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Let {Xn} be a stationary sequence with marginal distribution in the domain of attraction of
a max-semistable distribution. This includes all distributions in the domain of attraction of
anymax-stable distribution and also other distributions like some integer-valued distributions
with exponential type tails such as the Negative Binomial case. We consider the effect of miss-
ing values on the distribution of the maximum term. The pattern of occurrence of the missing
values must be either iid or strongly mixing. We obtain the expression of the extremal index
for the resulting sequence.
The results generalize and extend the ones obtained for the max-stable domain of attraction.
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1. Introduction

Integer-valued time series have received increasing attention in the probabilistic and statistical literature over the past two9
decades because of its applicability in many different areas such as the natural sciences, the social sciences, international tourism
demand and economy. We refer to Hall and Scotto (2006) for several references on the subject and to McKenzie (2003) for an11
overview of the early work in this area.

Within the integer-valued models proposed in the literature, little is known about its extremal properties. In part, this13
is due to the fact that many integer-valued distributions do not belong to the domain of attraction on any extreme-value
distribution. Anderson (1970) gave an important contribution to this limitation by obtaining upper and lower bounds for the15
limitingdistributionof themaximumtermof independent and identically distributed (iid) sequenceswithdistributions exhibiting
an exponentially decaying tail. He proved that an integer-valued distribution function (df) F, with infinite right endpoint, satisfies17

lim
n→+∞

1 − F(n − 1)
1 − F(n)

= r, r ∈]1,+∞[, (1)

if and only if19 ⎧⎨
⎩
lim sup
n→∞

Fn(x + bn)� exp(−r−x),

lim inf
n→∞ Fn(x + bn)� exp(−r−(x−1))

for any real x and bn appropriately chosen.We shall say that a distribution belongs to Anderson’s class if it satisfies (1). An example21
of a well knownmember of this class is the Negative Binomial distribution.
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Based on Anderson’s work several stationary models have been studied with respect to the extremes and similar limiting1
bounds were obtained for the limiting distribution of the maximum term in presence of different dependence structures. For
instance McCormick and Park (1992) considered a first-order autoregressive sequence with Negative Binomial marginal dis-3
tribution, Hall (1996) considered a class of integer-valued max-autoregressive models, Hall (2003) considered a general class
of infinite moving average models, and Hall and Moreira (2006) considered a particular type of moving average models with Q15
geometric marginal distribution introduced by McKenzie (1986).

In an attempt to overcome the presence of limiting bounds instead of a well defined limiting distribution, Temido (2000)7
proved that (1) is necessary and sufficient for the existence of a nondecreasing positive integer sequence {kn} satisfying

lim
n→+∞

kn+1
kn

= r, r ∈]1,+∞[, (2)9

and of a real sequence {un} such that kn(1 − F(un)) → � >0, as n → ∞, for some �>0. So, if instead of looking at the maximum
term of the first n observations we look at the maximum term of the first kn observations, where {kn} satisfies (2), we can obtain11
a well defined limiting distribution for the maximum term. The limiting distribution is not a max-stable (MS) distribution but
belongs to a larger class of distributions known as max-semistable (MSS) distributions. This class was introduced by Pancheva13
(1992) and will be described below.

Using the MSS class Hall and Temido (2007) have studied the limiting distribution of the maximum term of several stationary15
models with margins in Anderson’s class.

Over the last years attention has been given to the effect of sub-sampling on the extremes of stationary sequences. This is17
important for the analysis of environmental and financial processes. We refer to Hall and Scotto (2006) for an overview of the
work in this area. Many of the results consider deterministic sub-sampling of the sequences. However, there are several real19
data applications where sub-sampling is the result of a (random) occurrence of missing values. One reason for the interest in
extremes observed at random sampling rates comes from the need to compare schemes formonitoring systemswith breakdowns21
or systemswith automatic replacement of devices in case of failures. Examples are encountered, for instance, in ocean engineering
and environmental studies. In these areas, missing observations appear when the measuring equipment is not working properly23
or is out of service. The effect of missing values on the extremes of stationary sequences has been considered by Hall and Hüsler
(2006) and by Hall and Scotto (2008). The former consider models with marginal distribution in the domain of attraction of any25
MS distribution and also distributions in Anderson’s class. The later considers models with marginal distribution in the domain
of attraction of a Fréchet distribution and with a moving average structure. In this work we consider the setup given in Hall and27
Hüsler and study the limiting distribution of the maximum term using MSS distributions.

What happenswhenamissingvalue occurs? In themajority of situations, one of two thingsmayhappen: either the observation29
is replaced by a fixed value (for instance a code), or the observation is completely lost and the data sample will be sub-sampled
resulting in a smaller (and random) sample size. Occasionally, it may be of interest to avoid the occurrence of missing values and31
an automatic replacement of a device or machine may be available. In this case the resulting sample will be a mixture of two
original samples.33

In this paper we consider three different models which were motivated by the situations described above.
Let {Xn} be a strictly stationary sequence of random variables (rvs) with marginal df F andMn = max{X1, . . . ,Xn}. Without loss35

of generality let the upper endpoint xF of F be positive. Assume that {Un} is another stationary sequence, independent of {Xn},
having Bernoulli marginal distribution with parameter �, 0���1. Based on the sequences {Xn} and {Un} we define the following37
models:

M1—Model withmissing values: Yn=UnXn. In this case themarginal distribution of {Yn} is 1−�+�F for nonnegative argument39
values. Missing values are replaced by zeros.
M2—Model with sub-sampling: {Zn}n�1 with Zn = Xin , where in represents the indices of the sequence {Xn} for which Un = 1.41
Let Nn = sup{j : ij �n} =∑n

j=1 Uj and let us only consider the first Nn values of {Zn}. The marginal distribution of {Zn} is F. In
this model missing values are lost.43
M3—Model with replaced missing values: Wn =UnXn + (1−Un)X

(1)
n where {X(1)n } is an independent replica of {Xn}. In this case

the marginal distribution of {Wn} is also F. Missing values are replaced by a substituting sequence.45

In this paper we only consider situations where {Xn} and {Un} are independent.
We will be interested in the limiting distribution of the maximum term of these models. We define Mn(Y) = max{Y1, . . . , Yn}47

andMn(W)= max{W1, . . . ,Wn}. For convenience of notation we define alsoMn(Z)=max{Z1, . . . ,ZNn } because for the sequence Zn
we are only interested in the first Nn variables.49

The sequences {Un} considered in this paper will be considered stationary and strongly mixing. Furthermore, we assume that
some kind of dependence conditions hold for {Xn}. We consider an asymptotic independence condition similar to Leadbetter51
et al.’s (1983) D(un) condition . We also consider two types of local dependence conditions similar to conditions D(2)(un) and
D(3)(un) of Chernick et al. (1991). Each of these conditions will ensure that the clusters of exceedances formed in the stationary53
sequence {Xn} have a particular type of pattern. Throughout this work {un} represents a sequence of linearly normalized levels
un = anx + bn, an > 0, bn ∈ R such that un → xF .55
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We obtain the expression of the extremal index and hence the limiting distribution of the maximum term of the transformed1
sequences (models M1, M2 and M3). The results generalize and extend the ones obtained for the MS domain of attraction given
by Hall and Hüsler (2006).3

2. The MSS class and stationary sequences

If instead of considering n rvs we consider kn rvs, where {kn} satisfies5

lim
n→+∞

kn+1
kn

= r with r in [1,+∞[, (3)

then we obtain a larger class of possible limiting distributions for the maxima, known as the MSS class. This class, introduced by7
Pancheva (1992), includes the MS distributions and also nondegenerate limiting dfs for the maxima of iid rvs with either discrete
or multimodal continuous dfs which are not MS. Following Pancheva (1992) we will say that a real df G is MSS if there are reals9
r >1, a= a(r) > 0 and b= b(r) such that G(x)=Gr(ax+ b), x ∈ R, or equivalently, if there exist a sequence of iid rvs with df F and two
real sequences {an >0} and {bn} for which limn→+∞ Fkn (anx + bn) = G(x), for each continuity point of G, with {kn} satisfying (3).11
In this case we will say that F belongs to the domain of attraction of G.

Note the subtle difference between the definitions ofMS andMSS distributions.While in the definition of theMS distributions,13
G is MS if for all reals r >1, there exist a = a(r) > 0 and b = b(r) such that G(x) = Gr(ax + b), x ∈ R, in the definition of the MSS
distribution the equality may hold only for some values of r >1. More precisely, if G is MSS but not MS, the equality holds only for15
some r and all its integer powers.

Analytically, a df in the class MSS can be written as follows:17

G�,�(x)=
⎧⎨
⎩
exp{−(1+ �x)−1/��(log(1 + �x))}, x ∈ R, 1 + �x > 0 and � �= 0,
1]−∞,0[(�), x ∈ R, 1 + �x�0 and � �= 0,
exp{−e−x�(x)}, x ∈ R and � = 0,

where � is a positive, bounded and periodic function with period p= | log a| = |�| log r, when � �= 0, and p= b= log r, when � = 0. If19
the function � is a suitable constant, we get the MS class.

Werecall that for iid sequenceswithcommondf F, limn→∞ kn(1−F(un))=� is equivalent to limn→∞ Fkn (un)=e−�. Consequently,21
in the sequel, we shall deal with levels un := un(�, kn) satisfying these limits. In this context we will consider the set

�(F, kn) =
{
�> 0 : ∃{un} : lim

n→+∞ kn(1− F(un)) = �

}
,23

introduced in Temido (2000), and note that if F is discrete and (3) holds, then �(F, kn) is not necessarily the interval ]0,+∞[. In
fact, if for some � >0 there exists un(�, kn), for another �′ > 0 there exists un(�′, kn) if and only if � = rm�′, for some integer m. This25
enables us to conclude that if any discrete df belongs to the domain of attraction of G, with {kn} satisfying (2), then G must be
discrete.27

Temido (2002) proved that if F is an integer-valued df, with upper endpoint xF = +∞, and there exist sequences {kn} satisfying
(2), {an >0} and {bn} such that Fkn (anx + bn) → G(x),n → +∞, then G(x) = exp(−�r−[x]), x ∈ R, for some � >0, if and only if (1)29
holds (for any real x, [x] denotes the greatest integer not exceeding x). In this case, with k′

n = [kn/�] we get

lim
n→+∞ Fk

′
n (anx + bn) = exp(−r−[x]), x ∈ R\Z.31

Temido and Canto e Castro (2003) consider stationary sequences {Xn}, satisfying a dependence restriction, Dkn (un), which
extends Leadbetter et al.’s (1983) D(un) condition.33

Definition 2.1 (Temido and Canto e Castro, 2003). Let {kn} be a nondecreasing sequence of positive integers. The sequence of rvs
{Xn} satisfies condition Dkn (un) if for any integers 1� i1 < · · · < ip < j1 < · · · < jq �kn, for which j1 − ip > �n, we have35

∣∣∣∣∣∣P
⎛
⎝ p⋂
s=1

{Xis �un},
q⋂

m=1

{Xjm �un}
⎞
⎠− P

⎛
⎝ p⋂
s=1

{Xis �un}
⎞
⎠ P

⎛
⎝ q⋂
m=1

{Xjm �un}
⎞
⎠
∣∣∣∣∣∣ ��n,�n ,

where limn→+∞ �n,�n = 0 for some sequence �n = on(kn).37

Considering stationary sequences {Xn} satisfying this long range condition, Dkn (un), Temido and Canto e Castro (2003) prove
that the limiting distribution of Mkn is MSS, whenever it exists. Namely, if there is {kn} as above and {an >0} and {bn} such that39
conditionD(anx+bn) holds for the stationary sequence {Xn}, the sequence {kn(1−F(anx+bn))} is bounded, and P(an(Mkn −bn)�x)
converges toG(x), for each continuity point of the nondegenerate dfG, thenG is aMSS df. Furthermore, following the same authors41
we present the definition of extremal index.
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Definition 2.2 (Temido and Canto e Castro, 2003). We shall say that {Xn} has an extremal index 	, with 	 in [0, 1], if there exists a1
nondecreasing positive integer sequence {kn} satisfying (3) such that, for all � ∈ �(F, kn) and all corresponding un(�, kn), we have
limn→+∞ P(Mkn �un(�, kn)) = e−	�.3

In Hall and Hüsler (2006) an important lemma is introduced. Indeed, the authors prove that if {Un} is a Bernoulli strongly
mixing stationary sequence and the long range condition D(un) holds for {Xn}, then it also holds for {Yn} in Model M1. For the5
sequel andmutatis mutandis we have the following result.

Lemma 2.1. Let {kn} be a positive integer and nondecreasing sequence and suppose that {Un} is a Bernoulli strongly mixing stationary7
sequence. If condition Dkn (un) holds for {Xn} then it also holds for {Yn}.

3. Independent missing values9

Proposition 3.1. Let {Un} be an iid Bernoulli (�) sequence, and {Xn} a stationary sequence with extremal index 	 in the sense of
definition (2.2) and cluster size distribution 
. Define11

	∗ = 	(1 − �(1 − �))/� and �∗ = ��,

	∗∗ = 	(1− �(1− �) + 1 − �(�)),13

where �(h) =∑∞
i=1 
(i)hi.

If P{Mkn �un(�)} −→
n→∞e−	�, � ∈ �(F, kn), then,15

P{Mkn (V)�un(�)} −→
n→∞e−	V �V ,

where 	V = 	∗, �V = �∗ for the sequences {Yn} and {Zn}, and 	V = 	∗∗, �V = �, for the sequence {Wn}.17

Proof. Let {sn} be a sequence of positive integers satisfying

lim
n→∞ s−1

n = lim
n→∞

sn�n
kn

= lim
n→∞ sn�n,�n = 0. (4)19

The idea for this proof is to divide the first kn elements of the sequence {Yn} into blocks of size rn := [kn/sn], calculate the
probability of no exceedances in those blocks and then use Lemma 4 from Temido and Canto e Castro (2003).21

Let us consider the first rn elements of the sequences {Xn} and {Yn}. Assuming un > 0, then,

P{Mrn (Y)�un} = P{{Y1, . . . ,Yrn } contains no exceedances of un}

= P{Mrn �un} +
rn∑
j=1

P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}.
23

From the definition of extremal index we get P{Mkn �un} − e−knP{X1>un}	 −→
n→∞0. On the other hand, from Lemma 4 from Temido

and Canto e Castro (2003) we have25

P{Mkn �un} − Psn {Mrn �un} −→
n→∞0.

Combining both results we obtain27

P{Mrn �un} = 1 − kn
sn

	P{X1 > un} + o
(

1
sn

)
,

as long as limn→∞knP{X1 >un} �= ∞.29
Since knP{X1 > un} −→

n→∞ �> 0 we have

P{Mrn (Y)�un} = 1 − 	�

sn

⎛
⎝1 −

rn∑
j=1

sn
	�

P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}
⎞
⎠+ o

(
1
sn

)
.

31

But, with �n,i(·) := 1{Xi>un}(·), we also have
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P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}

=
∑

i1<i2<. . .<ij

P

⎧⎨
⎩

j⋂
m=1

{Xim >un}, all other Xi�un,
j⋂

m=1

{Uim = 0}
⎫⎬
⎭

=
∑

i1<i2<. . .<ij

P

⎧⎨
⎩

j⋂
m=1

{Xim > un}, all other Xi �un

⎫⎬
⎭P(U1 = 0)j

= P

⎛
⎝ rn∑
i=1

�n,i = j

⎞
⎠ (1 − �)j.

1

Now, using the above arguments again,

P

⎛
⎝ rn∑
i=1

�n,i = j

⎞
⎠= 
(j)P

⎛
⎝ rn∑
i=1

�n,i > 0

⎞
⎠ (1 + o(1))

= 
(j)

⎛
⎝1 − P

⎛
⎝ rn∑
i=1

�n,i = 0

⎞
⎠
⎞
⎠ (1 + o(1))

= 
(j)(1+ o(1))
	�

sn
.3

Therefore

P{Mrn (Y)�un} = 1 − 	�

sn

⎛
⎝1 −

rn∑
j=1


(j)(1− �)j(1 + o(1))

⎞
⎠+ o

(
1
sn

)
.

5

Considering Lemmas 2.1 and 4 from Temido and Canto e Castro (2003), we use dominated convergence to obtain

P{Mkn (Y)�un} −→
n→∞e−	�(1−�(1−�)),7

where �(s) =∑∞
j=1 
(j)sj represents the probability generating function of the cluster size distribution.

As for the sequences {Zn} and {Wn} it suffices to notice that P{Mkn (Z)�un} = P{Mkn (Y)�un} and that P{Mkn (W)�un} =9
P{Mkn (Y)�un}P{Mkn(Ȳ)�un} where {Ȳn} is a sequence defined by Ȳn = (1 − Un)Xn. �

4. The effect of missing values under condition D(2)
kn

(un)11

We now consider a stationary sequence {Xn} satisfying a local dependence condition, D(2)
kn

(un), and with marginal df F in the
domain of attraction of someMSS df.13

The natural extension of the local dependence condition D(2)(un) of (Chernick et al., 1991), which is similar to the condition
D′′(un) (defined in Leadbetter and Nandagopalan, 1989), in this new context is given in the following definition.15

Definition 4.1 (Temido, 2000). Let {kn} be a nondecreasing positive integer sequence such that limn→∞kn = +∞. The stationary
sequence {Xn} satisfies the condition D(2)

kn
(un) if Dkn (un) holds and, for some positive integer-valued sequence {sn} satisfying (4),17

we have

lim
n→∞ knP{X1 >un �X2,M3,rn > un} = 0, (5)19

where rn = [kn/sn] and Mij = max{Xk, k = i . . . , j}.

Clearly, (5) is implied by the condition21

lim
n→+∞kn

rn∑
j=3

P{X1 > un,Xj−1�un <Xj} = 0,

which in some situations is easier to check.23
Recall that under condition D(2)(un) the clusters of exceedances form groups of consecutive observations. Once the sequence

falls below the high threshold un the probability of a new upcrossing in the near future is negligible.25
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Under D(2)
kn

(un) we can compute the extremal index applying the following result.1

Proposition 4.1 (Temido, 2000). Let {kn} be a nondecreasing positive integer sequence satisfying (1) and {Xn} a stationary sequence

under condition D(2)
kn

(un(�, kn)), for all � in �(F, kn) and all corresponding un(�, kn). Then {Xn} has extremal index 	 if and only if3

lim
n→+∞ P(X2�un(�, kn)|X1 > un(�, kn)) = 	.

The followingproposition, ourmain result of this section, is a generalization of Theorem4 inHall and Hüsler (2006) concerning5
normalized levels un(�, kn). We use {Vn} to denote any of the sequences {Yn} {Zn} and {Wn} and recall that in the model M2 we
consider the maximum of the first Nkn rvs.7

Proposition 4.2. Let {Xn} be a stationary sequence with df F and {Un} be a Bernoulli B(�) strongly mixing stationary sequence

independent of {Xn}. Let {kn} be a nondecreasing positive integer sequence satisfying (3). Suppose that {Xn} satisfies D(2)
kn

(un(�, kn)), for9
all � ∈ �(F, kn) and all corresponding un(�, kn). In addition suppose that {Xn} has extremal index 	> 0 associated with a limiting cluster
size distribution 
. For i�1, take11

∇(i)= P{U1 = 0,U2 = 0, . . . ,Ui = 0}, ∇̄(i) = P{U1 = 1,U2 = 1, . . . ,Ui = 1},

	∗ = 	

⎛
⎝1 −

∞∑
j=1


(j)∇(j)

⎞
⎠
/

� and 	∗∗ = �	∗ + 	

⎛
⎝1 −

∞∑
j=1


(j)∇̄(j)

⎞
⎠ .

13

Then

lim
n→∞ P(Mkn (V)�un(�, kn)) = e−	V �V ,15

where 	V = 	∗, �V = �� for the sequences {Yn} and {Zn}, and 	V = 	∗∗, �V = � for the sequence {Wn}, for all � ∈ �(F, kn).

The proof of this proposition follows the arguments used in Theorem 4 of Hall and Hüsler (2006) where, for F integer-valued,17
e−	�(x−1)� lim infn→∞ P{Mn�un}� lim supn→∞ P{Mn�un}�e−	�(x) is replacedby limn→∞ P{Mkn �un(�, kn)}=e−	�(x). Observe
that, as a consequence of what was said before, if F is an integer-valued df satisfying (1) and un(�, kn) = anx + bn, for some an >019
and bn, then, there exist {kn} satisfying (2) such that limn→+∞ P(Mkn �un(�, kn)) = exp(−	r−[x]), x ∈ R\Z.

5. The effect of missing values under condition D(3)
kn

(un)21

In this sectionwe consider that the stationary sequence {Xn} satisfies an extension of the local dependence conditionD(3)(un)
of Chernick et al. (1991) defined by Temido (2000).23

Definition 5.1. Let {kn} be a nondecreasing positive integer sequence such that limn→∞kn = +∞. The stationary sequence {Xn}
satisfies the condition D(3)

kn
(un) if Dkn (un) holds and, for some positive integer-valued sequence {sn} satisfying (4), we have25

lim
n→+∞knP(X1 > un�M2,3,M4,rn > un) = 0, (6)

where rn = [kn/sn] and Mij = max{Xk, k = i . . . , j}.27

As in the previous paragraph, (6) is implied by the condition

lim
n→+∞kn

rn∑
i=4

P(X1 > un,Mi−2,i−1�un < Xi) = 0,
29

which in some situations is easier to deal with.
We also suppose that31

lim
n→∞knP(X1 > un,X2 >un) = 0, (7)

which together with the previous condition implies that the clusters have an alternating pattern above and below the threshold33
un .

As mentioned before, under condition D(2)
kn

(un) the clusters of exceedances are formed by runs of consecutive observations35

over un. However, under D(3)
kn

(un) the clusters may exhibit a wide variety of patterns which have in common the following
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property: within a cluster, the sequence does not stay below un for more than one time instance. One particular pattern which1
may occur under D(3)

kn
(un) is the purely oscillating pattern which is characteristic of several time series models such as first-order

autoregressive models with negative coefficient. We shall only consider such type of patterns and for that we must impose the3
additional condition (7).

FollowingChernick et al. (1991) andO’Brien (1987), Temido (2000) proved that under conditionD(3)
kn

(un), limn→∞P(Mkn �un)−5
exp(−knP(X1 >un,X2�un ,X3�un))= 0 and that the extremal index is obtained as

	 = lim
n→∞P(X2�un(�, kn),X3�un(�, kn)|X1 > un(�, kn)).7

However, considering in addition condition (7) we can compute the extremal index in a different way. Indeed, like in the case
when D(2)

kn
(un) holds, a bivariate tail distribution suffices to determine the extremal index.9

Lemma 5.1. Let {kn} be a nondecreasing positive integer sequence satisfying (3) and {Xn} a stationary sequence satisfying Dkn (un), for
some real sequence {un} such that lim sup kn(1 − F(un))< + ∞:

11
1. If {Xn} satisfies D(3)

kn
(un) and (7) then

lim
n→∞P(Mkn �un) − exp(−knP(X1 >un,X3�un)) = 0. (8)13

2. If {Xn} satisfies D(3)
kn

(un(�, kn)) and limn→∞knP(X1 > un(�, kn),X2 >un(�, kn))=0, for all � ∈ �(F, kn) and all corresponding un(�, kn),
then {Xn} has extremal index 	 if and only if15

lim
n→∞P(X3�un(�, kn)|X1 > un(�, kn)) = 	. (9)

Proof. 1. Using the arguments of O’Brien (1987) we prove that, under Dkn (un),17

P(Mkn �un) − exp(−knP(X1 >un,M2,rn �un)) → 0, n → ∞.

But, under the assumptions of the lemma, we have19

P(X1 > un,M2,rn �un) = P(X1 > un�M2,3,M4,rn �un)

= P(X1 > un�M2,3) − P(X1 > un�M2,3,M4,rn > un)

= P(X1 > un) − P(X1 > un,X2 >un) − P(X1 >un,X3 > un)

+ P(X1 > un,X2 >un ,X3 > un) + on

(
1
kn

)

= P(X1 > un) − P(X1 > un,X3 >un) + on

(
1
kn

)

= P(X1 > un,X3 �un) + on

(
1
kn

)

and thus (8) holds.21
2. If {Xn} has extremal index 	 we have

lim
n→∞P(Mkn �un(�, kn)) = exp(−	�), (10)23

for all � ∈ �(F, kn). Hence, by the first part of the lemma we get

lim
n→∞knP(X1 > un(�, kn),X3�un(�, kn))= 	�,25

or, equivalently, the limit (9) occurs.
The proof of the converse is similar. �27

After this result we can establish the limit in distribution ofMkn (V) for all the models considered in this work.

Inwhat followswewriteA(n)t,h := {Xt > un,Xt+1�un <Xt+2, . . . ,Xh−1�un < Xh} andB(n)t,h := {Xt >un ,Xt+2 >un, . . . ,Xh−2 >un ,Xh > un}29
where h = t + 2m for some nonnegative integer m. We also considerMl,k = −∞ if k < l.

Proposition 5.1. Let {Xn} be a stationary sequence with df F and {Un} be a Bernoulli B(�) strongly mixing stationary sequence31
independent of {Xn}. Let {kn} be a nondecreasing positive integer sequence satisfying (3). Suppose that {Xn} satisfies D(3)

kn
(un(�, kn)) and
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limn→∞knP(X1 > un(�, kn),X2 >un(�, kn)) = 0, for all � ∈ �(F, kn) and all corresponding un(�, kn). In addition suppose that {Xn} has1
extremal index 	>0 associated with a limiting cluster size distribution 
. For i�1, take

∇even(i)= P{U2 = 0,U4 = 0, . . . ,U2i = 0}, ∇̄even(i) = P{U2 = 1,U4 = 1, . . . ,U2i = 1},3

	∗ = 	

⎛
⎝1 −

∞∑
j=1


(j)∇even(j)

⎞
⎠/ � and 	∗∗ = �	∗ + 	

⎛
⎝1 −

∞∑
j=1


(j)∇̄even(j)

⎞
⎠ .

Then5

lim
n→∞P(Mkn (V)�un(�, kn)) = e−	V �V ,

where 	V = 	∗, �V = �� for the sequences {Yn} and {Zn}, and 	V = 	∗∗, �V = � for the sequence {Wn}, for all � ∈ �(F, kn).7

Proof. Consider the first rn elements of the sequences {Xn} and {Yn}. Take un := un(�, kn) >0.
As in the proof of Proposition 3.1 we obtain9

P{Mrn (Y)�un} = 1 − 	�

sn

⎛
⎝1 −

rn∑
j=1

sn
	�

P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}
⎞
⎠+ o

(
1
sn

)
.

But,11

P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}

= P{A(n)1,2j−1,M2j,rn �un}P
⎧⎨
⎩

j⋂
i=1

{U2i = 0}
⎫⎬
⎭

+ P{X1 >un,A(n)2,2j−2,M2j−1,rn �un}P
⎧⎨
⎩U1 = 0,

j−1⋂
i=1

{U2i = 0}
⎫⎬
⎭

+ P{M1,rn−2j+1�un,A
(n)
rn−2j+2,rn

}P
⎧⎨
⎩

j⋂
i=1

{U2i = 0}
⎫⎬
⎭

+ P{M1,rn−2j+2�un,A
(n)
rn−2j+3,rn−1,Xrn > un}P

⎧⎨
⎩
j−1⋂
i=1

{U2i−1 = 0},U2j−2 = 0

⎫⎬
⎭

+
rn−2j−1∑

i=2

P{M1,i�un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un}P

⎧⎨
⎩

j⋂
i=1

{U2i = 0}
⎫⎬
⎭

+
∑

remaining terms
P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}

× P{U1, . . . ,Urn equals zero where the exceedances occur}.
The first and third terms of the right-hand side of the equality are clearly o(1/sn) and the second and fourth are o(1/kn) by (7).13
The last term is bounded by∑

remaining terms
P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}

� rnP(X1 > un,X2 >un) + rnP(X1 >un �M2,3,M4,rn > un)

= o
(

1
sn

)
,15

by condition D(3)
kn

(un) and (7). On the other hand, by the same condition,

rn−2j−1∑
i=2

P{M1,i�un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un} = 
(j)(1+ o(1))

	�

sn
.

17

Therefore

sn
	�

P{{X1, . . . ,Xrn } contains j exceedances all withdrawn}
= ∇even(j)
(j)(1+ o(1))19
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and1

P{Mrn (Y)�un} = 1 − 	�

sn

⎛
⎝1 −

rn∑
j=1


(j)∇even(j)(1+ o(1))

⎞
⎠+ o

(
1
sn

)
.

Since the sequence {Yn} satisfies condition Dkn (un), once again by Lemma 4 of Temido and Canto e Castro (2003) and dominated3
convergence we obtain

P{Mkn (Y)�un} −→
n→∞e

−	�(1−∑∞
j=1
(j)∇even(j)).5

As for the sequences {Zn} and {Wn} it suffices to notice that P{Mkn (Z)�un} = P{Mkn (Y)�un} and that P{Mkn (W)�un} =
P{Mkn (Y)�un}P{Mkn(Ȳ)�un} where {Ȳn} is a sequence defined by Ȳn = (1 − Un)Xn. �7

We now establish a result which enables us to compute the limiting cluster size distribution 
(·) for stationary sequences
satisfying (7) and D(3)

kn
(un).9

Lemma 5.2. Let {Xn} be a stationary sequence that satisfies condition D(3)
kn

(un(�, kn))and limn→∞knP(X1 >un(�, kn),X2 > un(�, kn))=0,
for all � ∈ �(F, kn) and all corresponding un(�, kn). In addition suppose that {Xn} has extremal index 	 >0 associated with a limiting11
cluster size distribution 
. Then, for j�1,


(j) =
limn→∞knP(X1�un,X3 >un ,X5 > un, . . . ,X2j+1 >un,X2j+3�un)

	�
.13

Proof. Observe first that


n(j) = P

⎛
⎝ rn∑
i=1

�n,i = j

∣∣∣∣∣∣
rn∑
i=1

�n,i > 0

⎞
⎠= P(

∑rn
i=1�n,i = j)

P(Mrn > un)
.

15

Thus, attending to the proof of Proposition 5.1 we have


n(j) = P(
∑rn

i=1�n,i = j)

	�/sn + o(1/sn)

=
∑rn−2j−1

i=2 P(M1,i�un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un) + o(1/sn)

	�/sn + o(1/sn)
.17

If i�3 we have

P(Xi−1�un,Xi�un ,A
(n)
i+1,i+2j−1,Mi+2j,rn �un)

− P(M1,i−2�un ,Xi−1 �un,Xi �un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un)

�
i−2∑
l=1

P(Xl > un,Xi−1�un,Xi �un,A
(n)
i+1,i+2j−1) = o(1/kn),

19

by condition D(3)
kn

(un) and stationarity. Moreover, for i�2, we get

P(Xi−1�un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un)

− P(Xi−1�un,Xi �un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un)

�P(Xi−1�un,Xi > un,Xi+1 >un) = o(1/kn),21

by (7). Then, for i�2,

P(M1,i−2�un,Xi−1 �un,Xi �un ,A
(n)
i+1,i+2j−1,Mi+2j,rn �un)

= P(Xi−1�un,A
(n)
i+1,i+2j−1,Mi+2j,rn �un) + o(1/kn).23
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On the other hand, for i� rn − 2j − 2, we have1

P(Xi−1�un,A
(n)
i+1,i+2j−1,Xi+2j�un ,Xi+2j+1 �un)

− P(Xi−1�un,A
(n)
i+1,i+2j−1,Xi+2j �un,Xi+2j+1�un ,Mi+2j+2,rn �un)

�
rn∑

l=i+2j+2

P(Xi−1�un,A
(n)
i+1,i+2j−1,Xi+2j �un,Xi+2j+1 �un,Xl >un)

= o(1/kn),

once again by D(3)
kn

(un) and stationarity. In the same way we deduce3

P(Xi−1�un,A
(n)
i+1,i+2j−1,Xi+2j�un ,Xi+2j+1 �un)

= P(Xi−1�un,A
(n)
i+1,i+2j−1,Xi+2j+1 �un) + o(1/kn)

and5

P(Xi−1�un,B
(n)
i+1,i+2j−1,Xi+2j+1 �un)

= P(Xi−1�un,A
(n)
i+1,i+2j−1,Xi+2j+1 �un) + o(1/kn).

Thus, the stationarity of the process enables us to conclude that7


n(j) =
∑rn−2j−1

i=2 (P(Xi−1�un,B
(n)
i+1,i+2j−1,Xi+2j+1�un) + o(1/kn)) + o(1/sn)

	�/sn + o(1/sn)

=
(rn − 2j − 2)(P(X1�un,B

(n)
3,2j+1,X2j+3�un) + o(1/kn)) + o(1/sn)

	�/sn + o(1/sn)

→
limn→∞knP(X1�un,B

(n)
3,2j+1,X2j+3�un)

	�
:= 
(j). �

6. Examples9

In this section we give several examples of application of the results of the previous sections. We shall consider five types
of stationary sequences with extremal index 	< 1. For the first two examples condition D(2)

kn
(un) holds, while for the last three11

condition D(2)
kn

(un) fails but condition D(3)
kn

(un) holds.
We consider two particular types of sequences {Un}:

13
1. The first is the simplest case where {Un} is iid with P(Un = 1) = �, � ∈]0, 1[.
2. The second case is a homogeneous Markov chain with one-step transition probabilities15 {

P{Un = 1|Un−1 = 1} = �,
P{Un = 1|Un−1 = 0} = 
.

In this model {Un} defines a sequence where the probability of failure (Un = 0) depends only on whether a failure has just17
occurred. {Un} forms geometric blocks of consecutive zeros followed by geometric blocks of consecutive ones. In order to have
a stationary chain the initial distribution is such that P{U0 = 1} = (1− �)/(1− � + 
).19
Hence, given any values of �, 
 ∈ [0, 1]

� = 


1 − � + 

. (11)21

Hall and Hüsler (2006) proved that {Un} is strongly mixing.
For the {Un} Markov chain Hall and Hüsler (2006) have determined the expressions for ∇(j) and ∇̄(j):23

∇(j)= (1− 
)j−1(1 − �)
1 − � + 


, j�1,

∇̄(j) = P{U1 = 1, . . . ,Uj = 1} = 
�j−1

1 − � + 

, j�1.25
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Using the properties of homogeneous Markov chains we obtain1

∇even(j) = (1 − 
(1 − 
 + �))j−1 1 − �

1 − � + 

, j�1,

∇̄even(j) = (�2 + 
(1 − �))j−1 


1 − � + 

, j�1.3

We now consider different types of stationary sequences and compute the limiting distribution of the maximum term of
models M1, M2 and M3, whenever these sequences are transformed through any of the sequences {Un} described above.5

6.1. First-order max-autoregressive model (multiplicative)

We first consider a multiplicative max-autoregressive model7

Xn = kmax{Xn−1, �n}, n�1,

where {�n} is a sequence of iid rvs with df F, k ∈]0, 1[ and X0 is independent of {�n}. Alpuim (1988) has proved that {Xn} is strong9
mixing and has stationary df H if and only if wF > 0 and, for some x0 > 0, F(x0/k)> 0 and

∑+∞
j=1 − ln F(x0/kj) < + ∞. In this case

H(x) =∏+∞
j=1 F(x/k

j). Considering {�n} with an MSS df11

F(x) = exp{−x−��(log x)}, �>0, x > 0

and r = k−�/m, where m is a positive integer, Temido and Canto e Castro (2003) proved that {Xn} has extremal index 	 = 1 − r−m13
and H(x) = F�(x), with � = r−m/(1− r−m), which is again MSS. Due to H[rn](rn/�x) → H(x),n → +∞, we get

P(M[rn] � rn/�x) → H1−r−m
(x), n → +∞.15

Moreover, since

P(X1 >un,Xj−1 �un <Xj)�P(X1 > un,Xj−1�un, �j > un/k)�(1− H(un))(1− F(un/k))17

conditionD(2)
kn

(rn/�x) holds. FollowingAlpuim(1988) the cluster sizedistribution is geometric givenby
(j)=(1−r−m)(r−m)j−1, j�1.
Considering the twodifferent types of sequences {Un}described in the beginning of the sectionwe obtain the following results:19

1. IID missing values: Applying Proposition 3.1 we obtain21

	∗ = 1 − r−m

1 − (1− �)r−m and 	∗∗ = (1 − r−m)
1 − r−m(1− 2�(1 − �))

(1 − r−m(1 − �))(1− r−m�)
.

2. Missing values through a Markov chain: Since {Xn} satisfies condition D(2)
kn

(un) we may apply Proposition 4.2 and obtain23

	∗ = (1 − r−m)(1 − r−m(� − 
))
1 − r−m(1− 
)

,

	∗∗ = (1 − r−m)(1− r−m(� − 
))
1 − � + 


(



1 − r−m(1 − 
)
+ 1 − �

1 − r−m�

)
.25

In either case

lim
n→∞P(M[rn](V)� rn/�x) = e−	V �V ,27

where 	V = 	∗, �V = �� for the sequences {Yn} and {Zn}, and 	V = 	∗∗, �V = � for the sequence {Wn}, � = x−���(log x).

6.2. First-order max-autoregressive model (additive)29

Now suppose that {Xn} is an integer-valued stationary additivemax-autoregressive sequence with marginal df H satisfying (1)
(Anderson’s class). More precisely,31

Xn = max{Xn−1, �n} − c, n�1,

where c ∈ N, {�n} is an iid sequence with df F and X0 is independent of {�n}. Hall (1996) proved that {Xn} is strong mixing and has33

stationary dfH(x)=∏+∞
j=1 F(x+ jc). She also proved that conditionD(2)(un) holds for {Xn}. ThusD(2)

kn
(un(�, kn)) also holds.Moreover,
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with the arguments of Hall (1996), we prove that {Xn} has extremal index 	 = 1− r−c. It is also known, due to Alpuim (1988), that1
the cluster size distribution is geometric, 
(j) = (1 − r−c)r−(j−1)c, j�1.

For instance, if H is the df of the Negative Binomial NB(m, p) distribution, we have3

P(M[p−n] �x + bn) → exp(−(1− pc)p[x]), n → +∞, x ∈ R\Z,

with bn = n − 1 − 1/logp{(m− 1) logn + log((1− p)m−1/(m− 1)!)} and 
(j) = (1− pc)p(j−1)c, j�1.5
Again, considering the two different types of sequences {Un} described in the beginning of the sectionwe obtain the following

results:
7

1. IID missing values: Applying Proposition 3.1 we obtain

	∗ = (1 − r−c)
1 − (1 − �)r−c and 	∗∗ = (1− r−c)

1 − r−c(1 − 2�(1 − �))
(1 − r−c(1 − �))(1− r−c�)

.9

2. Missing values through a Markov chain: Since {Xn} satisfies condition D(2)
kn

(un) we may apply Proposition 4.2 and obtain

	∗ = (1− r−c)(1 − r−c(� − 
))
(1− r−c(1 − 
))11

	∗∗ = (1 − r−c)(1− r−c(� − 
))
1 − � + 


(



1 − r−c(1 − 
)
+ 1 − �

1 − r−c�

)
.

In either case13

lim
n→∞P(M[rn](V)�x + bn) = e−	V �V , x ∈ R\Z,

where 	V =	∗, �V =�� for the sequences {Yn} and {Zn}, and 	V =	∗∗, �V =� for the sequence {Wn}, �=r−[x] and {bn} is an appropriate15
sequence of constants satisfying limn→∞bn = +∞.

6.3. Second-order max-autoregressive model (additive)17

Now suppose that {Xn} is an integer-valued stationary additive second-order max-autoregressive sequence with marginal df
H satisfying (1) (Anderson’s class). More precisely,19

Xn = max{Xn−2, �n} − c, n�2,

where c ∈ N and {�n} is an iid sequence with df F satisfying (1− F(n−1))/(1− F(n))=r, with r in ]1,+∞[. Assuming that X0, X1 and21
{�n} are independent Hall (1998) proved that {Xn} is strong mixing and has a stationary df given by H(x)=∏+∞

j=1 F(x/k
j). Moreover,

Hall and Temido (2007) proved that condition D(3)
kn

(un) holds and {Xn} has extremal index 	 = 1 − r−c. Consequently23

P(M[rn] �x + bn) → exp{−(1− r−c)r−[x]}, n → +∞, x ∈ R\Z.

Furthermore, since X0 and X1 are independent, condition (7) holds for {Xn}. Then, applying Lemma 5.2, by induction, we prove25
that the cluster size distribution is geometric given by 
(j) = (1 − r−c)(r−c)j−1, j�1.

Considering the twodifferent types of sequences {Un}described in the beginning of the sectionwe obtain the following results:27

1. IID missing values: Applying Proposition 3.1 we obtain29

	∗ = 1 − r−c

1 − (1 − �)r−c and 	∗∗ = (1− r−c)
1 − r−c(1 − 2�(1 − �))

(1 − r−c(1 − �))(1− r−c�)
.

2. Missing values through a Markov chain: Since {Xn} satisfies condition D(3)
kn

(un) and (7) we may apply Proposition 5.1 and obtain31

	∗ = (1− r−c)
�

(
1 − (1 − r−c)(1 − �)

1 − r−c(1 − 
(1 − 
 + �))

)
,

	∗∗ = (1 − r−c)
(
1 − (1 − r−c)(1− �)

1 − r−c(1 − 
(1 − 
 + �))
+ 1 − (1 − r−c)�

1 − r−c(�2 + 
(1 − �))

)
,33

where � = 
/1 − � + 
.
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In either case1

lim
n→∞P(M[rn](V)�x + bn) = e−	V �V , x ∈ R\Z,

where 	V =	∗, �V =�� for the sequences {Yn} and {Zn}, and 	V =	∗∗, �V =� for the sequence {Wn}, �=r−[x] and {bn} is an appropriate3
real sequence satisfying limn→∞bn = +∞.

The last two examples consist of sequenceswith marginal distribution in the domain of attraction of a MS distribution. Hence,5
it suffices to consider kn = n in these cases. Although max-semistability is not required to study the effect of missing values on
their extremes, we include them in the present work because the condition D(2)

kn
(un) does not hold and the results of Hall and7

Hüsler (2006) are not enough to obtain the limiting distribution of the maximum. Due to their alternating nature, conditions
D(3)
kn

(un) and (7) hold, and hence the present results allow us to obtain the desired MS limiting distributions.9

6.4. Negative AR(1) model with uniform margins

This example concerns the negatively correlated uniform AR(1) defined by11

Xn = −1
�
Xn−1 + �n, n�1,

where � >1,X0 ∼ U(0, 1), {�n} is a sequence of iid rvs with P(�1 = j/�) = 1/�, for j ∈ {1, 2, . . . , �} and X0 is independent of {�n}.13
Asymptotic results for the extremes from this model were originally obtained in Chernick and Davis (1982). Chernick et al. (1991)
proved that {Xn} satisfies condition D(3)(1 − x/n) and that the extremal index is given by 	 = 1 − 1/�2.15

Take un = 1 − x/n and observe that � := �(x) = x. In view of

nP(X1 >un ,X2 > un) = nP
(
X1 > un, �2 >un

(
1 + 1

�

))

= nP(X1 >un)P
(

�2 > un

(
1 + 1

�

))
→ 0, n → +∞,17

and hence condition (7) holds. Using this result we can compute the extremal index in a simpler way. Indeed due to (9) and
attending that19

lim
n→∞P

(
−1

�
�j + �j+1 >un(1 − �2)

)
= P(�j+1 = 1, �j = 1/�) = 1/�2, j�1,

we deduce21

	 = lim
n→∞

P
(
X1 >un,

1
�2

X1 − 1
� �2 + �3�un

)
P(X1 >un)

= lim
n→∞P

(
−1

�
�2 + �3�un(1 − 1/�2)

)

= 1 − 1/�2.

Using the previous results we obtain23

P(Mn�1 − x/n) → exp(−(1 − �−2)x), n → +∞, x > 0.

Now, in order to compute the limit cluster size 
(j) we first prove, by induction, that25

P(B(n)1,2j+1) =
(

1
�2

)j x
n
(1+ on(1)), j�1.

In fact27

P(X1 > un,X3 >un) = P(X1 >un) − P(X1 > un,X3 �un)

= x
n
(1 − 	)(1 + on(1))= x

n
1
�2

(1 + on(1))

and29

P(B(n)1,2j−1,X2j+1 > un) = P
(
B(n)1,2j−1,

1
�2

X2j−1 − 1
�

�2j + �2j+1 > un

)

= P(B(n)1,2j−1)P
(

−1
�

�2j + �2j+1 > un

(
1 − 1

�2

))
=
(

1
�2

)j−1 x
n

1
�2

(1+ on(1)).
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Thus, by stationarity we obtain1

P(X1�un,B
(n)
3,2j+1,X2j+3 > un) = P(B(n)3,2j+1) − 2P(B(n)1,2j+1) + P(B(n)1,2j+3)

=
((

1
�2

)j−1 x
n

− 2
(

1
�2

)j x
n

+
(

1
�2

)j+2 x
n

)
(1+ on(1))

= x
n

(
1
�2

)j−1(
1 − 1

�2

)2
(1 + on(1))

and so3


(j) =
limn→∞

x
n

(
1
�2

)j−1(
1 − 1

�2

)2
(1 + on(1))

x
(
1 − 1

�2

) =
(

1
�2

)j−1 (
1 − 1

�2

)
for j�1,

which corresponds to a geometric distribution.5
We now obtain the limiting distribution of the maximum term of models M1, M2 and M3, whenever the negative uniform

AR(1) model is transformed through either the sequences {Un} described in the beginning of the section.

7
1. IID missing values: Applying Proposition 3.1 we obtain

	∗ = (1 − �−2)
1 − (1 − �)�−2

and 	∗∗ = (1− �−2)
1 − �−2(1− 2�(1 − �))

(1− �−2(1 − �))(1− �−2�)
.9

2. Missing values through a Markov chain: Since {Xn} satisfies condition D(3)
kn

(un) and (7) we may apply Proposition 5.1 and obtain

	∗ = (1− �−2)
�

(
1 − (1 − �−2)(1 − �)

1 − �−2(1 − 
(1 − 
 + �))

)
,

11

	∗∗ = (1 − �−2)

(
1 − (1 − �−2)(1− �)

1 − �−2(1 − 
(1 − 
 + �))
+ 1 − (1 − �−2)�

1 − �−2(�2 + 
(1 − �))

)
,

where � = 
/(1− � + 
).13
In either case

lim
n→∞P(Mn(V)�1 − x/n) = e−	V �V ,15

where 	V = 	∗, �V = �� for the sequences {Yn} and {Zn}, and 	V = 	∗∗, �V = � for the sequence {Wn}, with � = x >0.

6.5. Negative AR(1) model with regularly varying tails17

Our last example concerns again an AR(1) stationary process

Xn = −�Xn−1 + Zn, n�1,19

where � ∈]0, 1[ and {Zn} is a sequence of iid rvs independent of X0. Following Scotto et al. (2003) we consider that the margins of
{Zn} possesses regularly varying balanced tails21

lim
t→∞

P(|Z1| > tx)
P(|Z1| > t) = x−�,

for �>0 and x >0, and satisfies the tail balancing conditions23

lim
x→∞

P(Z1 > x)
P(|Z1| > x) = p ∈ [0, 1]

and25

lim
x→∞

P(Z1 < − x)
P(|Z1| > x) = 1 − p.

We now prove that this sequence satisfies (7) and D(3)(un(�,n)). In fact27

nP(X1 >un,X2 > un) = nP(X1 >un, Z2 >un + �X1)

= nP(Z2 >un(1 + �))P(X1 > un) → 0, n → +∞,
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because �> 0. On the other hand1

P(X1 > un,Xj−2�un ,Xj−1 �un,Xj > un)

= P(X1 > un,Xj−2�un,Xj−1 �un,�2Xj−2 − �Zj−1 + Zj > un)

= P(X1 > un,Xj−2�un,Xj−1 �un,−�Zj−1 + Zj > un(1 − �2))

�P(X1 > un,Xj−2 �un,Xj−1 �un, | − �Zj−1 + Zj| > un(1 − �2))

�P(X1 > un,Xj−2 �un,Xj−1 �un,�|Zj−1| + |Zj| >un(1 − �2))

�P(X1 > un,Xj−2 �un,Xj−1 �un, 2max{�|Zj−1|, |Zj|} >un(1 − �2))

�P

(
X1 >un,Xj−2 �un,Xj−1 �un,�|Zj−1| > un(1 − �2)

2

)

+ P

(
X1 > un,Xj−2 �un,Xj−1 �un, |Zj| >

un(1− �2)
2

)
.

Thus3

n
rn∑
j=2

P(X1 > un,Xj−2 �un,Xj−1�un ,Xj >un)

�nrnP(X1 >un)P

(
|Z2| >un 1 − �2

2�

)
+ nrnP(X1 >un)P

(
|Z3| >un (1 − �2)

2

)

= rnP(X1 > un)nP(|Z2| > un)
P

(
|Z2| > un 1 − �2

2�

)

P(|Z2| > un) + rnP(X1 > un)nP(|Z3| > un)
P

(
|Z3| > un 1 − �2

2

)

P(|Z3| > un)

→ 0 × � ×
(
1 − �2

2�

)−�

+ 0 × � ×
(
1 − �2

2

)−�

= 0, n → +∞.

The extremal index of {Xn} is given by 	 = 1 − �2� and � := �(x)= (p + q��)/(1− �2�)x−� (Scotto et al., 2003) and5

P(Mn�anx) → exp{−(p + q��)x−�}, n → +∞, x >0,

with {an} satisfying nP(|Z1| > an) → 1,n → +∞.7
Furthermore, with the arguments used in the last example we deduce that


(j) = �2�(j−1)(1 − �2�), for j�1.9

We observe that this coincides with the result of Scotto et al. (2003) for 
1(j), taking into account the differences of the definitions
of 
(j) used in this work (given by Leadbetter and Nandagopalan, 1989) and of 
1(j) used by those authors (which is the same as11
in Embrechts et al., 1997, p. 273).

We now obtain the limiting distribution of themaximum term of modelsM1, M2 and M3, whenever the negative heavy tailed13
AR(1) model is transformed through either the sequences {Un} described in the beginning of the section.

1. IID missing values: Applying Proposition 3.1 we obtain15

	∗ = 1 − �2�

1 − (1− �)�2�
and 	∗∗ = (1 − �2�)

1 − �2�(1 − 2�(1− �))

(1 − �2�(1 − �))(1− �2��)
.

2. Missing values through a Markov chain: Since {Xn} satisfies condition D(3)
kn

(un) and (7) we may apply Proposition 5.1 and obtain17

	∗ = (1 − �2�)
�

(
1 − (1 − �2�)(1− �)

1 − �2�(1− 
(1− 
 + �))

)
,

	∗∗ = (1 − �2�)

(
1 − (1− �2�)(1− �)

1 − �2�(1 − 
(1 − 
 + �))
+ 1 − (1 − �2�)�

1 − �2�(�2 + 
(1 − �))

)
,

19

where � = 
/1 − � + 
.
In either case21

lim
n→∞P(Mn(V)�anx) = e−	V �V , x >0,

where 	V = 	∗, �V = �� for the sequences {Yn} and {Zn}, and 	V = 	∗∗, �V = � for the sequence {Wn}, with � as above.23
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