Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations

Carme Camps,1,2 Nayia Petousi,3 Celeste Bento,4 Holger Cario,5 Richard R. Copley,1,2 Mary Frances McMullin,6 Richard vanWijk,7 WGS500 consortium,8 Peter J. Ratcliffe,3 Peter A. Robbins,9 and Jenny C. Taylor1,2

1National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, UK; 2Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; 3Nuffield Department of Medicine, University of Oxford, Oxford, UK; 4Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; 5Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany; 6Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK. 7Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, Netherlands; 8A list of members and affiliations is provided in the supplementary information; and 9Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK

Acknowledgements
The authors would like to thank the patients and their families who consented to this study, Melissa M. Pentony for the support provided with the management of Ion Torrent data and the Core and administration services at the Wellcome Trust Centre for Human Genetics, which are funded by the Wellcome Trust Core Award [090532/Z/09/Z]. This work was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre Oxford with funding from the Department of Health’s NIHR Biomedical Research Centre’s funding scheme. The WGS500 study was funded by the Wellcome Trust Core Award (090532/Z/09/Z) and a Medical Research Council Hub grant (G0900747 91070) to Peter Donnelly (director of the Wellcome Trust Centre of Human Genetics), the NIHR Biomedical Research Centre Oxford, the UK Department of Health’s NIHR Biomedical Research Centres funding scheme and Illumina. NP is funded via a NIHR Clinical Lectureship. PJR is a member of the Ludwig Institute for Cancer Research.
Abstract

Erythrocytosis is a rare disorder characterized by increased red cell mass and elevated hemoglobin concentration and hematocrit. Several genetic variants have been identified as causes for erythrocytosis in genes belonging to different pathways including oxygen sensing, erythropoiesis and oxygen transport. However, despite clinical investigation and screening for these mutations, the cause of disease cannot be found in a considerable number of patients, who are classified as having idiopathic erythrocytosis.

In this study, we developed a targeted next generation sequencing panel encompassing the exonic regions of 21 genes from relevant pathways (~79Kb) and sequenced 125 patients with idiopathic erythrocytosis. The panel effectively screened 97% of coding regions of these genes, with an average coverage of 450X. It identified 51 different rare variants, all leading to alteration of protein sequence, with 57 out of 125 cases (45.6%) having at least 1 of these variants. Ten of these were known erythrocytosis-causing variants, which had been missed following existing diagnostic algorithms. Twenty-two were novel variants in erythrocytosis-associated genes (EGLN1, EPAS1, VHL, BPGM, JAK2, SH2B3) and in novel genes included in the panel (EPO, BHLHE41, OS9, EGLN2, HIF3A), some with high likelihood of functionality, for which future segregation, functional and replication studies will be useful in providing further evidence for causality. The rest were classified as polymorphisms. Overall, these results demonstrate the benefits of using a gene panel versus existing methods where focused genetic screening is performed depending on biochemical measurements: it improves diagnostic accuracy and provides the opportunity for novel variant discovery.

Introduction

Erythrocytosis is a clinical condition characterized by increased red cell mass and typically elevated hemoglobin (Hb) concentration and hematocrit (Hct)\(^1\). It can be congenital (e.g. genetic) or acquired and can be classified as primary or secondary\(^2\) (Figure 1A). Several causal genetic mutations have been identified: heterozygous mutations in the Epo receptor (EPOR) gene cause primary congenital erythrocytosis\(^3, 4\), while mutations in JAK2 are predominantly associated with primary acquired erythrocytosis i.e. polycythemia vera\(^5-7\). Homozygous germline mutations in VHL e.g. Chuvash Polycythaemia and heterozygous germline mutations in EGLN1 (PHD2) and EPAS1 (HIF2A) have been found in patients with secondary congenital erythrocytosis\(^3, 8\). In the case of EPAS1, somatic gain-of-function mutations have also been detected in phaeochromocytomas and paragangliomas of some patients with congenital erythrocytosis, attributed to tissue mosaicism [ref]. Some patients, particularly those with polycythemia vera and some forms of genetic erythrocytosis, present with increased incidence of both arterial and venous thromboembolic events\(^2\). Other congenital lesions include high oxygen-affinity hemoglobinopathies or 2,3-bisphosphoglycerate (2,3-BPG) deficiency\(^9-11\), through mutations in globin genes (HBA1, HBA2 and HBB) or the BPGM gene, respectively. These genes belong to key pathways involved in the pathogenesis of erythrocytosis e.g. oxygen-sensing (Hypoxia-Inducible
Factor, HIF) pathway, bone marrow erythropoiesis and oxygen transport (Figure 1B). Briefly, HIFs are transcription factors composed of 2 subunits: HIFα, which is oxygen-sensitive, and HIFβ. There are 3 HIFα isoforms, but HIF2α (EPAS1) is EPO’s main transcriptional regulator \(^{(12),(13)}\). In normoxia, HIFα is hydroxylated by oxygen-dependent prolyl hydroxylases (PHDs, encoded by \(EGLN1\), \(EGLN2\) and \(EGLN3\)), binds to VHL and becomes ubiquitinated and degraded. In hypoxia, hydroxylation diminishes, HIFα stabilizes and initializes the transcription of target genes, including \(EPO\) \(^{(14)}\). Epo binds to the EPO receptor of erythroid progenitor cells in the bone marrow, stimulating proliferation and differentiation into red blood cells (RBC), through a JAK2-mediated signaling cascade. In RBC, BPGM promotes the release of oxygen to local tissues by producing 2,3-bisphosphoglycerate (2,3-BPG), which decreases the affinity of hemoglobin to oxygen.

Even if fully investigated (including screening for known mutations), there remains a considerable proportion of patients (~70%) in whom no cause is found, currently described as having idiopathic erythrocytosis \(^{(2,4)}\). About two thirds of these patients have inappropriately normal or elevated Epo levels suggesting a defect in oxygen-sensing or oxygen delivery pathways. Most patients have early-onset disease and/or often a family history, suggesting a high probability for a genetic etiology. Logically, further investigation of these patients should begin by fully sequencing genes in which genetic variants are already known to cause erythrocytosis as opposed to simply screening for particular known variants. As many of these are in the HIF pathway, sequencing other key genes in this pathway (in which variants have not yet been observed) and also other erythropoiesis-related genes, is likely to be fruitful in the effort to resolve functional variants.

Using traditional methods of DNA sequencing, such as Sanger, to comprehensively sequence a large number of genes in a substantial number of patients with a relatively rare disease would be time-consuming, labor-intensive and impractical. On the other hand, using high-throughput technology e.g. whole genome sequencing (WGS) is not without its caveats: it generates huge volumes of data, bioinformatic analysis is complex with caution required to avoid false-positive assignment of causality, and it is currently too expensive for the number of patients involved. A way forward is the development of targeted next generation sequencing (NGS) panels of genes known to be associated with a condition.

We developed a NGS erythrocytosis gene panel to investigate the genetic origins of disease in idiopathic erythrocytosis patients. We used an ultra-high multiplex PCR method (AmpliSeq, Thermo Fisher), which allows rapid high-throughput sequencing of the full length of multiple genes in multiple samples. We defined a custom-made panel of 21 candidate genes, chosen from key pathways known to be involved in the pathogenesis of erythrocytosis, and used it to sequence 125 patients with idiopathic erythrocytosis. We also included novel candidate genes suggested by an initial WGS study, the WGS500 project \(^{(15)}\), in which 500 clinical samples across a diverse spectrum of clinical disorders were sequenced, which included a few idiopathic erythrocytosis cases with high suspicion of a genetic cause.

The aims of the study were to: create a targeted sequencing panel, as a research tool, for the genetic investigation of erythrocytosis; evaluate its diagnostic utility in a cohort of idiopathic
Patients and Methods
Patient description
Patient DNA samples were obtained from whole blood and acquired from 4 separate databases of idiopathic erythrocytosis (UK, Portugal, Germany and the Netherlands). Participants gave informed consent and appropriate ethical approval was gained. The inclusion criteria were:
1. Confirmed absolute erythrocytosis with a red cell mass >125% predicted, and Hb >180 g/L and Hct >0.52 L/L in adult males or Hb >160 g/L and Hct >0.48 L/L in adult females, or Hb and Hct levels above the 99th centile of age-appropriate reference values in children.
2. Registered as idiopathic (cause of illness not identified), following appropriate investigation at each Center (Figure S1).
3. Early-onset disease, or cases with long-standing idiopathic erythrocytosis.
Details are found in Supplementary Information (SI).

Ten samples were whole-genome sequenced as part of the WGS500 project. 125 patient samples were sequenced using our erythrocytosis gene panel alongside 10 positive controls.

Whole genome sequencing
Samples were sequenced at a 30X depth with Illumina HiSeq2000. Details are found in the SI.

Design of a custom-made gene panel for idiopathic erythrocytosis
A customized panel, designed to encompass the coding and untranslated (UTR) regions of the candidate genes (Table 1), was created using the Ion AmpliSeq Designer (Thermo Fisher), whereby 635 primer pairs generating amplicons of ~200bp were designed. This panel covered 90.3% of the target region (78.96Kb), with a 97.4% of average coverage of the coding regions. The primers were synthesized in two multiplex pools.

Ion Torrent sequencing and analysis
The primer pools were used with the Ion Ampliseq Library kit 2.0 and Ion Xpress barcode adapters (Thermo Fisher) to create libraries. Library quality and concentration were assessed using a High sensitivity DNA kit and Agilent 2100 Bioanalyzer (Agilent Technologies). Pools of 8 libraries were used for template preparation, loaded into an Ion 316 chip and sequenced on an Ion PGM instrument (500 flows). Details are found in the SI.

The Torrent Suite Software (Thermo Fisher) was used for quality control and alignment of the sequencing data to the human genome (Hg19). Variants were called with the Ion Reporter Software v4.2 (Thermo Fisher), using the germline workflow for single samples and the default parameters, and annotated with ANNOVAR16. Only variants fulfilling all of the following
conditions were selected for further analysis: confidence ≥40, read depth ≥20, frequency in 1000 Genomes (1000G) ≤3% and frequency in NHLBI ESP exomes (6500si) ≤3%.

The SIFT and PolyPhen2 HDIV scores and cut-offs from the LJB23 database in ANNOVAR were used to inform assessment of causality of non-synonymous variants. A variant was considered deleterious (D) by SIFT when sift score ≤0.05 and tolerated (T) when sift score >0.05. For PolyPhen2 HDIV, a variant was classified as probably damaging (D) when pp2_hdiv score ≥0.957, possibly damaging (P) when 0.453≤ pp2_hdiv score ≤0.956, or benign (B) when pp2_hdiv score ≤0.446. Synonymous variants were investigated for possible splicing effects using Human Splicing Finder, NetGene2 and FSPLICE.

Sanger validation

All relevant variants identified by Ion Torrent were confirmed by Sanger sequencing. For protocol and primer details see the SI and Table S1.

Results

Novel candidate genes and variants were identified by WGS

The whole genomes of a small number of idiopathic erythrocytosis cases with high suspicion of a genetic cause were sequenced as part of the WGS500 project. Candidate variants were found in novel genes, not previously associated with erythrocytosis: EPO, GFIb, KDM6A and BHLHE41. Further details of the rationale and criteria used to select these genes as candidates are given in the SI and Table S2. On this basis, these genes were included in the NGS gene panel along with other erythrocytosis candidate genes (Table 1).

The erythrocytosis gene panel has high performance in sequencing and variant detection

Overall, 135 samples were sequenced on the Ion Torrent platform using the erythrocytosis gene panel (125 undiagnosed patients and 10 positive controls). On average, 89% of mapped reads were on target regions, which indicates a successful custom panel according to the manufacturer’s guidance. The average coverage depth of the amplicons generated was 450X (Figure 2A). Most samples (133 out of 135) had over 92% of amplicons with coverage above 20X (Figure 2B). Only two samples presented substantial failure across the panel (Figure 2B), which was related to DNA quality. Only 17 amplicons (2.6%) had an average coverage lower than 20X across samples, indicating a general poor amplification of these regions within the highly-multiplexed reactions (Table S3). Ten of these (1.6% of all amplicons) had completely failed (coverage <20X in all samples), probably due to sequence context issues, meaning that any variants within these regions would not be called. Therefore, the sequencing was generally successful across samples, with a high percentage of the target sequence included at a good depth for germline variant calling.

We then compiled a list of all known erythrocytosis-associated variants from the literature\(^3\)\(^,\)\(^4\), including the variants identified in the WGS study, and cross-referenced their genomic coordinates with those of the generated amplicons. With the exception of two missense variants in VHL, all the other variants were within amplicons that showed good performance. The two VHL missense
variants – c.235C>T and c.311G>T – fall within an amplicon in exon 1 that showed complete failure and therefore would not be detected.

Importantly, our panel reliably detected 10 known variants – in different genes and hence in different amplicons – in the positive control samples, in which mutations had previously been identified either through WGS or Sanger sequencing (Table S4).

51 exonic variants were identified across 57 patients by the erythrocytosis gene panel and validated by Sanger sequencing

We identified 98 different variants across the coding regions of the genes examined, of which 19 were insertions or deletions (INDELS), 49 non-synonymous single nucleotide variations (SNVs) and 30 synonymous SNVs (Figure 3). None of the synonymous SNVs is predicted to alter splicing according to Human Splicing Finder, NetGene2 and FSPLICE. Therefore, we focused only on variants resulting in protein sequence alterations: following Sanger sequencing, 17 out of the 19 INDELS appeared to be false positives but 2 were confirmed. All 49 non-synonymous SNVs were confirmed, although for one SNV there was a single base discrepancy: Ion Torrent detected a triple base change from CAA to ATT in exon 12 of JAK2 (chr9:5070025-5070027) but only a change from AA to TT (chr9:5070026-5070027) was confirmed by Sanger. As a result, a total of 51 variants (49 SNVs and 2 INDELS) were detected (Table S5). Therefore, 57 out of 125 cases had at least 1 exonic variant (45.6%); of those, 38 patients had only 1 exonic variant detected (30.4%), while 19 had more than 1 exonic variant detected (15.2%).

To investigate whether the variants discovered are unique to erythrocytosis patients (and therefore more likely to be disease-causing), we used in silico data from the 1000G project as control. For this, we examined the variant calls released by the 1000G project after integrating both exome and low coverage data across 1041 individuals and extracted the SNVs identified within the coordinates of the amplicons generated by our gene panel. We found that of the 49 non-synonymous SNVs discovered, 30 were uniquely found in our erythrocytosis cohort and not in the 1000G in silico control cohort, whereas the other 19 were also found in the control cohort (Figure 3). Those 19 SNVs (Table S6) are thus unlikely to be disease-causing mutations and most likely represent polymorphisms, found at similar or lower frequencies in the erythrocytosis cohort as in the control cohort (Fisher’s exact test and Benjamini and Hochberg false discovery correction17).

Out of the 30 uniquely identified variants in our patient cohort, 10 were previously reported in the literature as causing erythrocytosis and hence are classified here as disease-causing variants (Table 2). The remaining 20 had no previous clinical associations. No exonic variants were identified in EGLN3, HIF1AN (FIH), HBA1, HBA2, GFI1B and ZNF197.

Novel genes and variants identified by the erythrocytosis gene panel

Of the 22 novel variants (20 SNVs and 2 INDELS) identified (Table 3), 14 were found in known erythrocytosis-associated genes, such as VHL, EPAS1, JAK2, SH2B3 (LNK), EGLN1 and BPGM. These variants are extremely rare: 5 were reported in dbSNP142 and ExAC (Exome Aggregation
Consortium) databases at very low allele frequency (≤0.005) and 8 were only reported in ExAC at even lower allele frequency (≤0.0007). The remaining 7 SNVs and the 2 validated INDELs were not reported neither in dbSNP142 nor in ExAC, the latter containing exome data from 60,706 unrelated individuals. Most of these were classified as deleterious or damaging by either SIFT or PolyPhen2. There was consensus between both in silico tools for 12 of the variants, 8 of them being predicted as deleterious by both (Table 3).

Some of these novel or very rare variants have a high likelihood of causality based on the location and predicted effect of the protein coding change as well as on genetic evidence for causality, and are of particular physiological interest. For example, EPAS1 p.Y532H, a novel exon 12 mutation, is located one position downstream of residue 531, which is the prolyl hydroxylation site on HIF2α on the C-terminal ODD (oxygen-dependent degradation domain). Furthermore, it is part of a 6-residue domain which is highly conserved across all HIFα isoforms and across species and which interacts with the VHL complex\(^{(18)}\). Thus, this mutation likely interferes with hydroxylation of HIF2α by PHDs and binding to the VHL complex, leading to upregulation of Epo. It was found in two related patients, father and son, both of whom had idiopathic erythrocytosis with raised Epo levels, and thus inherited in an autosomal dominant manner. Furthermore, EGLN1 p.L279P is affecting a conserved residue, previously reported as altered (p.L279Tfs43, a frameshift variant) in a patient with erythrocytosis\(^{(19)}\). Structurally, this residue is located on helix 3, which interacts with both N-terminal ODD and C-terminal ODD hydroxylation domains on HIFα\(^{(20)}\); a proline substitution may affect protein stability and diminish ODD binding, reducing HIFα hydroxylation.

The VHL p.E52X variant introduces a stop codon, predicting termination of translation of the long VHL isoform (p30) while allowing only the translation of the alternative form of VHL (p19) from a translation site at M54. To date, only a few variants upstream of the VHL internal start codon 54 have been described, associated with either pheochromocytomas (codon 25 and 38) or with VHL disease (p.E46X and p.E52K)\(^{(21-23)}\). The role of the heterozygous VHL p.E52X in producing erythrocytosis in the patient in our study is not clear and the patient will be advised screening for the presence of VHL disease; there is evidence that erythrocytosis is seen in about 5-20% of patients with VHL disease\(^{(24)}\).

Eight variants were identified in novel genes included in the panel because of their association with the oxygen-sensing pathway but in which no previous erythrocytosis-associated mutation has been reported, such as EGLN2, HIF3A and OS9. Interestingly, no candidate variants were found in key HIF pathway genes such as EGLN3, HIF1AN and importantly, HIF1A. This is consistent with existing literature in which variation in EPAS1, but not HIF1A, is associated with erythrocytosis. In addition, novel variants were also found in EPO and BHLHE41, two genes with no previous genetic association with erythrocytosis that were revealed by WGS500. For EPO, the most striking variant found is a frameshift, p.P7fs, detected in heterozygous status in one patient. Although at present it is difficult to link an apparently inactivating mutation to the generation of erythrocytosis, the variant has since been confirmed in heterozygous status in the patient’s father who also presents with high hematocrit and hemoglobin levels. The patient had a normal Epo level (4.1 mU/ml). Epo levels are not known for the father. The variant is very close to an exon-intron junction, so one potential mechanism is that the reading frame is restored through alternative splicing leading to
the translation of an Epo analogue that is more potent. Two other EPO SNVs were detected in other patients but these are most likely very rare polymorphisms (see Table 3). Regarding BHLHE41, the novel missense variant (p.F149L) we identified is classified as benign by both PolyPhen2 and SIFT and is thus unlikely to be pathogenic, a notion supported by segregation analysis in the patient’s family (see Table 3). Familial segregation studies, functional molecular studies as well as screening of larger erythrocytosis cohorts for replication of findings, will be needed to provide further evidence for causality of novel variants and novel genes.

Discussion
The technical advances in next generation sequencing, together with the increasing understanding of the biological pathways underlying the pathogenesis of erythrocytosis, provide new opportunity for a refinement of the diagnostic pathway for the genetic diagnosis of patients with erythrocytosis.

Our approach allowed the creation of a NGS-based targeted gene panel with the capacity to process a large cohort of patient samples and simultaneously examine a large number of genes across several biological pathways in a systematic and efficient manner.

Our panel exhibited high performance and reliability. It produced high quality sequencing data with good target coverage. It accurately detected variants on 10 positive controls. It was excellent at reliably calling SNVs, with all SNVs identified subsequently validated in all samples by Sanger sequencing. A few limitations have, nevertheless, been recognized and should be taken into account when considering its future applications and before it can be considered optimal for immediate clinical diagnostic use. For example, a few amplicons – including a region on VHL exon 1 – showed complete failure across samples and thus potential variants within them would not be detected. Furthermore, there were some false positive INDEL detections, as has previously been reported by other users of Ion Torrent sequencing. These could be addressed by re-designing primers covering that particular VHL genomic region, optimizing the variant calling bioinformatics workflow and employing recently proposed strategies to increase the accuracy of INDEL detection. Also, variant detection in genes with high sequence similarity such as HBA1 and HBA2 can be challenging and need extra analysis. Furthermore, another limitation of the panel – related more to the nature of the technology involved – is that it can only identify SNVs and short INDELS but not other structural variants such as large INDELS or copy number variations.

Currently, the clinical consensus for investigating erythrocytosis involves: establishing the diagnosis of absolute erythrocytosis, excluding systemic causes (e.g. hypoxic lung diseases or tumors) and then proceeding to focused genetic testing based on algorithms that attempt to predict the type of mutation that might be present. There is variability in procedures employed at different centers (Figure S1), but as a general rule: if Epo is low, variants in genes involved in bone marrow erythropoiesis (EPOR, JAK2) are screened for. If Epo is high or normal, P50 (partial pressure of oxygen at which 50% of Hb is saturated with oxygen) is calculated and if low, Hb electrophoresis is performed and/or variants in oxygen delivery pathways (globin genes, BPGM)
are screened for; if P50 is normal or not available, variants in the oxygen-sensing HIF pathway (VHL, EPAS1, EGLN1) are screened for\(^3,28,29\).

Using our gene panel we were able to provide definitive genetic diagnoses in 9 patients that were previously missed. For example, a variant in EPAS1, p.G537R – a well-described gain-of-function mutation found in erythrocytosis patients\(^{30,31}\) – was detected. This was previously missed because the patient was not screened for EPAS1 variants, owing to the fact that the Epo level was not high enough (and was thus directed to a different branch of the diagnostic algorithm). Similarly, we identified a homozygous VHL variant (p.H191D) known to cause erythrocytosis\(^6\).

Interestingly, we found four variants in the HBB gene, all relating to high-affinity hemoglobinopathies associated with erythrocytosis: HBB p.H147P (Hb York), HBB p.H144Q (Hb Little Rock), HBB p.V110M (Hb San Diego) and HBB p.E102D (Hb Potomac)\(^{33-37}\). These were missed previously in the patients in our study, either because conventional screening with Hb electrophoresis can miss hemoglobinopathies\(^{37}\) or because of difficulties obtaining optimal fresh venous blood samples for P50 measurements in all patients. In addition, we identified a heterozygous variant in JAK2 (p.K539L) and two in SH2B3 (p.E208Q and p.E400K), all known to associate with erythrocytosis\(^6,38,39\). The patient with variant JAK2 p.K439L, originally classified as idiopathic erythrocytosis as the conventional criteria for Polycythemia Vera (PV) including JAK2 p.V617F screening were not met, should now be considered as PV with a JAK2 exon 12 mutation. As highlighted in previous studies\(^6,7\), the clinical picture of this subtype of PV is indistinguishable from that of idiopathic erythrocytosis. This emphasizes that JAK2 exon 12 mutations should actively be screened for in idiopathic erythrocytosis patients. Furthermore, the findings of SH2B3 variants highlight that this gene should also be surveyed, which now is not routinely done. The erythrocytosis gene panel can successfully do both. Of interest, the same SH2B3 (p.E208Q) variant has since been found in the patient’s father, who also has congenital erythrocytosis, confirming its germ-line origin and providing a definitive diagnosis in an additional (tenth) patient. Thus, we demonstrated that the panel allows reliable detection of known erythrocytosis-causing mutations, avoiding pitfalls that may occur when following existing algorithms.

In this study, 4 out of the 125 patients carried the VHL p.R200W variant in heterozygous state. VHL p.R200W causes Chuvash polycythemia in the homozygous state\(^40,41\). Congenital erythrocytosis also occurs in patients who are compound heterozygotes\(^{42-44}\), while heterozygous carriers of this variant are usually not affected. Nevertheless, VHL p.R200W heterozygous mutations feature significantly more frequently in erythrocytosis databases\(^4\) than in general populations\(^{45}\), suggesting a causal role. For one of the 4 patients here, the variant was newly identified. For the other 3, previous genetic tests had also identified it. Thus, within this study we aimed to detect additional genetic changes that might explain the clinical phenotype in these patients. We did not detect any other variants within VHL, except for 2 SNPs in the 3’UTR region which have high minor allelic frequencies (≥0.35 in dbSNP142) and are thus not considered significant. An alternative hypothesis is that the co-occurrence of this heterozygous variant with another heterozygous variant in a separate gene of the same biological pathway acts in synergy to produce disease. We did not obtain conclusive evidence for this in the four patients we studied: 2 did not have an additional variant; in the other 2, the VHL p.R200W co-occurred with additional heterozygous
missense variants that we classified as polymorphisms (Table S6), i.e. with EGLN1 p.A157Q and

Moreover, because the panel allows full sequencing of multiple genes instead of specific mutation
screening, it gave the opportunity to detect 22 novel variants in disease-relevant genes. Some of
these have strong likelihood of causality, based on the location of the mutated residues on
functional or regulatory domains and the expected disturbance they would cause on protein
structure and function (as explained in Results for EGLN1 p.L279P, EPAS1 p.Y532H and VHL
p.E52X), and based on genetic evidence of familial segregation (e.g. EPAS1 p.Y532H which is
dominantly inherited). For other variants, there is concordance between SIFT and Polyphen in
their deleterious predictions and they are mostly found in known erythrocytosis-associated genes,
whereas the rest have lesser evidence of functional candidacy (Table 3). While the functional
significance of newly identified variants cannot at present be confirmed – and indeed clinical
causation cannot be concluded –, by screening further larger erythrocytosis patient cohorts, the
identification of these variants in other patients should provide genetic evidence of causality.

One limitation of our study is the lack of DNA from a source other than blood to determine
germline or somatic status. This would predominantly be relevant for mutations in JAK2 and
SH2B3, in which somatic mutations are known to be associated with polycythaemia vera and
myeloproliferative diseases. Indeed, for patients where JAK2 and SH2B3 variants are found
following gene panel sequencing, further studies in skin/nail DNA should be advised. While somatic
mutations in EPAS1 can be found in tumours of patients with erythrocytosis, mutations in EPAS1
and other genes of the HIF pathway and Hb transport detected in blood with this panel are likely
to be germline.

Another motivation in this study was to assess whether variants in novel candidate genes
identified in WGS500 – in EPO, GFI1b, KDM6A and BHLHE41 – could be replicated. The precise
WGS-identified variants were not found in this cohort of 125 cases, suggesting that larger patient
cohorts need to be sequenced before the significance of variation in these genes can be properly
interpreted. However, in the case of EPO, other variants were identified suggesting that EPO
should be actively surveyed as an erythrocytosis-associated candidate gene.

Thus, despite the few technical limitations described, this gene panel has the potential to be
useful in the diagnostic work-up of patients with erythrocytosis in clinical practice, after
appropriate optimization. A point to note is that the gene panel in our study was applied to a
highly-selected group that had undergone significant “filtering”, clinical and genetic (Figure S1)
before inclusion in the study. Despite this, candidate variants – known causal and novel – were
detected in 29% of patients. Thus, we propose that gene panel sequencing should be applied
directly on “erythrocytosis cases where a genetic cause is suspected”, i.e. after clinical exclusion of
acquired systemic causes and at the point where genetic testing is considered (Figure 4). This
would undoubtedly increase the diagnostic yield and, because genetic testing would be conducted
in an unbiased manner, it would improve diagnostic accuracy by decreasing the number of missed
diagnoses. Furthermore, with accrued use in future patients, the erythrocytosis gene panel is likely
to generate an increasing number of “diagnostic” mutations through replication. Taking together all these results and observations, we hope to demonstrate the immediate utility that a targeted gene panel would have in the investigation of erythrocytosis at a time where next-generation sequencing is revolutionizing clinical medicine.

References

Figure Legends

Figure 1. (A) Causes of erythrocytosis. Erythrocytosis can be congenital or acquired. It is classified as primary, where there is an intrinsic defect in erythropoietic cells and erythropoietin (Epo) levels are low, or secondary, where the increased red cell production is externally driven through increased Epo production and Epo levels are high or inappropriately normal. (B) Pathways involved in the pathogenesis of erythrocytosis. (i) Hypoxia inducible factor (HIF) oxygen sensing pathway in renal EPO producing cells. HIFs are dimeric transcription factors composed of one α- and one β- subunit. In normoxia, HIFα subunits are hydroxylated by oxygen-dependent prolyl-hydroxylases (PHDs) and asparaginyl hydroxylase (HIF1AN). The hydroxylated prolines (P) are recognised by VHL, which mediates the ubiquitination and proteasomal degradation of HIFα. The hydroxylated asparagine (N) compromises the interaction of HIFα with cofactors necessary for transcriptional activity (p300/CBP). In hypoxia, PHDs and HIF1AN are less active, HIFα subunits stabilize and translocate into the nucleus where they interact with HIFβ subunit and cofactors and initiate transcription of target genes, including EPO (ii) Erythropoiesis in the bone marrow. It is triggered by the binding of EPO to the EPO receptor (EPOR) located in the surface of erythroid progenitor cells and the subsequent activation of JAK2-signalling cascade. The process is inhibited by the interaction of SH2B3 and JAK2. (iii) Hemoglobin (Hb) synthesis and oxygen transport. BPGM produces 2,3-BPG, which promotes the release of oxygen to local tissues by decreasing the affinity of deoxygenated Hb to oxygen. Alterations in the Hb chains (Hb-α and Hb-β) or BPGM could shift the Hb-oxygen dissociation curve and alter oxygen levels, which directly influences Epo production. (PV: Polycythemia Vera; ECYT 1-4: erythrocytosis type 1-4; Hb: hemoglobin; O₂: oxygen; 2,3 BPG: 2,3-bisphosphoglycerate; RBC: red blood cells, EPO: erythropoietin; PHDs: prolyl hydroxylases). PHDs: PHD1 (EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3).

Figure 2. Coverage of the amplicons generated by the erythrocytosis gene panel across 135 samples. (A) Each boxplot represents the distribution of the number of reads obtained for all the amplicons generated by the panel within each sample. The horizontal line across the plot shows the average coverage (450X). (B) Each dot represents the percentage of amplicons with coverage over 20X within each sample.

Figure 3. Overview of the exonic variants detected with Ion Torrent sequencing among 125 erythrocytosis patients, validation and further classification.

Figure 4. Proposed use of the erythrocytosis gene panel in the investigation of erythrocytosis. The gene panel would make genetic testing more efficient and stream-lined. It enables the simultaneous survey of the full length of 21 candidate genes, in a systematic and unbiased manner, allowing the detection of known causal variants as well as novel variants in known and novel genes.

Tables

Table 1. Genes included in the custom-made erythrocytosis gene panel

<table>
<thead>
<tr>
<th>Candidate Gene</th>
<th>Position</th>
<th>No of exons</th>
<th>Pathway</th>
<th>Candidacy</th>
</tr>
</thead>
</table>

13
<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosome</th>
<th>Details</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHL</td>
<td>Chr3:10183319-10195354</td>
<td>3 Oxygen-sensing</td>
<td>Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>EPAS1</td>
<td>Chr2:46524541-46613842</td>
<td>16 Oxygen-sensing</td>
<td>Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>EGLN1</td>
<td>Chr1:231499497-231560790</td>
<td>4 Oxygen-sensing</td>
<td>Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>HIF1A</td>
<td>Chr14:62162119-62214977</td>
<td>15 Oxygen-sensing</td>
<td>Key gene of the HIF pathway</td>
</tr>
<tr>
<td>HIF3A</td>
<td>Chr19:46800303-46846690</td>
<td>13 Oxygen-sensing</td>
<td>Key gene of the HIF pathway</td>
</tr>
<tr>
<td>EGLN2</td>
<td>Chr19:41305048-41314346</td>
<td>5 Oxygen-sensing</td>
<td>Key gene of the HIF pathway</td>
</tr>
<tr>
<td>EGLN3</td>
<td>Chr14:34393421-34420284</td>
<td>5 Oxygen-sensing</td>
<td>Key gene of the HIF pathway</td>
</tr>
<tr>
<td>HIF1AN</td>
<td>Chr10:102295641-102313681</td>
<td>6 Oxygen-sensing</td>
<td>Key gene of the HIF pathway</td>
</tr>
<tr>
<td>EPO</td>
<td>Chr7:100318423-100321323</td>
<td>5 Erythropoiesis/Oxygen-sensing</td>
<td>1. Key gene in erythropoiesis</td>
</tr>
<tr>
<td>EPO</td>
<td>Chr7:100318423-100321323</td>
<td>5 Erythropoiesis/Oxygen-sensing</td>
<td>2. Identified in WGS500</td>
</tr>
<tr>
<td>JAK2</td>
<td>Chr9:4985245-5128183</td>
<td>25 Erythropoiesis</td>
<td>Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>SH2B3</td>
<td>Chr12:111843752-111889427</td>
<td>8 Erythropoiesis</td>
<td>Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>BPGM</td>
<td>Chr7:134331531-134364568</td>
<td>3 Oxygen transport</td>
<td>1. Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>HBB</td>
<td>Chr11: 5246696-5248301</td>
<td>3 Oxygen transport/Hemoglobin synthesis</td>
<td>Known erythrocytosis-causing variants</td>
</tr>
<tr>
<td>HBA1</td>
<td>Chr16:226679-227520</td>
<td>3 Oxygen transport/Hemoglobin synthesis</td>
<td>Key gene in oxygen transport</td>
</tr>
<tr>
<td>HBA2</td>
<td>Chr16:222846-223709</td>
<td>3 Oxygen transport/Hemoglobin synthesis</td>
<td>Key gene in oxygen transport</td>
</tr>
<tr>
<td>KDM6A</td>
<td>ChrX:44732423-44971747</td>
<td>29 Oxygen-regulated demethylase</td>
<td>Identified in WG500</td>
</tr>
<tr>
<td>GFI1b</td>
<td>Chr9:135854098-135867084</td>
<td>11 Erythropoiesis</td>
<td>Identified in WG500</td>
</tr>
</tbody>
</table>
Table 2. Variants detected by the erythrocytosis gene panel, known to cause erythrocytosis

<table>
<thead>
<tr>
<th>Chr</th>
<th>Position</th>
<th>Ref</th>
<th>Alt</th>
<th>Gene</th>
<th>Variant type</th>
<th>cDNA Change</th>
<th>Protein Change</th>
<th>Genotype</th>
<th>No of cases</th>
<th>Mechanism of action</th>
<th>Previous Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10191605</td>
<td>C</td>
<td>T</td>
<td>VHL</td>
<td>SNV</td>
<td>c.598C>T</td>
<td>p.R200W</td>
<td>Het*</td>
<td>4</td>
<td>Loss of function (decreased HIF binding & hydroxylation, enhances HIF-regulated gene expression)</td>
<td>Ang et al 2002(40)</td>
</tr>
<tr>
<td>9</td>
<td>5070025</td>
<td>CAA</td>
<td>ATT</td>
<td>JAK2</td>
<td>SNV</td>
<td>c.1615_1616invAA</td>
<td>p.K539L</td>
<td>Het</td>
<td>1</td>
<td>Gain of function of JAK2 (K539L)</td>
<td>Scott et al. 2007(6)</td>
</tr>
<tr>
<td>11</td>
<td>5246832</td>
<td>T</td>
<td>G</td>
<td>HBB</td>
<td>SNV</td>
<td>c.440A>C</td>
<td>p.H147P</td>
<td>Het</td>
<td>1</td>
<td>High oxygen affinity Hb (Hb York)</td>
<td>Misgeld et al 2001(36)</td>
</tr>
<tr>
<td>11</td>
<td>5247816</td>
<td>C</td>
<td>G</td>
<td>HBB</td>
<td>SNV</td>
<td>c.306G>C</td>
<td>P.E102D</td>
<td>Het</td>
<td>1</td>
<td>High oxygen affinity Hb (Hb Potomac)</td>
<td>Charache et al 1978(33)</td>
</tr>
<tr>
<td>12</td>
<td>111856571</td>
<td>G</td>
<td>C</td>
<td>SH2B3</td>
<td>SNV</td>
<td>c.622G>C</td>
<td>P.E208Q</td>
<td>Het</td>
<td>1</td>
<td>Enhances JAK2</td>
<td>Spolverini</td>
</tr>
</tbody>
</table>

Official gene symbols according to HUGO Gene Nomenclature Committee are given here. Other gene symbols used frequently in the literature are: HIF2A (EPAS1), PHD2 (EGLN1), PHD1 (EGLN2), PHD3 (EGLN3), FIH (HIF1AN), LNK (SH2B3), DEC2 (BHLHE41).
Official gene symbols according to HUGO Gene Nomenclature Committee are given here. Other gene symbols used frequently in the literature are: *HIF2A* (*EPAS1*), *LNK* (*SH2B3*). Chr indicates chromosome; Ref, reference allele; Alt, alternate allele; SNV, single nucleotide variant; Het, heterozygous; Hom, homozygous; and Hb, hemoglobin. * This variant causes Chuvash polycythemia in the homozygous state. In one of the patients, this variant was discovered in this study, whereas the other 3 had been detected in previous genetic tests.

Table 3. Novel variants detected by the erythrocytosis gene panel

<table>
<thead>
<tr>
<th>Chr</th>
<th>Position</th>
<th>Ref</th>
<th>Alt</th>
<th>Gene</th>
<th>Variant type</th>
<th>cDNA Change</th>
<th>Protein Change</th>
<th>Geno type</th>
<th>No of cases</th>
<th>SIFT/ Polyphen Score</th>
<th>Allele freq.: dbSNP142 ExAC</th>
<th>Evidence of causality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231556799</td>
<td>A</td>
<td>G</td>
<td>EGLN1</td>
<td>SNV</td>
<td>c.T836C</td>
<td>p.L279P</td>
<td>Het</td>
<td>1</td>
<td>D/D</td>
<td>Not found</td>
<td>Not found</td>
</tr>
<tr>
<td>2</td>
<td>46607405</td>
<td>T</td>
<td>C</td>
<td>EPAS1</td>
<td>SNV</td>
<td>c.T1594C</td>
<td>p.Y532H</td>
<td>Het</td>
<td>2</td>
<td>D/D</td>
<td>Not found</td>
<td>Not found</td>
</tr>
<tr>
<td>3</td>
<td>10183685</td>
<td>G</td>
<td>T</td>
<td>VHL</td>
<td>SNV</td>
<td>c.G154T</td>
<td>p.E52X</td>
<td>Het</td>
<td>1</td>
<td>T/NA</td>
<td>Not found</td>
<td>4.16E-05</td>
</tr>
<tr>
<td>7</td>
<td>100319185</td>
<td>TC</td>
<td>T</td>
<td>EPO</td>
<td>deletion</td>
<td>c.19delC</td>
<td>p.P7fs</td>
<td>Het</td>
<td>1</td>
<td>NA/NA</td>
<td>Not found</td>
<td>Not found</td>
</tr>
<tr>
<td>2</td>
<td>46574031</td>
<td>AAGG</td>
<td>A</td>
<td>EPAS1</td>
<td>deletion</td>
<td>c.47delAGG</td>
<td>p.del17E</td>
<td>Het</td>
<td>1</td>
<td>NA/NA</td>
<td>Not found</td>
<td>Not found</td>
</tr>
<tr>
<td>7</td>
<td>100320336</td>
<td>A</td>
<td>G</td>
<td>EPO</td>
<td>SNV</td>
<td>c.A296G</td>
<td>p.E99G</td>
<td>Het</td>
<td>1</td>
<td>D/D</td>
<td>Not found</td>
<td>Not found</td>
</tr>
<tr>
<td>9</td>
<td>5050747</td>
<td>A</td>
<td>T</td>
<td>JAK2</td>
<td>SNV</td>
<td>c.A530T</td>
<td>p.E177V</td>
<td>Het</td>
<td>1</td>
<td>D/D</td>
<td>Not found</td>
<td>Not found</td>
</tr>
<tr>
<td>12</td>
<td>111885466</td>
<td>C</td>
<td>T</td>
<td>SH2B3</td>
<td>SNV</td>
<td>c.C1243T</td>
<td>p.R415C</td>
<td>Hom</td>
<td>1</td>
<td>D/D</td>
<td>Not found</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>2</td>
<td>46611651</td>
<td>T</td>
<td>C</td>
<td>EPAS1</td>
<td>SNV</td>
<td>c.T2465C</td>
<td>p.M822T</td>
<td>Het</td>
<td>1</td>
<td>D/B</td>
<td>Not found</td>
<td>8.24E-06</td>
</tr>
<tr>
<td>3</td>
<td>10183605</td>
<td>C</td>
<td>T</td>
<td>VHL</td>
<td>SNV</td>
<td>c.C74T</td>
<td>p.P251L</td>
<td>Het</td>
<td>2</td>
<td>D/B</td>
<td>Not found</td>
<td>4.00E-04</td>
</tr>
<tr>
<td>7</td>
<td>100320290</td>
<td>G</td>
<td>C</td>
<td>EPO</td>
<td>SNV</td>
<td>c.G250C</td>
<td>p.G84R</td>
<td>Het</td>
<td>2</td>
<td>T/D</td>
<td>Not found</td>
<td>5.17E-03</td>
</tr>
<tr>
<td>7</td>
<td>134346563</td>
<td>C</td>
<td>A</td>
<td>BPGM</td>
<td>SNV</td>
<td>c.C304A</td>
<td>p.Q102K</td>
<td>Het</td>
<td>1</td>
<td>D/B</td>
<td>Not found</td>
<td>8.04E-05</td>
</tr>
</tbody>
</table>

External database reference:
- McMullin et al 2011(39)
- Spolverini et al(38)
<table>
<thead>
<tr>
<th>Chr</th>
<th>Position</th>
<th>Ref</th>
<th>Alt</th>
<th>Gene</th>
<th>Mutation</th>
<th>Type</th>
<th>Effect</th>
<th>P-value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5022168</td>
<td>G</td>
<td>A</td>
<td>JAK2</td>
<td>c.G181A</td>
<td>Het</td>
<td>1/T/B</td>
<td>Not found</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5054775</td>
<td>G</td>
<td>C</td>
<td>JAK2</td>
<td>c.G827C</td>
<td>Het</td>
<td>1/T/B</td>
<td>Not found</td>
<td>8.29E-06</td>
</tr>
<tr>
<td>9</td>
<td>5072561</td>
<td>G</td>
<td>A</td>
<td>JAK2</td>
<td>c.G1711A</td>
<td>Het</td>
<td>1/T/D</td>
<td>7.4 E-04</td>
<td>4.81E-04</td>
</tr>
<tr>
<td>12</td>
<td>26276001</td>
<td>A</td>
<td>C</td>
<td>BHLHE41</td>
<td>c.T447G</td>
<td>Het</td>
<td>1/T/B</td>
<td>Not found</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>58109559</td>
<td>G</td>
<td>A</td>
<td>OS9</td>
<td>c.G497A</td>
<td>Het</td>
<td>1/T/D</td>
<td>Not found</td>
<td>3.42E-05</td>
</tr>
<tr>
<td>19</td>
<td>46811511</td>
<td>A</td>
<td>C</td>
<td>HIF3A</td>
<td>c.A190C</td>
<td>Het</td>
<td>1/D/B</td>
<td>Not found</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>46823777</td>
<td>C</td>
<td>A</td>
<td>HIF3A</td>
<td>c.C896A</td>
<td>Het</td>
<td>1/T/B</td>
<td>0.00066</td>
<td>7.93E-04</td>
</tr>
</tbody>
</table>

Official gene symbols according to HUGO Gene Nomenclature Committee are given here. Other gene symbols used frequently in the literature are: HIF2A (EPAS1), PHD2 (EGLN1), PHD1 (EGLN2), LNK (SH2B3), DEC2 (BHLHE41). Chr indicates chromosome; Ref, reference allele; Alt, alternate allele; SNV, single nucleotide variant; Het, heterozygous; Hom, homozygous; D/, deleterious by SIFT; T/, tolerated by SIFT; /D, probably damaging by Polyphen2 HDIV; /P, possibly damaging by Polyphen2 HDIV; /B, benign by Polyphen2 HDIV; NA, non-applicable. ExAc: Exome Aggregation Consortium, Cambridge, MA (http://exac.broadinstitute.org). * JAK2 G751S has been reported previously in myeloproliferative disorders(46) but it is thought to be a silent non-functioning polymorphism; indeed, it was subsequently detected in the unaffected mother of the patient in our study by sanger sequencing, supporting this possibility.