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Abstract

We find conditions under which the sequence of empirical means of associated random variables, fX n; nX1g, satisfies the

large deviation principle.
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1. Introduction, assumptions and auxiliary results

Consider a sequence fX n; nX1g of associated and strictly stationary real valued random variables. In this
paper, we prove a large deviation principle (LDP) for the sequence of partial means.

We recall that a sequence of random variables {X n; nX1g is said to be associated if for any m 2 IN and any
two real-valued coordinatewise nondecreasing functions f and g it holds

Covðf ðX 1; . . . ;X mÞ; gðX 1; . . . ;X mÞÞX0,

whenever this covariance exists. This definition was introduced in statistics by Esary et al. (1967) who were
motivated from applications in reliability theory. Independently, this notion appeared also in statistical
mechanics, referred as the FKG inequalities after the work of Fortuin et al. (1971). There has been an intense
research on the subject matter of association. For a brief review of the relevant literature on this subject, we
suggest Roussas (1999) and Dewan and Prakasa Rao (2001), which include, besides numerous references,
several applications of this concept.
e front matter r 2007 Elsevier B.V. All rights reserved.
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As mentioned before, we will find conditions under which the large deviation principle (LDP) holds for the
sequence of empirical means of associated random variables. When the random variables are independent and
identically distributed (i.i.d.), this is a classical result known in the literature of large deviations as the
Cramér’s theorem. As is well known, this result has been extended in several directions, one of which is the
case of non-independence of the underlying random variables. The literature on this subject is now extensive.
For an account of the relevant results on LDPs, see, for example, Dembo and Zeitouni (1998) and the
references therein. We will prove a LDP assuming a hyper-geometric decrease rate on the covariances
CovðX 1;X nÞ of associated variables. This is in accordance with analogous results obtained under mixing
assumptions, where deviations from independence were conveniently controlled (see, for example, Nummelin,
1990; Bryc, 1992; Bryc and Dembo, 1996). In fact, as is well known, the covariance structure of a collection of
associated random variables highly determines its approximate independence (cf. Newman, 1984). So, the
referred condition on the decrease rate of the covariances is, for association, the counterpart of the hyper-
geometric mixing rates assumed to establish the LDP under f-mixing and a-mixing in Bryc (1992) and Bryc
and Dembo (1996) (see Theorem 1 of Bryc, 1992, and Proposition 2 of Bryc and Dembo, 1996).

We now present the assumptions to be considered in this paper.
(A.1)
 The sequence fX n; nX1g is associated and strictly stationary.

(A.2)
 The variables of the sequence fX n; nX1g are uniformly bounded, that is, jX njpM ; nX1.

(A.3)
 For each nX1, X n has density function bounded by a1ðB1Þ

n, for some a140 and some B141.
These assumptions are usual in associated literature, except for (A.3). Concerning this last assumption, we
remark that when we consider a sequence of independent and identically distributed random variables, say
Y 1;Y 2; . . ., having a common bounded density with compact support, and take X n ¼ c ðY n þ � � � þ Y nþmÞ, for
some fixed m 2 IN and c 2 IR, then these variables verify (A.3). Notice further that this procedure is a
commonly used method to generate associated sequences.

In addition, we will consider an hyper-geometric decay rate of the covariances. We state this condition in
terms of the sequence

uðnÞ ¼
X1

j¼nþ1

CovðX 1;X jÞ.

(H) uðnÞpa0 expð�n log1þanÞ, for some a040 and a40.
We notice that (H) holds true if CovðX 1;X nÞ ¼ a1 expð�n log1þa nÞ, for some a140 and a40. In fact, if we

take vK ðxÞ ¼
Rþ1

x
KðtÞdt, with KðtÞ ¼ expð�t log1þa tÞ, from the l’Hospital rule it easily follows that

vK ðtÞ=KðtÞ ! 0, as t�!þ1. Now just recall that uðnÞpa1vK ðnÞ.
The following two lemmas will be needed for the proof of the main result. First we state a result contained in

Newman (1980), which generalizes the classical Hoeffding identity (see relation (2.2) in Newman, 1980).

Lemma 1.1. Let f and g be two absolutely continuous functions. If X 1 and X 2 are random variables such that

Eðf ðX 1Þ
2
Þoþ1 and EðgðX 2Þ

2
Þoþ1, then

Covðf ðX 1Þ; gðX 2ÞÞ ¼

Z þ1
�1

Z þ1
�1

f 0ðx1Þg
0ðx2ÞH1;2ðx1;x2Þdx1 dx2,

where H1;2ðx1; x2Þ ¼ CovðI ðx1;þ1ÞðX 1Þ; I ðx2;þ1ÞðX 2ÞÞ.

The next result follows from relation (21) in Newman (1980) and Corollary to Theorem 1 in Sadikova
(1996) (see Lemma 2.6 in Roussas, 1995, for details).

Lemma 1.2 (Roussas, 1995). Let X 1 and X 2 be two associated random variables having density functions

bounded by B0. Then, for all x1;x2 2 IR,

CovðI ð�1;x1�ðX 1Þ; I ð�1;x2�ðX 2ÞÞpB1Cov
1=3
ðX 1;X 2Þ,

where B1 ¼ 2maxð2=p2; 45B0Þ.
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2. Large deviation principle

For the proof of the LDP, we follow the methodology of proof of Theorem 6.4.4 of Dembo and Zeitouni
(1998), which deals with the large deviation principle of the empirical mean, under a certain mixing
assumption.

For n;mX1, define X
m

n ¼ ð1=ðn�mÞÞ
Pn

i¼mþ1X i : For the sake of simplicity, we write X n instead of X
0

n. The
following two results are key tools to prove the LDP for the empirical mean X n. These results are the
analogues for our framework of Lemmas 6.4.6 and 6.4.7 of Dembo and Zeitouni (1998). The proofs follow the
same sort of arguments, so we will concentrate only on the technical details that are specific to associated
variables.

Lemma 2.1. Suppose that (A.1), (A.3) and (H) are satisfied. Then, for each function g : IR�!IR concave,
continuous and bounded above, the following limit exists

Lg ¼ lim
n!þ1

1

n
log Eðen gðX nÞÞ.

Proof. Let g : IR�!IR be concave, continuous and bounded above. Being concave and continuous, g is also
Lipschitz continuous on ½�M ;M�, that is, there exists L40 such that, for all x; y 2 ½�M ;M�,
jgðxÞ � gðyÞjpLjx� yj. Without loss of generality, we assume that �1o� BpgðxÞp0, for all x 2 ½�M ;M�.

As in the proof of Lemma 6.4.6 of Dembo and Zeitouni (1998), define hðnÞ ¼ � log EðengðX nÞÞ and obtain

hðnþmÞp2lLM � log EðengðX nÞemgðX
nþl

nþmþl ÞÞ. (1)

For each n 2 IN, define f nðxÞ ¼ engðxÞ; x 2 ½�M ;M�, which are Lipschitz continuous and almost everywhere
differentiable with jf 0nðxÞjpnL. Applying Lemma 1.1, we get

jCovðengðX nÞ; emgðX
nþl

nþmþl ÞÞj

¼

Z
½�M;M�2

f 0nðxÞf
0
mðyÞCov I ð�1;x�ðX nÞ; I ð�1;y�ðX

nþl

nþmþlÞ

� �
dxdy

����
����

pnmL2 CovðX n;X
nþl

nþmþlÞ,

remembering that all the covariances above are non-negative by association. Using the stationarity
assumption (A.1), we get

jCovðengðX nÞ; emgðX
nþl

nþmþl ÞÞjpL2n
X1

i¼lþ2

CovðX 1;X iÞ ¼ L2ðnþmÞuðlÞ,

and then

EðengðX nÞemgðX
nþl

nþmþl ÞÞ

EðengðX nÞÞEðemgðX
nþl

nþmþl ÞÞ
X1� L2ðnþmÞuðlÞeðnþmÞB,

as gðxÞX� B, for all x 2 ½�M ;M�.
Now, define Yðl; nÞ ¼ 1� L2nuðlÞenB, l; n 2 IN. As in the proof of Lemma 6.4.6 of Dembo and Zeitouni

(1998), by means of the preceding inequality, (1) yields

hðnþmÞp2lLM þ hðnÞ þ hðmÞ � logðYðl; nþmÞ _ 0Þ. (2)

By (H), we have, for each koa and for each c 2 IR,

lim
n!þ1

n u
n

log1þkn

� �
ecn ¼ 0. (3)

Let 0odoa, where a is given in (H). From (3) it is obvious that Yðn=log1þdn; nÞ ¼
1� L2nuðn=log1þdnÞenB�!1, as n!þ1. So, we may take l ¼ ½ðnþmÞ=log1þdðnþmÞ� as in the proof of
Lemma 6.4.6 of Dembo and Zeitouni (1998) and proceed in the same way to conclude the proof. &
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In what follows we will use the notation Sd
x ¼�x� d;xþ d½.

Lemma 2.2. Suppose that (A.1), (A.3), (A.4) and (H) are satisfied. If x1;x2 2 IR are such that, for each d40,

lim inf
n!þ1

1

n
log P X n 2 Sd

xi

� �
4�1; i ¼ 1; 2,

then

inf
d40

lim inf
n!þ1

1

n
log

PðX 2n 2 Sd
ðx1þx2Þ=2

Þ

PðX n 2 Sd=2
x1
ÞPðX n 2 Sd=2

x2
Þ
X0.

Proof. Fix d40. From the assumptions of the lemma, there exists c140 such that, for every sufficiently l
arge n,

PðX n 2 Sd=2
x1
ÞPðX n 2 Sd=2

x2
ÞX expð�nc1Þ. (4)

By (A.4), we may apply Lemma 1.2 to obtain

jPðX n 2 Sd=2
x1
;X

nþl

2nþl 2 Sd=2
x2
Þ � PðX n 2 Sd=2

x1
ÞPðX

nþl

2nþl 2 Sd=2
x2
Þj

p4BnCov
1=3
ðX n;X

nþl

2nþlÞ,

where Bn ¼ 2maxð2=p2; 45a1Bn
1Þ. Therefore, by the stationarity assumption (A.1),

jPðX n 2 Sd=2
x1
;X

nþl

2nþl 2 Sd=2
x2
Þ � PðX n 2 Sd=2

x1
ÞPðX n 2 Sd=2

x2
Þj

p4Bn
1

n2
n
X1

i¼lþ1

CovðX 1;X iÞ

 !1=3

¼ 4Bn
uðlÞ

n

� �1=3

,

which yields

PðX n 2 Sd=2
x1
;X

nþl

2nþl 2 Sd=2
x2
Þ

PðX n 2 Sd=2
x1
ÞPðX n 2 Sd=2

x2
Þ
X1� 4Bn

uðlÞ

n

� �1=3

expðc1 nÞ, (5)

for each l 2 IN and n large enough, taking into account (4).
Following the arguments used in the proof of Lemma 6.4.7 in Dembo and Zeitouni (1998), we get, for

l ¼ d n=ð2MÞ ,

PðX 2n 2 Sd
ðx1þx2Þ=2

ÞXPðX n 2 Sd=2
x1
;X

nþl

2nþl 2 Sd=2
x2
Þ,

so that, from (5),

lim inf
n!þ1

1

n
log

P X 2n 2 Sd
ðx1þx2Þ=2

� �
PðX n 2 Sd=2

x1
ÞPðX n 2 Sd=2

x2
Þ

X lim inf
n!þ1

1

n
log 1� 4Bn

uðd n=ð2MÞÞ

n

� �1=3

expðc1 nÞ

( )
_ 0

 !
.

By (3), which is valid under (H), the right-hand side above is equal to zero, from which the desired result
follows. &

We may now formulate the main result of this section.

Theorem 2.3. Under (A.1), (A.2), (A.3) and (H), the sequence fX n; nX1g satisfies the large deviation principle

with rate function given by

L�ðxÞ ¼ sup
t2IR

ftx� LðtÞg; x 2 IR,
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which is the Fenchel-Legendre transform of

LðtÞ ¼ lim
n!þ1

1

n
log EðentX n Þ.

Proof. The proof goes along the same lines as that of Theorem 6.4.4 of Dembo and Zeitouni (1998), using our
Lemma 2.1, together with Lemma 4.4.8 and Theorem 4.4.10 of Dembo and Zeitouni (1998), to ensure that
fX n; nX1g satisfies the large deviation principle with good rate function I. The convexity of I follows in the
same way as in Dembo and Zeitouni (1998), applying our Lemma 2.2 to obtain, for x1;x2 2 IR such that
Iðx1Þoþ1 and Iðx2Þoþ1,

�I
x1 þ x2

2

� �
X inf

d40
lim inf
n!þ1

1

2n
log

PðX 2n 2 Sd
ðx1þx2Þ=2

Þ

PðX n 2 Sd=2
x1
ÞPðX n 2 Sd=2

x2
Þ

 !( )

þ inf
d40

lim inf
n!þ1

1

2n
log P X n 2 Sd=2

x1

� �� �� �

þ inf
d40

lim inf
n!þ1

1

2n
logðPðX n 2 Sd=2

x2
ÞÞ

� �

X�
1

2
Iðx1Þ �

1

2
Iðx2Þ.

The rest of the proof proceeds exactly as in Theorem 6.4.4 of Dembo and Zeitouni (1998). &
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