L-valued frames generalize L-valued topological spaces in a way
parallel to frames generalizing topological spaces. Specifically, denoting by �T

L and �F
L the (characteristic) functors

embedding the categories of 2-valued objects in question in the corresponding categories of L-valued objects (see
Section 6 for a description of the embedding functor �F

L ), the diagram

L-Top
O ��

L-Frm
�

��

Top

�T
L

��

O ��
Frm

�
��

�F
L

��
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commutes. Putting it together with (1.1) we get an incomplete diagram:

?
��

���
��

��
��

��

���
��

��
��

�� ?

���
��

��
��

����

L-Top
O ��

L-Frm
�

��

Unif

��

O ��

F1
���

��
��

��
�� UFrm

�
��

��

F2

���
��

��
��

��

Top

�T
L

��

O ��
Frm

�F
L

��

�
��

A natural question arises:

Does there exist two types of structure (i.e. appropriate notions of L-valued uniform spaces and frames) that
would allow us to complete the cube (by filling in the two question marks) in such a way that the two new vertical
arrows also represent embedding functors, that the two new diagonal arrows also represent forgetful functors,
that the new horizontal arrows also establish an adjunction, and that the whole diagram commutes?

The answer is not immediately obvious: as the authors of [26] point out, the direct approach through uniformizing the
L-topology � as a frame is not satisfactory. Indeed, a uniformity on � induces a uniformity on the lattice L of values
(as observed by Banaschewski—see [26]); so, when L is linear, we would stay within the crisp case, since the only
linearly ordered frame admitting a uniformity is the two-element frame 2 = {0 < 1}.

It is our purpose in this paper to show that all the points raised above can be addressed in a satisfactory way. We
introduce categories L-Unif and L-UFrm, for L a general strictly two-sided commutative quantale and a complete
chain, respectively, that fill in the two question marks: they are related, respectively, to the categories L-Top and
L-Frm in a parallel way and again, when L is a linearly ordered complete lattice, L-UFrm generalizes L-Unif in a
way parallel to uniform frames generalizing uniform spaces. Then we present an equivalent presentation for L-Unif in
terms of residuated mappings that will encompass Hutton’s original definition whenever L is a Girard quantale. It will
be apparent that a slight change in one of the axioms of Hutton makes a big difference and allows the extension of the
definition to more general contexts for a certain class of Hutton uniform spaces.

The paper is organized as follows. We begin, in Section 2, by establishing some notations and by recalling some
background on L-topological spaces and uniform frames. Then, in Section 3, we introduce L-valued covers and use
them to axiomatize L-valued uniform structures for very general lattices L (namely, strictly two-sided commutative
quantales). In Section 4 we give an alternative, equivalent, formulation in terms of residuated mappings. In Section
5, we show that the latter approach, when restricted to Girard quantales, implies Hutton’s axiomatization. Several
arguments are presented in favor of our approach. After recalling, in Section 6, some basic facts about L-valued frames
we relate, in Section 7, L-valued uniform spaces with uniform spaces and provide in Section 8 the missing vertex for
the above cube: the notion of an L-valued uniform frame.

2. Preliminaries and notation

2.1. L-valued spaces

We recall that (L, � , ∗) is a quantale if

(1) (L, �) is a complete lattice (with top element 1 =∧∅ and bottom 0 =∨∅).
(2) ∗ is an associative binary operation distributive over arbitrary joins:

� ∗
(∨

i∈I
�i

)
=
∨
i∈I

(� ∗ �i ).
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Since the operators � ∗ (−) preserve arbitrary joins, every quantale is residuated, i.e. there exist the corresponding
right adjoints �→ (−) defined by the relation

� ∗ ��� ⇐⇒ ���→ �.

In particular,→ is given by �→ � =∨{� ∈ L | � ∗ ���}. A quantale (L, � , ∗) is strictly two-sided (or simply
integral) if

(3) (L, ∗) is a monoid whose unit is the top element 1.

(Notice that an integral quantale is an integral cl-monoid in the sense of [12].)
We list here some of the basic properties of integral quantales needed in the sequel:

(Q1) ���⇒ � ∗ ��� ∗ �.
(Q2) � ∗ 0 = 0 ∗ � = 0 for all � ∈ L.
(Q3) ��(�→ 0)→ 0 for all � ∈ L.

Sometimes integral commutative quantales are referred to as complete residuated lattices. Any frame is automatically
a commutative integral quantale (where the binary operation ∗ is given by the meet ∧).

A commutative unital quantale (i.e. a commutative quantale with a unit ε satisfying � ∗ ε = ε ∗ � = � for all �) is
called a Girard quantale if it satisfies the law of double negation

(Q4) � = (�→ 0)→ 0 for all � ∈ L.

Note that a Girard quantale is necessarily integral since

ε→ 0 =
∨
{� ∈ L | ε ∗ ��0} = 0

and, consequently, ε = (ε→ 0)→ 0 = 0→ 0 = 1.
From now on, except when otherwise stated, we will assume that L is an integral commutative quantale. For any set

X, the set LX of mappings X→ L, with the partial order

a�b ≡ a(x)�b(x) for each x ∈ X

is also an integral quantale: joins, meets and the binary operation ∗ are just defined pointwisely. If A ⊂ X, then 1A ∈ LX

denotes the characteristic function of A, hence we denote the top element of LX by 1X and the bottom by 1∅. The
constant member of LX with value � is denoted � too. Given a map f : X→ Y , a ∈ LX and b ∈ LY , the usual (Zadeh)
image and preimage operators are defined as follows:

f→(a) =
∨
x∈X

a(x) ∧ 1{f (x)},

and

f←(b) = b · f
the composition of f and b. We shall need a number of properties of the operators just defined viz.:

Properties 2.1. Let f : X→ Y , g : Y → Z, a ∈ LX, b, b1, b2 ∈ LY , c ∈ LZ . Then:

(1) f← preserves sups and infs; f→ preserves sups (in particular, they are both order-preserving),
(2) a�f←(f→(a)),
(3) f→(f←(b))�b, and f→(f←(b)) = b if and only if f is surjective,
(4) (g · f )→(a) = g→(f→(a)),
(5) (g · f )←(c) = g←(f←(c)),
(6) f←(b1 ∗ b2) = f←(b1) ∗ f←(b2), and
(7) f→(a) ∗ b = 1∅ if and only if a ∗ f←(b) = 1∅.
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An L-valued topological space [4,14] (shortly, an L-topological space) is a pair (X, �) consisting of a set X and a
subset � of LX (the L-valued topology or L-topology on the set X), containing 1∅ and 1X and closed under finite meets
and arbitrary joins.

Given two L-valued topological spaces (X, �1), (Y, �2) a map f : X→ Y is an L-continuous map if the correspon-
dence b �→ f←(b) maps �2 into �1. The resulting category will be denoted by L-Top.

Of course, when L = 2, an L-topological space is precisely a topological space and there is an isomorphism between
Top and L-Top, via the characteristic functor (the one associating to each subset its characteristic function and leaving
morphisms unchanged). If L is a frame then the L-topologies, being subframes of the frame LX, are frames as well.

2.2. Uniform spaces

There are several equivalent axiomatizations of the notion of uniformity on a set X. We will refer to the one introduced
by Tukey [33] in which the basic term is the one of uniform cover of X. A cover U refines a cover V , and in this case
one writes U�V , if for each U ∈ U there exists V ∈ V such that U ⊆ V . For each cover U of X and A ⊆ X, let
st(A, U) := ⋃{U ∈ U | U ∩ A = ∅} be the star of A in U and st(U) := {st(V , U) | V ∈ U}, which is a cover too. A
uniformity on X is a set 	 of covers of X such that:

(U1) 	 is a filter in the preordered set (Cov(X), �) of all covers of X.
(U2) for each U ∈ 	 there is some V ∈ 	 such that the cover st(V) refines U .

A map f : (X, 	) −→ (Y, 
) between uniform spaces is uniformly continuous if for every V ∈ 
, f−1[V] = {f−1(V ) |
V ∈ V} belongs to 	. We denote the resulting category of uniform spaces and uniformly continuous maps by Unif.

The uniform topology T	 induced by (X, 	) is the one generated by the neighborhood basis {st({x}, U)|U ∈ 	} for
each x ∈ X. The correspondence (X, 	)→ (X, T	) defines the forgetful functor F1 : Unif→ Top.

2.3. Uniform frames

Tukey’s approach to uniform spaces via covers was the first to be studied in the pointfree context of frames. In [16]
Isbell introduced uniformities on frames, as the precise translation into frame terms of Tukey’s notion, later developed
in detail by Pultr [25]. We note that, as in the case of spaces, there are several different ways of describing uniformi-
ties on frames, such as the functional uniformities of Fletcher-Hunsaker ([7], [8]) and the entourage unifromities of
Picado [21].

Let M be a frame. A set C ⊆ M is a cover of M if
∨

C = 1. The set of all covers of M , denoted as Cov(M), can be
preordered as follows: a cover C refines a cover D, written C�D, if for each c ∈ C there is some d ∈ D with c�d.
Thus, (Cov(M), �) is a preordered set with meets and joins: take for C ∧D the cover {c ∧ d | c ∈ C, d ∈ D} and for
C ∨D just the union C ∪D.

For each m ∈ M , the star of m in C is the element st(m, C) :=∨{c ∈ C | c∧m = 0} and st(C) := {st(c, C) | c ∈ C}
which is also a cover of M. Further, for each family C of covers of M , let

n
C
� m if there is C ∈ C such that st(n, C)�m, for any n, m ∈ M.

A family C of covers of a frame M is a uniformity (see, for example, [2]; the notion of a uniform frame goes back to
Pultr [25]), provided that:

(U1) C is a filter in the preordered set (Cov(M), �).
(U2) For each C ∈ C there is a D ∈ C such that the cover st(D) refines C.

(U3) For every m ∈ M , m =∨{n ∈ M | n C
� m}.

Note that property (U3) is equivalent to the regularity of the frame M, see [25, Theorem 2.8].
The pair (M, C) is then called a uniform frame. Let (M, C) and (N, D) be uniform frames. A frame homomorphism

h : M → N is a uniform homomorphism if, for every C ∈ C, h[C] = {h(c) | c ∈ C} ∈ D. We denote by UFrm
the category of uniform frames and uniform homomorphisms. This category is related to the category Unif of uniform
spaces and uniformly continuous maps by a dual adjunction via the open and spectrum (contravariant) functors:
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The open functor O : Unif → UFrm assigns to each uniform space (X, 	) the uniform frame (T	, CT	), where
T	 is the topology induced by 	 and CT	 is the collection of all T	-open covers of T	. If f : (X, 	) → (Y, 
) is

uniformly continuous, then O(f ) : O(Y, 
) → O(X, 	) defined, for each V ∈ T
, by O(f )(V ) = f−1(V ), is a
uniform homomorphism.

On the other hand, the spectrum functor � : UFrm→ Unif assigns to each uniform frame (M, C) the uniform space
(�M, 	�M), being �M = {p : M → 2 | p ∈ Frm} the set of points of M and 	�M the filter of covers of �M generated
by ({�m | m ∈ C})C∈C , where �m = {p ∈ �M | p(m) = 1}. If h : (M, C)→ (N, D) is a uniform homomorphism
then �(h) : �(N, D)→ �(M, C), given by �(h)(q) = q · h, is uniformly continuous.

This adjunction makes the diagram in (1.1) commutative.

3. Covering L-valued uniform spaces

We say that A ⊆ LX is an L-cover of X if
∨

A = 1X. For any A, B ⊆ LX we write

A�B if for each a ∈ A there exists b ∈ B such that a�b.

The relation just defined makes the set of all L-covers of X, noted as L-Cov(X), a preordered set. Let A ∗B = {a ∗ b |
a ∈ A, b ∈ B}, where a ∗ b : X → L is defined pointwisely and A ∧ B = {a ∧ b | a ∈ A, b ∈ B}. Clearly,
A ∗ B�A ∧ B, since a ∗ b�a ∗ 1X = a and a ∗ b�1X ∗ b = b.

Proposition 3.1. For every L-covers A and B, A ∗ B and A ∧ B are L-covers of X.

Proof. Since ∗ distributes over arbitrary joins,∨
(A ∗ B) =

∨
A ∗

∨
B = 1X ∗ 1X = 1X,

and it follows that A ∗ B is an L-cover. Then A ∧ B is also an L-cover because A ∗ B�A ∧ B. �

Notice that, since A∧B is an L-cover, then A∧B is the infimum of A and B in the preordered set (L-Cov(X), �)

of all L-covers of X.
For each a ∈ LX and A ⊆ LX, let

st(a, A) :=
∨
{b ∈ A | b ∗ a = 1∅}

and
st(A) := {st(a, A) | a ∈ A},

which is an L-cover (whenever A is a cover).

Proposition 3.2. Let A, B ⊆ LX and a, b ∈ LX. Then:

(1) If A is an L-cover then a�st(a, A) and, consequently, A�st(A).
(2) If a�b then st(a, A)�st(b, A).
(3) If A�B then st(a, A)�st(a, B).
(4) st(

∨
B, A) =∨b∈B st(b, A).

(5) If A is an L-cover then st(st(a, A), A)�st(a, st(A)).
(6) Let f : X→ Y , B ⊆ LY , f−1[B] := {f←(b) | b ∈ B} and c ∈ LY . Then, st(f←(c), f−1[B])�f←(st(c, B)).

Proof. (1) a = 1X ∗ a = (∨b∈A b
) ∗ a =∨{b ∗ a | b ∈ A, b ∗ a = 1∅}�st(a, A). (2,3) These are obvious.

(4)

st
(∨

B, A
)
=
∨{

a ∈ A | a ∗
∨

B = 1∅
}
=
∨{

a ∈ A
∣∣∣∣∣∨
b∈B

(a ∗ b) = 1∅

}

=
∨
{a ∈ A | a ∗ b = 1∅ for some b ∈ B} =

∨
b∈B

st(b, A).
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(5) For each a ∈ LX we have, using the previous property,

st(st(a, A), A) =
∨
{st(b, A) | b ∈ A, b ∗ a = 1∅}.

Since, for each suchb, st(b, A) ∈ st(A) and st(b, A)∗a�b∗a = 1∅, we have immediately st(st(a, A), A)�st(a, st(A)).

(6) Since f← preserves arbitrary sups and the binary operation ∗ (see Properties 2.1), we have:

st(f←(c), f−1[B]) =
∨
{f←(b) | b ∈ B, f←(b) ∗ f←(c) = 1∅} = f←(

∨
{b ∈ B | f←(b ∗ c) = 1∅})

� f←(
∨
{b ∈ B | b ∗ c = 1∅}) = f←(st(c, B)). �

Definition 3.3. We say that a pair (X,U) consisting of a set X and a nonempty family U of L-covers of X is a covering
L-uniform space whenever the following conditions are satisfied:

(C1) A�B, A ∈ U⇒ B ∈ U.
(C2) For every A, B ∈ U, A ∧ B ∈ U.
(C3) For each A ∈ U there exists B ∈ U such that st(B)�A.

A base for the covering L-uniformity U is any subcollection of U from which U can be recovered by applying
condition (C1).

A map f : (X,U)→ (Y,V) is a uniform homomorphism if, for every B ∈ V, f−1[B] ∈ U. The resulting category
will be denoted by L-Unif. Of course, for L = 2, this is precisely the category of (covering) uniform spaces of
Tukey [33].

For each (X,U) ∈ L-Unif define

�U :=
{
a ∈ LX | a =

∨
{b ∈ LX | st(b, A)�a for some A ∈ U}

}
.

Note that, when L = 2, �U is just the crisp topology induced by the (classical) uniformity U on X.

Proposition 3.4. (X, �U) is an L-topological space whenever L is a frame.

Proof. It suffices to check that int : LX → LX defined by

int(a) =
∨
{b ∈ LX | st(b, A)�a for some A ∈ U}

is an L-interior operator [14], that is:

(I1) int(1X) = 1X.
(I2) int(a)�a for every a ∈ LX.
(I3) int(int(a)) = int(a) for every a ∈ LX.
(I4) int(a ∧ b) = int(a) ∧ int(b) for every a, b ∈ LX.

(I1) and (I2) are trivially satisfied.
(I3) Let b ∈ LX satisfying st(b, A)�a for some A ∈ U and take B ∈ U such that st(B)�A. Then st(b, B)� int(a)

since st(st(b, B), B)�st(b, st(B))�st(b, A)�a 4position 3.2. This shows that int(a)� int(int(a)) and the equality
follows from (I2).

(I4) Since L is a frame, meets distribute over arbitrary joins and then (I4) follows immediately from (C2). �

�U-open L-covers of U form a base for the covering L-uniformity U:

Proposition 3.5. If A ∈ U then int(A) := {int(a) | a ∈ A} ∈ U.

Proof. Let B ∈ U such that st(B)�A. Then B�int(A). Indeed, for each b ∈ B, b�st(b, B)�a for some a ∈ A, which
shows that b� int(a). �
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For any a, b ∈ LX we write b
U
� a whenever st(b, A)�a for some A ∈ U. The following property of the L-topology

�U follows immediately from the previous proposition.

Corollary 3.6. For every a ∈ �U, a =∨{b ∈ �U | b
U
� a}.

Proposition 3.7. For any f : (X,U)→ (Y,V) in L-Unif, f : (X, �U)→ (Y, �V) is a morphism of L-Top.

Proof. Let b ∈ �V. Then b = ∨{c ∈ LY | st(c, B)�b for some B ∈ V}. Let us show that f←(b) ∈ �U, by proving
that

f←(b) =
∨
{f←(c) | c ∈ LY , st(c, B)�b for some B ∈ V}�

∨
{f←(c) | c ∈ LY , f←(st(c, B))

� f←(b) for some B ∈ V}�
∨
{a ∈ LX | st(a, f−1(B))

� f←(b) for some f−1(B) ∈ U}� int(f←(b)).

The first equality follows from Property 2.1(1) and the inequalities follow from Properties 2.1 and
Proposition 3.2(6). �

Thus, the correspondence

(X,U) ∈ L-Unif �−→ (X, �U) ∈ L-Top

is functorial and we have a functor F3 : L-Unif→ L-Top such that the diagram

L-Unif
F3 �� L-Top

Unif

�U
L

��

F1
�� Top

�T
L

��

commutes (where �U
L denotes the uniform version of the embedding functor �T

L : Top→ L-Top). This shows that, for
frames L, the notion of a covering L-valued uniform space relates to a uniform space in a way similar to that in which
an L-valued topological space is related to a topological space.

4. Residuated L-valued uniform spaces

The category of residuated L-valued uniform spaces that we introduce in this section is based on the notion of
residuated pairs. It has nice features: it is equivalent to the category of covering L-valued uniform spaces on one
hand and also, for a large class of lattices (more precisely, Girard quantales), captures a significant class of Hutton
uniformities.

Originally, Galois connections were expressed in a contravariant form with transformations that reverse order [3].
A Galois connection between partially ordered sets A and B is a pair (f, g) of order-reversing maps f : A→ B and
g : B → A such that

idA �g · f, idB �f · g equivalently, b�f (a) iff a�g(b).

We denote by Gal(A, B) the set of all order-reversing maps f : A→ B for which there exists f+ : B → A such that
(f, f+) is a Galois connection.

Nowadays many authors prefer to work with Galois connections in the covariant form by its convenience (the survey
[5] contains a list of references to this form). We refer to this dualized form as a residuated pair: a residuated pair
between the partially ordered sets A and B is a pair (f, g) of order-preserving maps f : A → B and g : B → A

such that

f · g� idB, idA �g · f equivalently, f (a)�b iff a�g(b).
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The map f : A→ B in a residuated pair (f, g) is called residuated and the map g : B → A is called residual. Thus, f
is residuated (resp. residual) if and only if f ∈ Gal(A, Bop) (resp. f ∈ Gal(Aop, B)). If A and B are complete lattices
then f : A → B is residuated if and only if it is join-preserving. For any sets X and Y and any map f : X → Y ,
(f←, f→) is a residuated pair (see [30]).

Now consider the image and preimage operators f⇒ : (LX)L
X → (LY )L

Y
and f⇐ : (LY )L

Y → (LX)L
X

, defined
by f⇒(�) = f→ · � · f← and f⇐(�) = f← · � · f→:

LX
� �� LX

f→

��
LY

f←

��

f⇒(�)
�� LY

LY
� �� LY

f←

��
LX

f→

��

f⇐(�)
�� LX

Again, (f⇐, f⇒) is a residuated pair.
Let H(L, X) denote the collection of all join-preserving mappings  : LX → LX (in particular, (1∅) = 1∅),

partially ordered by

1 �2 ≡ 1(a)�2(a) for every a ∈ LX.

Let  ∈ H(L, X). We say that a ∈ LX is -small if

a ∗ b = 1∅ ⇒ a�(b) for any b ∈ LX.

Further, we say that  is:

(1) symmetric whenever (a)∗b = 1∅ iff a∗(b) = 1∅ (or, equivalently, whenever b�(a)→ 1∅ iff (b)�a→ 1∅),
for arbitrary a, b ∈ LX

(2) an L-entourage of X if {a ∈ LX | a is -small} is an L-cover of X.

Proposition 4.1. Let  ∈ H(L, X):

(1) If  is symmetric then, for any a, b ∈ LX,

b→ 1∅�(a)→ 1∅ ⇐⇒ (b→ 1∅)�a→ 1∅.

(2) If L is a Girard quantale then the converse to (1) holds. In that case,  is symmetric if and only if

(a)�b ⇐⇒ (b→ 1∅)�a→ 1∅.

(3) If  is an L-entourage then (a)�a for every a ∈ LX.
(4) If L is atomic (i.e. every element of L is the join of all atoms below it) then the converse to (3) holds.

Proof. (1) and (2) These are obvious.
(3) For each a ∈ LX,

a = 1X ∗ a =
(∨
{b ∈ LX | b is -small}

)
∗ a =

∨
{b ∗ a | b ∗ a = 1∅, b is -small}

�
∨
{b | b ∗ a = 1∅, b is -small}�(a).

(4) Let  : LX → LX be such that (a)�a for every a ∈ LX. For each atom � of L, it follows that � ∧ 1{x} ∈ LX

is an atom in LX. Then 1∅ = (�∧ 1{x}) ∗ b��∧ 1{x} ∧ b��∧ 1{x} implies �∧ 1{x}�b. In particular, this means that
every � ∧ 1{x} is -small. Hence, for every x ∈ X,(∨

{a ∈ LX | a is -small}
)

(x) �
(∨
{� ∧ 1{x} | � is an atom of L}

)
(x)

=
∨
{� | � is an atom of L} = 1. �
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Remark 4.2. If L fails to be atomic then the converse to Proposition 4.1(3) is not true in general. The unit interval,
with its usual order, gives rise to a couple of examples, when it is endowed with the following two well-known quantale
structures (in fact a similar statement holds for any quantale structure defined on [0, 1]):
(1) ([0, 1], � ,∧), (the unit interval considered as a Heyting algebra).
(2) ([0, 1], � , Tm) (the unit interval considered as an MV-algebra), where Tm(�, �) = max{� + � − 1, 0} for each

�, � ∈ [0, 1] is the Luckasiewicz T-norm.

Indeed, the identity map idX : LX → LX belongs to H(L, X) and it is not difficult to check that, in the first case,
a ∈ LX is idX-small iff a = 1∅, while in the second a ∈ LX is idX-small iff a = �∧ 1x for some �� 1

2 and x ∈ X. So,
either

∨{a ∈ LX|a is idX-small} = 1∅ or
∨{a ∈ LX|a is idX-small} = 1

2 ; in both cases idX fails to be an L-entourage.

Definition 4.3. We say that a pair (X, D) consisting of a set X and a nonempty subset D of H(L, X) is a residuated
L-uniform space whenever the following conditions hold:

(R1) Each  ∈ D is an L-entourage of X.
(R2) 1 ∈ D and 1 �2 ∈ H(L, X) implies 2 ∈ D.
(R3) For each 1, 2 ∈ D there exists 3 ∈ D such that 3 �1 and 3 �2.
(R4) For each 1 ∈ D there exists 2 ∈ D such that 2 · 2 �1.
(R5) For each 1 ∈ D there exists a symmetric 2 ∈ D such that 2 �1.

A base for the uniformity D is any subcollection of D from which D can be recovered by applying condition (R2).
Note that (R5) means that D has a base of symmetric entourages.

The morphisms (uniform morphisms) of the resulting category L-Unifr are the maps f : (X, D)→ (Y, E) satisfying
f⇐() ∈ D for every  ∈ E .

When L = 2, these are precisely the classical uniformities, described in terms of axialities [5] (cf. also [6, Section 5]).
Since the symmetry condition (R5) is now explicitly axiomatized, by dropping it we have the notion of an (residuated)
L-quasi-uniform space. When L = 2 this gives precisely the classical notion of a quasi-uniform space.

It is now our purpose to prove that the categories L-Unifr and L-Unif are isomorphic.
Let U be a covering L-uniformity on X and, for each A ∈ U, let

A : LX → LX

a �→ st(a, A).

The next proposition with the exception of symmetry follows immediately from Proposition 3.2 and lists some basic
properties of these maps.

Proposition 4.4.

(1) For each A ∈ U , A ∈ H(L, X). Also, since st(A) ∈ U , st(A) ∈ H(L, X) and A�st(A).
(2) If A�B then A �B.
(3) For every a ∈ LX, a�A(a).
(4) Each a ∈ A is A-small.
(5) Each A is a symmetric L-entourage.
(6) If st(A)�B then A · A �B.

Proof. (5) It follows from the following equivalence:

A(a) ∗ b = 1∅ ⇔ ∃c ∈ A : c ∗ a = 1∅ and c ∗ b = 1∅ ⇔ a ∗ A(b) = 1∅. �

The next corollary is an immediate consequence of Proposition 4.4.

Corollary 4.5. Let U be a covering L-uniformity on X. Then {A | A ∈ U} is a base for a residuated uniformity DU
on X.
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Proposition 4.6. For every uniform homomorphism f : (X,U) → (Y,V), the map f : (X, DU) → (Y, DV) is
uniform.

Proof. We need to prove that f⇐() = f← ·  · f→ ∈ DU for every  ∈ DV. So, let B ∈ V such that B �
and A ∈ U satisfying A�f−1[B]. Combining results in Proposition 3.2(3) and (6), and Proposition 4.4(2), for every
a ∈ LX we may write:

A(a) � f−1[B](a) = st(a, f−1[B]) � st(f←(f→(a)), f−1[B])�f←(st(f→(a), B))

= f←(B(f→(a))) � f←((f→(a))) = (f← ·  · f→)(a). �

Finally, we have:

Corollary 4.7. The correspondences (X,U) �→ (X, DU) and f �→ f given by Corollary 4.5 and Proposition 4.6
establish a functor � : L-Unif→ L-Unifr .

Conversely, let D be a residuated L-uniformity on X. For each  ∈ D, consider the L-cover

A = {a ∈ LX | a is -small}.
The following proposition lists some of the basic properties of these covers.

Proposition 4.8.

(1) If 1 �2 then A1
�A2

.
(2) A1∧2

�A1
∧A2

.
(3) If 1 · 1 · 1 �2 and 1 is symmetric then st(A1

)�A2
.

Proof. (1) It is obvious since any 1-small element is 2-small whenever 1 �2.
(2) It is an immediate consequence of the previous property.
(3) Let st(a, A1

) ∈ st(A1
). Then st(a, A1

) = ∨{b ∈ A1
| b ∗ a = 1∅}�1(a) (because each such b is

1-small). It suffices now to check that 1(a) is 2-small. By the symmetry of 1, 1(a) ∗ b = 1∅ if and only if
a ∗ 1(b) = 1∅, so 1(a) ∗ b = 1∅ implies a�(1 · 1)(b), and consequently, 1(a)�3

1(b)�2(b), which shows
that 1(a) is indeed 2-small. �

From this result it follows immediately that:

Corollary 4.9. Let D be a residuated L-uniformity on X. Then {A |  ∈ D} is a base for a covering L-uniformity
UD on X.

Lemma 4.10. Let f : X→ Y , a ∈ LX and � ∈ (LY )L
Y

. If a is f⇐(�)-small then f→(a) is �-small.

Proof. Let f→(a) ∗ b = 1∅ equivalently (cf. Lemma 2.1(8)) a ∗ f←(b) = 1∅, which implies

a�f⇐(�)(f←(b)) = (f← · � · f→ · f←)(b)�(f← · �)(b),

since f→ · f←� idLY . Thus, a�(f← · �)(b) and, consequently, f→(a)�(f→ · f← · �)(b)��(b).

Proposition 4.11. For every uniform homomorphism f : (X, D) → (Y, E), the map f : (X,UD) → (Y,UE ) is
uniform.

Proof. For each A ∈ UE let � ∈ E such that A��A. We need to prove that there exists  ∈ D for which A�f−1[A].
Since, by hypothesis, for each such � there exists  ∈ D satisfying �f⇐(�), which implies A�Af⇐(�), it suffices
to show that Af⇐(�)�f−1[A]. So let b ∈ LX be f⇐(�)-small. Then f→(b) is �-small by Lemma 4.10. But A��A.
Consequently, there exists a ∈ A such that f→(b)�a. Hence b�f←(a). �
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Corollary 4.12. The correspondences (X, D) �→ (X,UD) and f �→ f given by Corollary 4.9 and Proposition 4.11
define a functor � : L-Unifr → L-Unif. �

Now let us show that � ·� = idL-Unifr and � · � = idL-Unif.

Lemma 4.13. For any L-covers A and B of X and any , � ∈ H(L, X) we have:

(1) A�AA .
(2) If st(A)�B then AA�B.
(3) A

�.
(4) If  · �� then �A�

.

Proof. (1) For every a ∈ A, a ∗ b = 1∅ implies a�st(b, A) = A(b), so a is A-small.
(2) Let a ∈ LX be A-small. We need to show that a�b for some b ∈ B. The case a = 1∅ is trivial. If a = 1∅ then,

since a = a ∗∨c∈A c, there is some c ∈ A for which a ∗ c = 1∅. Then a�A(c) = st(c, A)�b for some b ∈ B.
(3) A

(a) = st(a, A) =∨{b ∈ LX | b is -small, b ∗ a = 1∅}�(a).
(4) If  · �� then

(a) = (a) ∗
∨
{b ∈ LX | b is -small} =

∨
{(a) ∗ b | b is -small, (a) ∗ b = 1∅}

� ( · )(a)��(a).

Theorem 4.14. The functors � and � establish an isomorphism between the categories L-Unif and L-Unifr .

Proof. Properties (1) and (2) of Lemma 4.13 imply immediately that, for any covering uniformity U, UDU
= U.

Similarly, properties (3) and (4) of Lemma 4.13 ensure us that, for any residuated uniformity D, DUD = D. Hence
� ·� = idL-Unifr and � · � = idL-Unif. �

5. The relationship with Hutton uniformities

Let L be a Girard quantale. Each  ∈ H(L, X), being join-preserving, has a right adjoint ∗ : LX → LX. Let
−1 : LX → LX be defined by

−1(a) = ∗(a→ 1∅)→ 1∅ =
∧
{b→ 1∅ ∈ LX | (b)�a→ 1∅} [11,15].

It is easy to check that (−1)−1 =  and 1 �2 ⇔ ∗2 �∗1 ⇔ −1
1 �−1

2 .
In the original definition of Hutton [15], the involved lattice is a completely distributive one with an order reversing

involution (L, � , ′). Our context is a bit more general and complete distributivity is not needed (cf. [32]). We say that
a nonempty subset D of H(L, X) is a Hutton L-uniformity on X if D satisfies the following axioms:

(H1) ∀ ∈ D, (a)�a for all a ∈ LX.
(H2) 1 ∈ D and 1 �2 ∈ H(L, X) implies 2 ∈ D.
(H3) For each 1, 2 ∈ D there exists 3 ∈ D such that 3 �1 and 3 �2.
(H4) For each 1 ∈ D there exists 2 ∈ D such that 2 · 2 �1.
(H5) ∀ ∈ D, −1 ∈ D.

According to Hutton [15] an element  ∈ D is symmetric whenever  = −1. The following lemma shows that our
definition of symmetry coincides with the original one of Hutton.

Lemma 5.1. Let L be a Girard quantale. For each  ∈ H(L, X),  is symmetric if and only if  = −1.

Proof. If  is symmetric then (b)�a→ 1∅ ⇔ (a)�b→ 1∅, which implies

−1(a) =
∧
{b→ 1∅ ∈ LX | (b)�a→ 1∅} =

∧
{b→ 1∅ ∈ LX | (a)�b→ 1∅} = (a).
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Conversely, if  = −1 then

(a) ∗ b = 1∅ ⇔ −1(a) ∗ b = 1∅ ⇔ b�−1(a)→ 1∅ = ∗(a→ 1∅)
⇔ (b)�a→ 1∅ ⇔ a ∗ (b) = 1∅,

which shows that  is symmetric. �

Lemma 5.2. For each  ∈ H(L, X), −1 ·  and  · −1 are symmetric.

Proof. We only prove the first assertion (the other may be proved similarly):

−1((a)) ∗ b = 1∅ ⇔ b�−1((a))→ 1∅ = ∗((a)→ 1∅)⇔ (b)�(a)→ 1∅
⇔ (a) ∗ (b) = 1∅ ⇔ (a)�(b)→ 1∅ ⇔ a�∗((b)→ 1∅) = −1((b))→ 1∅
⇔ −1((b)) ∗ a = 1∅ ⇔ a ∗ −1((b)) = 1∅. �

Proposition 5.3. Let L be a Girard quantale and D ⊆ H(L, X). Then D satisfies (H2), (H3), (H4), and (H5) if and
only if it satisfies (R2), (R3), (R4), and (R5).

Proof. Axioms (H2), (H3), and (H4) are precisely (R2), (R3), and (R4), respectively. Finally, in the presence of these
axioms, (H5)⇔(R5): ⇒ Let  ∈ D and use (H4) to get � ∈ D such that � · ��. By (H5), �−1 ∈ D. Applying
(H3), consider � ∈ D such that ��� and ���−1. Then �−1 �(�−1)−1 = � and � · �−1 �� · ��. Since � · �−1 is
symmetric by Lemma 5.2, D satisfies (R5).
⇐ Let  ∈ D. By (R5) there exists a symmetric � ∈ D such that ��, that is, �−1 �−1. By Lemma 5.1,

�−1 = � ∈ D, thus −1 ∈ D by (R2). �

Therefore, since axiom (H1) is a consequence of (R1) by Proposition 4.1(3), we have immediately:

Corollary 5.4. Let L be a Girard quantale. Every residuated L-uniformity on X is a Hutton uniformity on X.

The converse is not true in general (recall Proposition 4.1(4)).

Remark 5.5. In the classical context, for a set X, binary relations R ⊆ X × X are described by Galois connections
between power sets in two particularly simple ways [5]:

(1) A Galois connection between P(X) and P(X) is called a polarity [3] on P(X). Any relation R ⊆ X×X induces
a polarity (R∀, R∀) on P(X), defined by

R∀(A) := {y ∈ X | ∀x ∈ A(x, y) ∈ R} for A ⊆ X,

R∀(B) := {x ∈ X | ∀y ∈ B(x, y) ∈ R} for B ⊆ X.

Conversely, every polarity (f, g) on P(X) induces a relation

(x, y) ∈ R(f,g) ≡ y ∈ f ({x}) (or equivalently, x ∈ g({y})).
Since ((R(f,g))∀, (R(f,g))

∀) = (f, g) and R(R∀,R∀) = R, there is a bijection between relations R ⊆ X×X and polarities
on P(X).

(2) The covariant case of Galois connections between power sets also describe all binary relations R ⊆ X × X.
Indeed, any relation R ⊆ X×X induces an axiality [5] (R∃, R∀) on P(X), that is, a Galois connection between P(X)

and P(X)op, defined by

R∃(A) := {y ∈ X | ∃x ∈ A(x, y) ∈ R} for A ⊆ X,

R∀(B) := {x ∈ X | ∀y ∈ X(x, y) ∈ R ⇒ y ∈ B)} for B ⊆ X.

If we define, for each axiality (f, g) on P(X), the relation

(x, y) ∈ R(f,g) ≡ y ∈ f ({x}),
then ((R(f,g))∃, (R(f,g))

∀) = (f, g) and R(R∃,R∀) = R.
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Under bijection (1) (resp. (2)), entourages E, i.e. reflexive relations, correspond to polarities (resp. axialities) that are
expansive on atoms, that is, {x} ⊆ E∀({x}) (resp. {x} ⊆ E∃({x})) for every x ∈ X. Nevertheless, to be expansive on
atoms, has a different meaning in polarities and axialities; in the case of polarities, this is equivalent to {A ⊆ X|A ⊆
E∀(A)} being a cover of X while in the case of axialities, it is equivalent to E∃ being expansive on subsets (cf. axiom
(H1)), and also to the collection of all E∃-small sets being a cover of X (cf. axiom (R1)).

This equivalence, in the case of axialities, relies on two facts: firstly, P(X) being atomic, its elements can be written
as unions of points (atoms) and secondly, the involved maps E∃ are sup-preserving.

If the lattice 2 is replaced by a general L, even if the previous situation models a relation between polarities (axialites)
from LX to LX and L-valued binary relations, i.e:, elements in LX×X (see [11]), one cannot expect that, in this general
case, either working with expansive maps or working with maps whose small elements form a cover might be still
equivalent. And it is really the case, as examples in Remark 4.2 show. Indeed, the equivalence established between
L-valued binary relations and some family of sup-preserving maps from LX to LX, (see [11]) transforms reflexive
L-valued binary relations (maps f from X ×X→ L, such that f (x, x) = 1) into expansive maps.

It would be interesting to investigate under which conditions the work in [6] (Sections 3 and 4; see also [22]) may be
extended to our setting here, showing whether uniform structures stated in terms of residuated maps LX → LX (that
is, elements of H(L, X)) as we defined in Section 4, may be equivalently described in terms of Galois maps LX → LX

(that is, residuated maps LX → (LX)op).

6. L-valued frames

For the motivation and justification for this notion see [26]. There the authors show that levels and level topologies
may be interpreted as a system of frame homomorphisms satisfying some categorical conditions. Indeed, L-fuzzy and
traditional structures, can be related via the functor �L and its levels {�� : � ∈ L} (see, among others [19,35–37,18] for
topologies and [20,24,9,10] for filters and uniformities).

Two relevant facts of the level (topological) functors {�� | � ∈ L} are:

(1) The collection {�� | � ∈ L} is nondecreasing (on functions).
(2) The collection {��(�) | � ∈ L} is a subbase for �L(�), that is: 〈⋃�∈L ��(�)〉 = �L(�).

The categorical interpretation of these properties, led Pultr and Rodabaugh [26] to introduce the notion of an L-valued
frame (see also [27,28] for more information about this notion). The main purpose is to have a general L-structure
which relates to frames in the way L-topological spaces relate to topological spaces.

Let L1 = L \ {1}. For each � ∈ L1 and a ∈ LX, let

��(a) = {x ∈ X | a(x)��}. (6.1)

This defines the �-level mapping �� : LX → 2X. For each L-topological space (X, �), the associated crisp topology
�TL(�) is the topology on X with subbase: {��(a) : � ∈ L1, a ∈ �}, that is:

�TL(�) =
〈⋃
{��(�) : � ∈ L1, }

〉
.

The correspondence (X, �) �→ (X, �TL(�)) defines a functor �TL : L-Top → Top (satisfying �TL · �T
L = idTop): for

each L-continuous map f : (X, �1) → (Y, �2), f (X, �TL(�1)) → (Y, �TL(�2)) is continuous, since b · f ∈ �1 and
f−1(��(b)) = ��(b · f ) for every b ∈ �2.

Recall also the (dual) adjunction between L-Top and Frm [13,31]: the contravariant functor OL : L-Top → Frm
given by OL(X, �) = � and OL(f )(b) = b · f , has a right adjoint �L : Frm → L-Top defined by �L(M) = ({p :
M → L | p ∈ Frm}, {m̂ | m ∈ M}), where m̂(p) = p(m) and �L(h)(p) = p · h for every h : M → N .

A family of morphisms (fi : A → Bi)i∈I in a category is said to be jointly monic (also mono-source in [1]) if
fi · g = fi · h for every i ∈ I imply g = h. The family (fi : Ai → B)i∈I is said to be jointly epic (or an epi-sink
[1]) if it satisfies the dual condition. A jointly monic family (fi : A→ Bi)i∈I is jointly extremally monic if, moreover,
fi = gi · e, for every i ∈ I , with e epimorphic (that is, e is “right-cancellable” with respect to the composition), implies
that e is an isomorphism. Dually, a jointly epic family (fi : Ai → B)i∈I is jointly extremally epic if fi = m · gi for
every i ∈ I , with m monomorphic (that is, m is “left-cancellable” with respect to the composition), implies that m is
an isomorphism.
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Let L be a linearly ordered complete lattice. An L-valued frame (shortly, L-frame) [26] is a system of frame
homomorphisms

M ≡ (�M
� :Mu→Ml)�∈L1

satisfying the following axioms:

(1) For each nonempty S ⊆ L1, �M∧
S
=∨�∈S �M

� .

(2) (�M
� )�∈L1 is jointly extremally epic in Frm, that is, Ml = 〈⋃� �M

� [Mu]〉.
(3) (�M

� )�∈L1 is jointly monic in Frm.

An L-frame homomorphism [26] h :M→ N is an ordered pair of frame homomorphisms

h ≡ (hu :Mu→ N u, hl :Ml→ N l)

satisfying hl · �M
� = �N

� · hu for every � ∈ L1. The resulting category is denoted by L-Frm.
It follows immediately from (2) and (3) that in any L-frame homomorphism h ≡ (hu, hl), each of the frame

homomorphisms hu, hl guarantees the uniqueness of the other.
If L is a linearly ordered complete lattice then, in the definition of ��(a), we may replace � by > and the mappings

�� : �→ �TL(�) (� ∈ L1) given by (6.1) are frame homomorphisms. Therefore, for each L-topological space (X, �), the
system O(X, �) = (�O� : Ou ≡ �→ Ol ≡ �TL(�))�∈L1 is an L-frame. This is the motivating example for the notion of
L-valued frame (cf. [26]).

Further, for every L-continuous map f : (X, �1) → (Y, �2), the pair O(f ) = (Ou(f ), Ol(f )), with Ou(f )(b) =
f←(b) and Ol(f )(B) = f−1(B), for all b ∈ LY and B ∈ 2Y , is an L-frame homomorphism. This defines
a contravariant functor O : L-Top → L-Frm. There are also the L-valued spectrum functor � : L-Frm →
L-Top, right adjoint to O, and the lower forgetful functor �FL : L-Frm → Frm (cf. [26] for the details), such that
the diagram

L-Top
O ��

�TL

��

L-Frm
�

��

�FL

��
Top

�T
L

��

O ��
Frm

�
��

�F
L

��

commutes.
When L = 2, an L-frame is just one frame homomorphism �M

0 which, by conditions (2) and (3), must be an
isomorphism. So, an L-valued frame stands for a pair of (possibly distinct) isomorphic frames (Mu, Ml) and each
L-valued frame homomorphism is a pair of frame morphisms (hu, hl) such that each one factors through the other via an

isomorphism. Therefore, the category 2-Frm is equivalent to Frm. Indeed, 2-Frm is the functor category Frm2 (where
2 is the category with 2 objects {u, l} and an isomorphism u→ l), and the latter category is clearly equivalent to Frm
via functors F : Frm→ Frm2 and G : Frm2 → Frm defined by F(M) = (M, M) with �M

0 = idM , F(h) = (h, h),
G(Mu, M l) = Mu and G(hu, hl) = hu.

7. The uniform crisp modification of a covering L-valued uniform space

Let L be a linearly ordered complete lattice. This is an integral quantale with ∗ = ∧. Let (X,U) be a covering
L-uniform space. For each A ∈ U and � ∈ L1 let

��(A) = {��(a) | a ∈ A}.
We state without proof some basic facts satisfied by the maps {�� : � ∈ L1}:
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Remark 7.1. For every A ⊂ LX, f : X→ Y and �, � ∈ L1, we have:

(1) ��(
∨

A) =⋃a∈A ��(a).
(2) ��(

∧
A) =⋂a∈A ��(a) if A is finite.

(3) ���⇒ ��(a) ⊆ ��(a).
(4) f−1(��(b)) = ��(f←(b)).

We also have the following:

Proposition 7.2. Let A, B ∈ U and � ∈ L1. Then:

(1) ��(A) is a cover of X.
(2) If A�B then ��(A)���(B). Hence ��(A ∧ B)���(A) and ��(A ∧ B)���(B).
(3) st(��(b), ��(A)) ⊆ ��(st(b, A)).
(4) If st(A)�B then st(��(A))���(B).

Proof. (1) Since
∨

A = 1X then, for each � ∈ L1 and each x ∈ X there exists a ∈ A such that a(x) > �. Consequently,⋃
a∈A{x ∈ X | a(x) > �} = X, that is,

⋃
a∈A ��(a) = X.

(2) It is straightforward.
(3) It follows from 7.1(1).
(4) For any a ∈ A, let st(��(a), ��(A)) ∈ st(��(A)) and b ∈ B satisfying st(a, A)�b. By property (1) of 7.1 and

previous (3) one has st(��(a), ��(A)) ⊆ ��(st(a, A)) ⊆ ��(b). �

It follows immediately from Proposition 7.2 that:

Corollary 7.3. The family {��(A) | A ∈ U, � ∈ L1} is a base for a uniformity �UL (U) on X.

Proposition 7.4. For any f : (X,U)→ (Y,V) in L-Unif, f : (X, �UL (U))→ (Y, �UL (V)) is a morphism of Unif.

Proof. For each B ∈ V and � ∈ L1, f−1[��(B)] = {f−1(��(b)) | b ∈ B} and f−1(��(b)) = ��(f←(b)) (Remark 7.1).
By hypothesis, f−1[B] = {f←(b) | b ∈ B} ∈ U, so ��(f−1[B]) = {��(f←(b)) | b ∈ B} ∈ �UL (U), which shows that
f−1[��(B)] ∈ �UL (U) as required. �

Thus, we have a functor �UL : L-Unif→ Unif such that �UL · �U
L = idUnif. Recall the forgetful functor F3 : L-Unif→

L-Top from Section 3. We have:

Proposition 7.5. F1 · �UL = �TL · F3.

Proof. For objects we need to show that F1(�UL (X,U)) = �TL(F3(X,U)) for every L-uniform space (X,U), that is,
�TL(�U) is precisely the topology T�UL (U) induced by the crisp uniformity �UL (U). T�UL (U) ⊆ �TL(�U): Let A ∈ T�UL (U). Then

for every x ∈ A there exists ��x (Ax) ∈ �UL (U) such that st({x}, ��x (Ax)) ⊆ A. Therefore,

A ⊇
⋃
x∈A

st({x}, ��x (Ax)) =
⋃
x∈A

(⋃
{��x (a) | a ∈ Ax, x ∈ ��x (a)}

)
.

Since the reverse inclusion is obvious, we have A =⋃x∈A st({x}, ��x (Ax)) ∈ �TL(�U).
�TL(�U) ⊆ T�UL (U): Now let ��(a) ∈ �TL(�U) and x ∈ ��(a). Then a(x) > �. Since a ∈ �U, there exists b ∈ LX with

x ∈ ��(b) and st(b, A)�a, for some A ∈ U. Hence ��(st(b, A)) ⊆ ��(a). Also, since x ∈ ��(b), we have

x ∈ st({x}, ��(A)) ⊆ st(��(b), ��(A) ⊆ ��st(b, A) ⊆ ��(a).

For morphisms the proof is straightforward. �
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In conclusion, both squares in the following diagram commute:

L-Unif
F3 ��

�UL

��

L-Top

�TL

��
Unif

�U
L

��

F1
�� Top

�T
L

��

8. The missing vertex: L-valued uniform frames

Let L be a linearly ordered complete lattice. For each covering L-valued uniform space (X,U), the pair (X, �U) is
an L-topological space (Proposition 3.4) and, consequently,

(�� : �U→ �TL(�U))�∈L1

is an L-frame. How can we uniformize it in a canonical way?
Since �U is a subframe of LX, it cannot be uniformized by a frame uniformity (otherwise, the lattice L of values would

be also uniformizable and then, as pointed out in the Introduction, L would necessarily be the two-element chain (2).
On the other hand, the crisp topology �TL(�U) being completely regular (by Proposition 7.5), since �TL(�U) = T�UL (U)),
it is uniformizable. This justifies the introduction of uniform structures on L-valued frames

M = (�M
� :Mu→Ml)�∈L1

as frame uniformities on the lower frame Ml. We say that (M, C) is an L-valued uniform frame if

M = (�M
� :Mu→Ml)�∈L1

is an L-valued frame and C is a frame uniformity on the lower frame Ml. An L-valued uniform homomorphism
h : (M, C)→ (N , D) is a pair

(hu :Mu→ N u, hl : (Ml, C)→ (N l, D))

with hu a frame homomorphism and hl a uniform frame homomorphism satisfying hl · �M
� = �N

� · hu for every
� ∈ L1.

In the case L = 2, an L-valued uniform frame (M, C) is just a frame isomorphism �M
0 :Mu → (Ml, C) and an

L-valued uniform homomorphism is a pair of frame morphisms (hu, hl), the latter one being uniform, such that each
one factors through the other via an isomorphism. So, the category 2-UFrm is clearly equivalent to UFrm via functors
F : UFrm→ 2-UFrm and G : 2-UFrm→ UFrm defined by F(M, C) = (�M

0 :M→ (M, C)) with �M
0 = idM,

F(h) = (h, h), G(�M
0 :Mu→ (Ml, C)) = (Ml, C) and G(hu, hl) = hl.

Then, for each covering L-valued uniform space (X,U), we have

O�UL (X,U) = (�� : �U→ �TL(�U))�∈L1 ∈ L-Frm.

In order to establish the open functor O : L-Unif → L-UFrm we need to endow the crisp topology �TL(�U) of
(X, �U) with a canonical frame uniformity. This is possible because, as remarked above, the topology �TL(�U) is always
completely regular.

So, let U�U be the collection of all �U-open L-covers in U (i.e. all A ∈ U such that A ⊆ �U). Each A ∈ U�U is a
cover of the spatial frame �U. For each A ∈ U�U and � ∈ L1 let ��(A) = {��(a) | a ∈ A}. Then, by Remark 7.1(1),
��(A) is a cover of �TL(�U).

Proposition 8.1. For every covering L-uniform space (X,U), {��(A) | � ∈ L1, A ∈ U�U} is a base for a frame
uniformity CU on �TL(�U).

Proof. It remains to show the star-refinement condition, since (U3) is equivalent to the regularity of �TL(�U). This is a
consequence of 7.2(4), since st(B)�A implies st(��(B))���(A) for every � ∈ L1. �

Please cite this article as: J. Gutiérrez García, et al., Uniform-type structures on lattice-valued spaces and frames, Fuzzy Sets and Systems (2008),
doi: 10.1016/j.fss.2008.03.004

http://dx.doi.org/10.1016/j.fss.2008.03.004


18 J. Gutiérrez García et al. / Fuzzy Sets and Systems ( ) –

ARTICLE IN PRESS

It is now easy to check that the correspondence

(X,U) �−→ (�� : �U→
(
�TL(�U), CU)

)
�∈L1

is functorial and establishes a functor O : L-Unif→ L-UFrm. Conversely, following the lines of [26], it is not hard to
construct the L-valued version � : L-UFrm → L-Unif of the well-known spectrum functor � : UFrm → Unif, right
adjoint to O, and the uniform version �UF

L : L-UFrm→ UFrm of the lower forgetful functor �FL , that make the diagram

L-Unif
O ��

�UL

��

L-UFrm
�

��

�UF
L

��
Unif

�U
L

��

O ��
UFrm

�
��

�UF
L

��

commutative.
Finally, consider the forgetful functor F4 : L-UFrm→ L-Frm forgetting the uniform structure. Putting the functors

here considered altogether we obtain the desired commutative cube for a complete chain L:

L-Unif
��

��

F3

���
��

��
��

��
��

���
��

��
��

��
��

L-UFrm

��

F4

���
��

��
��

��
��

��

L-Top

��

��
L-Frm

��

��

Unif

��

��

F1

���
��

��
��

��
��

UFrm��

��

F2

���
��

��
��

��
��

Top

��

��
Frm

��

��
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