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Abstract

We focus on complex 3 × 3 matrices whose indefinite numerical ranges have a flat portion on the
boundary. The results here obtained are parallel to those of Keeler, Rodman and Spitkovsky for the classical
numerical range.
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1. Introduction

For J = Ir ⊕ −In−r (0 < r < n), where Im denotes the identity matrix of order m, con-
sider Cn endowed with the Krein structure defined by the indefinite inner product 〈ξ1, ξ2〉J =
ξ∗

2 Jξ1, ξ1, ξ2 ∈ Cn. Let Mn be the algebra of n× n complex matrices. The J -numerical range
of A ∈ Mn is defined as
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WJ (A) =
{
ξ∗JAξ
ξ∗Jξ

: ξ ∈ Cn, ξ∗Jξ /= 0

}
.

If J = ±In, then WJ (A) reduces to the well-known classical numerical range of A, usually
denoted by W(A).

ForA ∈ Mn,W(A) is a compact and convex set [5], butWJ (A)may not be closed and is either
unbounded or a singleton [8,9,10,12]. On the other hand, WJ (A) is the union of the convex sets

WJ (A) = W+
J (A) ∪W+

−J (A),
where

W±
J (A) = {

ξ∗JAξ : ξ ∈ Cn, ξ∗Jξ = ±1
}

and W+
−J (A) = −W−

J (A) [10,12].
ForA ∈ Mn, we haveWJ (αIn + βA) = α + βWJ (A), α, β ∈ C. A matrixA can be uniquely

expressed as A = HJ + iKJ , whereHJ = (A+ JA∗J )/2 andKJ = (A− JA∗J )/(2i) are J -
Hermitian matrices, that is,HJ = J (HJ )∗J andKJ = J (KJ )∗J . Denoting by Re S and Im S the
projection of S ⊆ C on the real and imaginary axes, respectively, we have ReWJ (A) = WJ (H

J )

and ImWJ (A) = WJ (K
J ).

The supporting lines ofWJ (A) are the supporting lines of the convex setsW+
J (A) andW+

−J (A).
In [1,12], it was proved that if ux + vy + w = 0 is the equation of a supporting line of W+

J (A)

(W+
−J (A)), then the polynomial of Kippenhahn, FJA(u, v,w) = det(uHJ + vKJ + wIn), satis-

fies

FJA(u, v,w) = 0. (1)

Eq. (1), with u, v,w viewed as homogeneous line coordinates, defines an algebraic curve of class
n on the complex projective plane P2(C) and its n real foci are the eigenvalues of A [3]. The
real affine part of this curve is denoted by CJ (A) and called the associated curve of WJ (A). If
J = ±In, CJ (A) is simply denoted by C(A) and generates W(A) as its convex hull [7]. The
relation between CJ (A) and WJ (A) is described in [2,3]. For the degenerate cases, WJ (A) may
be a singleton, a line, a subset of a line, the whole complex plane, or the complex plane except a
line. For the nondegenerate cases,WJ (A) is the pseudo-convex hull of CJ (A) defined as follows.
LetX = X+ ∪X− be a nonempty subset of C, such thatX+ ⊆ W+

J (A) andX− ⊆ W+
−J (A). For

any pair of points p, q in X+, or in X−, take the closed line segment [p, q], and for any pair of
points p, q produced by vectors with J -norms of opposite sign take the two half-rays of the line
defined by them with endpoints p, q. The set so obtained is called the pseudo-convex hull of X,
denoted by PC[X].

A matrix A is essentially J -Hermitian if there exist α, β ∈ C such that αA+ βIn is J -Her-
mitian. Obviously, a matrix A is essentially J -Hermitian if and only WJ (A) is a subset of a line.
Let A be a non-essentially J -Hermitian matrix. Suppose that the straight line

� = {(x, y) ∈ R2: ax + by + c = 0, a, b, c ∈ R}
is a supporting line of WJ (A). Let �WJ (A) denote the boundary of WJ (A). If � ∩ �WJ (A)

contains more than one point, � ∩ �WJ (A) is called a flat portion on the boundary of WJ (A).
The definition of flat portions on �W+

J (A) (or on �W+
−J (A)) is analogous. A matrix U ∈ Mn is

J -unitary ifU−1 = JU∗J and all n× n J -unitary matrices form a group denoted by Ur,n−r . For
anyU ∈ Ur,n−r , we haveWJ (A) = WJ (U

−1AU). We say that a matrixA is J -unitarily reducible
if there exists a J -unitary matrixU ∈ Ur,n−r such thatU−1AU = A1 ⊕ A2,U−1JU = J1 ⊕ J2,
where A1, J1 ∈ Mm, m /= 0, n, and we have WJ (A) = PC[WJ1(A1) ∪WJ2(A2)].
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For a J -unitarily reducible matrix, the existence of flat portions on the boundary of its J -
numerical range is a common occurrence. If A is J -normal with anisotropic eigenvectors, that
is, eigenvectors ξ such that ξ∗Jξ /= 0, then WJ (A) is the pseudo-convex hull of the eigenvalues
of A [2] and flat portions appear on �WJ (A). The smallest value of n for which there exist J -
unitarily irreducible matrices whose numerical ranges have a flat portion on �WJ (A) is n = 3,
and henceforth we concentrate on this case.

For A ∈ M2, the elliptical range theorem [11] states that W(A) is an elliptical disc (possibly
degenerate) whose foci are the eigenvalues α1 and α2 of A, being the major and minor axis of
length

√
Tr(A∗A)− 2 Re(α1α2) and

√
Tr(A∗A)− |α1|2 − |α2|2,

respectively. In the indefinite case, for A ∈ M2 and J = diag(1,−1), the hyperbolical range
theorem [1] states that WJ (A) is bounded by the hyperbola (possibly degenerate) with foci at α1
and α2, and transverse and non-transverse axis of length

√
Tr(JA∗JA)− 2 Re(α1α2) and

√
|α1|2 + |α2|2 − Tr(JA∗JA),

respectively.
The description of WJ (A), when A ∈ Mn and n > 2, is in general difficult. In certain cases,

WJ (A) is still an hyperbola and its interior, independently of the size of A. The 3 × 3 case
was studied in [3] using the classification of CJ (A) based on the factorability of FJA(u, v,w).
However, a constructive procedure allowing us to determine the shape of WJ (A) for an arbitrary
matrix A ∈ M3 is not provided. In Section 2, we investigate J -unitarily irreducible matrices in
M3 having a flat portion on the boundary of the J -numerical range. In Section 3, we determine
WJ (A) for upper triangular matrices A ∈ M3. The particularly simple case of triangular matrices
with one-point spectrum is discussed. The results obtained here are inspired by those obtained by
Keeler et al. for the classical numerical range [6].

2. J-unitarily irreducible 3 × 3 matrices with a flat portion on �WJ (A)

A flat portion on the boundary of the J -numerical range may be a (closed) line segment, two
(closed) half-lines of the same line, a (closed) half-line or a whole line. The proof of the next
result uses well-known formulas for the maximum number of singularities of an algebraic curve
of order n (see, for example, [4, p. 49]).

Proposition 1. For A ∈ Mn, with n > 2, the number of flat portions lJ (A) on �WJ (A) is less
than or equal to n(n− 1)/2. If FJA(u, v,w) is irreducible, then

lJ (A) � (n− 1)(n− 2)

2
.

Proof. Each line originating a flat portion on �WJ (A),A ∈ Mn, is a flexional tangent or a multiple
tangent of CJ (A). By dual considerations, we obtain a singular point of the dual curve of CJ (A).
Since CJ (A) is a curve of class n, its dual curve has order n and the number of its singularities
is less than or equal to n(n− 1)/2. For an irreducible curve of order n, the upper bound is
(n− 1)(n− 2)/2. �
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Proposition 2. Let A = HJ + iKJ ∈ Mn. If �WJ (A) contains a flat portion, then for a cer-
tain real direction (u, v), u = cos θ, v = sin θ, θ ∈ R, the matrix uHJ + vKJ has a multiple
eigenvalue.

Proof. By a translation and a rotation, we consider the flat portion on the imaginary axis. The
imaginary axis defines a flat portion on �WJ (A) if and only if it is a flexional tangent of CJ (A) or
a multiple tangent of the associated curve (at least) at two distinct points (the points can be finite
or infinite, real or complex). Consider the dual curve of CJ (A), defined in homogeneous point
coordinates by

FJA(x, y, t) = det(xHJ + yKJ + tIn) = 0.

By dual considerations, if x = 0 is a flexional or a multiple tangent of CJ (A), then (1:0:0) is a
singular point of the dual curve, with multiplicity m � 2. It follows that

FJA(1, 0, 0) = �FJA
�t

(1, 0, 0) = · · · = �m−1FJA

�tm−1
(1, 0, 0) = 0,

which implies that the coefficients xn, xn−1t , …, xn−(m−1)tm−1 of the polynomial FJA(x, y, t)
vanish. Analyzing the solutions of the secular equation det(HJ − λIn) = 0, we conclude that 0
is an eigenvalue of HJ with multiplicity at least m. �

Throughout this section we assume that J = diag(1, 1,−1), and that A ∈ M3 is a J -unitarily
irreducible matrix written as A = HJ + iKJ , where HJ and KJ are J -Hermitian matrices. To
avoid trivial cases we also assume that A is not essentially J -Hermitian.

Theorem 1. LetJ = diag(1, 1,−1) and letA ∈ M3 be aJ -unitarily irreducible matrix. IfWJ (A)

has a line segment on its boundary, then it lies on �W+
J (A). Analogously, if there exists a single

half-line on �WJ (A), then it lies on �W+
J (A).

Proof. We prove (by contradiction) that the line segment on �WJ (A) necessarily belongs to
�W+

J (A). Indeed, assume thatW+
−J (A) contains this line segment. After translation, rotation, and

scaling of A, we may assume that the line segment has endpoints 0 and i. By Proposition 2, 0 is
an eigenvalue ofHJ with multiplicity at least 2. There exists e3 ∈ Cn such that e∗3Je3 = −1 and
HJ e3 = 0. Consider also two vectors e1, e2 ∈ Cn, e∗1Je1 = e∗2Je2 = 1, such that {e1, e2, e3} is
a J -orthogonal basis of C3. The matrix representation of JHJ in this basis is⎡

⎣a c 0
c̄ b 0
0 0 0

⎤
⎦ , a, b ∈ R, c ∈ C,

where ab = |c|2 /= 0, because A is not essentially J -Hermitian. Hence, under a J -unitary simi-
larity transformation JHJ may be written as

JHJ =
⎡
⎣a

′ 0 0
0 0 0
0 0 0

⎤
⎦

with a′ = a + b. The quadratic form ξ∗JHJ ξ vanishes if and only if ξ = (0, ζ, η) ∈ C3. Let
S be the subspace generated by e2, e3, and denote by A′ ∈ M2 the restriction of A to S. For
J ′ = diag(1,−1), WJ ′(A′) may be the real line, the real line except a point, or two half-rays.
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Henceforth, it may not degenerate either to a half-line or to a line segment. Hence, [0, i] is
contained in the boundary of W+

J (A).
To prove the second part of the theorem, we may suppose that the flat portion on �WJ (A) is

contained on the positive imaginary axis, and analogous arguments hold. �

Next, we derive a canonical form for an irreducible matrix with a closed line segment on the
boundary of the J -numerical range.

Theorem 2. Let J = diag(1, 1,−1) and letA ∈ M3 be J -unitarily irreducible.Under J -unitary
similarity, translation, rotation, and scaling, A may be written in the form

A =
⎡
⎣ i 0 c1

0 0 c2
c1 c2 ψ

⎤
⎦ , (2)

where c1, c2 are positive real numbers and Reψ < 0, if and only if WJ (A) has a closed line
segment on its boundary. In this form, W+

J (A) has the line segment [0, i] as a flat portion and is
contained in the closed right half-plane.

Proof. (⇒) Assume that under J -unitary similarity, translation, rotation, and scaling,A is written
in the form (2). Consider the Hermitian matrices

JHJ =
⎡
⎣0 0 0

0 0 0
0 0 −Reψ

⎤
⎦ and JKJ =

⎡
⎣ 1 0 −ic1

0 0 −ic2
ic1 ic2 −Imψ

⎤
⎦ .

Since Reψ < 0, we have W+
−J (HJ ) =] − ∞,Reψ], W+

J (H
J ) = [0,+∞[, and so W+

J (A) is

entirely contained in the right half-plane. Furthermore, ξ∗JHJ ξ vanishes if ξ = (ζ, η, 0) ∈ C3

and we get

ξ∗JKJ ξ

ξ∗Jξ
= |ζ |2

|ζ |2 + |η|2 .

Thus, the interval [0, 1] is described, and so the line segment [0, i] is contained inW+
J (A), being

the imaginary axis a supporting line of W+
J (A).

(⇐) LetW+
J (A) have a closed line segment as a flat portion on its boundary. After translation,

rotation and scaling, we may assume that this line segment is [0, i]. By Proposition 2, 0 is an
eigenvalue of HJ with multiplicity at least 2. There exists e1 ∈ Cn such that e∗1Je1 = 1 and
HJ e1 = 0. Consider two vectors e2, e3 ∈ Cn, e∗2Je2 = 1, e∗3Je3 = −1, such that {e1, e2, e3} is a
J -orthogonal basis of C3. In this basis, the matrix representation of JHJ is

JHJ =
⎡
⎣0 0 0

0 a c

0 c̄ b

⎤
⎦ , (3)

where a, b are real and c is a complex number satisfying ab = |c|2. Since A is not an essentially
J -Hermitian matrix, it is clear that JHJ /= 0, and so |c| /= 0. We prove (by contradiction) that
|a| /= |c|. Let |a| = |c| and without loss of generality we may suppose c > 0. Two possibilities
may occur: a = b = c or a = b = −c. Assume that a = b = c. Since we have ξ∗JHJ ξ = 0 if
ξ = (1, η,−η) ∈ C3, consider the matrix representation of JKJ in the basis {e1, e2, e3}
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JKJ =
⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ , α, β, γ ∈ R, ν1, ν2, ν3 ∈ C

and the function

f (ξ) :=ξ∗JKJ ξ = α + (β + γ − 2 Im ν3)|η|2 + 2|η||ν1 − ν2| sin φ,

where φ = arg η + arg(ν1 − ν2). This function reduces to a point if β + γ − 2 Im ν3 = 0 and
ν1 − ν2 = 0, describes the whole real line ifβ + γ − 2 Im ν3 = 0 and ν1 − ν2 /= 0, and a half-line
of the real line if β + γ − 2 Im ν3 /= 0. However, a line segment is never produced, contradicting
the hypothesis. Then |a| /= |c|, and so in a certain basis the matrix (3) is either of the form

JHJ =
⎡
⎣0 0 0

0 a′ 0
0 0 0

⎤
⎦ (4)

or of the form

JHJ =
⎡
⎣0 0 0

0 0 0
0 0 −a′

⎤
⎦ (5)

with a′ = a − b. It can be easily seen that the form (4) leads to a contradiction, because it is
incompatible with the existence of a line segment on the boundary. Hence, we necessarily have
(5). Thus, W+

J (H
J ) = [0,+∞[ and W+

−J (HJ ) =] − ∞,−a′], being −a′ < 0 since W+
J (A) is

contained in the closed right half-plane.
The quadratic form ξ∗JHJ ξ vanishes for ξ = (ζ, η, 0) ∈ C3. LetA′ be the principal submatrix

of

A = HJ + iKJ =
⎡
⎣0 0 0

0 0 0
0 0 −a′

⎤
⎦ + i

⎡
⎣ α −iν1 −iν2

iν1 β −iν3
−iν2 −iν3 −γ

⎤
⎦ ,

α, β, γ ∈ R, ν1, ν2, ν3 ∈ C, in the first two rows and columns and let J ′ = diag(1, 1). Observe that

WJ ′(A′), which is a subset ofWJ (A), is a line segment with endpoints i

(
α+β

2 ±
√
(α−β)2

4 + |ν1|2
)

.

If α = 1, β = 0, ν1 = 0, then this line segment is [0, i], and

A = HJ + iKJ =
⎡
⎣ i 0 ν2

0 0 ν3
ν2 ν3 −a′ − iγ

⎤
⎦ ,

where −a′ < 0. Without loss of generality, we may assume that c1 = ν2 > 0, c2 = ν3 > 0. Hence,
A is of the asserted form. �

If �WJ (A) has a flat portion constituted by two half-lines of the same line, then one of the
half-lines must be contained in �W+

J (A) and the other one in �W+
−J (A). This is an obvious

consequence of the convexity of W+
J (A) and W+

−J (A).

Theorem 3. Let J = diag(1, 1,−1) and letA ∈ M3 be J -unitarily irreducible.Under J -unitary
similarity, translation, rotation, and scaling, A may be written in the form

A =
⎡
⎣a + iα b c

−b i 0
c 0 0

⎤
⎦ , (6)
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where α ∈ R and a, b, c > 0, if and only if WJ (A) has two closed half-lines of the same line on
its boundary. In this form, W+

J (A) is contained in the closed right half-plane, the half-line of
the positive imaginary axis with endpoint i is contained in �W+

J (A), while the closed negative
imaginary axis belongs to �W+

−J (A).

Proof. (⇒) Let A be of the asserted form. Then

JHJ =
⎡
⎣a 0 0

0 0 0
0 0 0

⎤
⎦ and JKJ =

⎡
⎣α −ib −ic

ib 1 0
ic 0 0

⎤
⎦ .

Since a > 0, we haveW+
J (H

J ) = [0,+∞[,W+
−J (HJ ) =] − ∞, 0]. On the other hand, ξ∗JHJ ξ

vanishes if ξ = (0, ζ, η) ∈ C3. For ξ of the above form, we obtain

ξ∗JKJ ξ

ξ∗Jξ
= |ζ |2

|ζ |2 − |η|2 .
If ξ∗Jξ < 0 this quotient describes ] − ∞, 0], while if ξ∗Jξ > 0 it describes the interval [1,+∞[.
Thus, W+

J (A) is contained in the closed right half-plane and the asserted half-line is contained
in this set. On the other hand, W+

−J (A) is contained in the closed left half-plane and the negative
imaginary axis belongs to this set.

(⇐) Without loss of generality, we may assume that WJ (A) has the asserted closed half-lines
on its boundary. Let {e1, e2, e3} be a J -orthogonal basis of C3 satisfying HJ e2 = 0, e∗1Je1 =
e∗2Je2 = 1, e∗3Je3 = −1. Consider the matrix representation of JHJ in this basis

JHJ =
⎡
⎣a 0 c

0 0 0
c̄ 0 b

⎤
⎦ ,

where a, b are real and c is a complex number obeying ab = |c|2. By the same technique used in
Theorem 2, we necessarily have |a| /= |c|, and so the principal submatrix of HJ in the first and
third rows and columns has the eigenvalues 0 and a − b, with two linearly independent anisotropic
associated eigenvectors, and therefore, it can be diagonalized by a J -unitary similarity. Thus, in
a proper basis

JHJ =
⎡
⎣a

′ 0 0
0 0 0
0 0 0

⎤
⎦ (7)

or

JHJ =
⎡
⎣0 0 0

0 0 0
0 0 −a′

⎤
⎦ (8)

with a′ = a − b. It can be easily seen that the form (8) leads to a contradiction, because it is
incompatible with the existence of two half-rays on the boundary ofWJ (A), and so we necessarily
have (7). Thus, W+

J (H
J ) = [0,+∞[ and W+

−J (HJ ) =] − ∞, 0], being a′ > 0 since W+
J (A) is

contained in the closed right half-plane. Let

JKJ =
⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ , α, β, γ ∈ R, ν1, ν2, ν3 ∈ C.
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Now, let J ′ = diag(1,−1) and consider the 2 × 2 principal submatrix of A = HJ + iKJ

A′ = i

[
β −iν3

−iν3 −γ
]
.

By the hyperbolical range theorem, WJ ′(A′) reduces to two half-rays on the imaginary axis with

endpoints i

(
β−γ

2 ±
√
(β+γ )2

4 − |ν3|2
)

. These endpoints coincide with 0 and i when we choose

a basis such that β = 1, γ = 0, ν3 = 0. �

Now we investigate the existence of a whole line in �W+
J (A), and derive a canonical form for

A.

Theorem 4. Let J = diag(1, 1,−1) and letA ∈ M3 be J -unitarily irreducible.Under J -unitary
similarity, translation, and rotation, A may be written in the form

A =
⎡
⎣ 0 ν1 ν2

−ν1 a′ + iβ ν3
ν2 ν3 0

⎤
⎦ , (9)

where ν1, ν3 ∈ C, ν2 ∈ C\{0}, β ∈ R, a′ > 0, or in the form

A =
⎡
⎣ iα ν1 ν2

−ν1 a + iβ −a + ν3
ν2 a + ν3 −a − iγ

⎤
⎦ , (10)

where ν1, ν2, ν3 ∈ C, α, β, γ ∈ R, a > 0, β + γ + 2 Im ν3 = 0, ν1 + ν2 /= 0, if and only if
�W+

J (A) coincides with a line. In these forms,W+
J (A) is contained in the closed right half-plane,

being the imaginary axis the boundary of W+
J (A).

Proof. (⇒) According to the hypothesis, for A in the form (9) we have

JHJ =
⎡
⎣0 0 0

0 a′ 0
0 0 0

⎤
⎦ and JKJ =

⎡
⎣ 0 −iν1 −iν2

iν1 β −iν3
iν2 iν3 0

⎤
⎦ .

Sincea′ > 0, we haveW+
J (H

J ) = [0,+∞[ andW+
−J (HJ ) =] − ∞, 0]. Moreover, ξ∗JHJ ξ = 0

when ξ = (ζ, 0, η) ∈ C3 and the quotient

ξ∗JKJ ξ

ξ∗Jξ
= 2|ν2||ζ ||η| sin θ

|ζ |2 − |η|2 ,

θ = arg ν2 − arg ζ + arg η, describes the real line when ζ, η range over C since by hypothesis
ν2 /= 0.

For A in the form (10), we have

JHJ =
⎡
⎣0 0 0

0 a −a
0 −a a

⎤
⎦ and JKJ =

⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ .

Since a > 0, then W+
J (H

J ) = [0,+∞[ and W+
−J (HJ ) =] − ∞, 0[. Moreover, ξ∗JHJ ξ = 0 if

ξ = (1, η, η) ∈ C3, and so

ξ∗JKJ ξ

ξ∗Jξ
= α + (β + γ + 2 Im ν3)|η|2 + 2|ν1 + ν2||η| sin φ,
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φ = arg(ν1 + ν2)+ arg η, describes the real line when η ∈ C, since by hypothesis the coefficient
of |η|2 is zero and |ν1 + ν2| /= 0.

(⇐) Suppose that �W+
J (A) coincides with the imaginary axis. Let e1 ∈ C3 such thatHJ e1 = 0,

e∗1Je1 = 1. Consider the matrix representation of JHJ in the J -orthogonal basis {e1, e2, e3}⎡
⎣0 0 0

0 a c

0 c̄ b

⎤
⎦ ,

where a, b are real and c is a complex number satisfying ab = |c|2. If we have |a| /= |c|, then in
a proper basis JHJ may be taken either in the form

JHJ =
⎡
⎣0 0 0

0 0 0
0 0 −a′

⎤
⎦

or in the form

JHJ =
⎡
⎣0 0 0

0 a′ 0
0 0 0

⎤
⎦ ,

where a′ = a − b. The first case leads to a contradiction, because it gives rise to a line segment
on the boundary. In the second case, we have, for a′ > 0, W+

J (H
J ) = [0,+∞[, W+

−J (HJ ) =
] − ∞, 0], and ξ∗JHJ ξ = 0 if ξ = (ζ, 0, η) ∈ C3. Let

JKJ =
⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ , α, β, γ ∈ R, ν1, ν2, ν3 ∈ C

and consider the principal submatrix of A = HJ + iKJ

A′ =
[

iα ν2
ν2 −iγ

]
.

For J ′ = diag(1,−1), thenWJ ′(A′) is the imaginary axis if (α + γ )2 − 4|ν2|2 < 0, and without
loss of generality we may take α = γ = 0, ν2 /= 0, and so

A =
⎡
⎣ 0 ν1 ν2

−ν1 a′ + iβ ν3
ν2 ν3 0

⎤
⎦ .

If |a| = |c|, then JHJ may be taken in the form

JHJ =
⎡
⎣0 0 0

0 a −a
0 −a a

⎤
⎦ .

For a > 0, we get W+
J (H

J ) = [0,+∞[, W+
−J (HJ ) =] − ∞, 0[. On the other hand, if ξ =

(1, η, η) ∈ C3 then ξ∗JHJ ξ = 0. Let

JKJ =
⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ , α, β, γ ∈ R, ν1, ν2, ν3 ∈ C
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and

f (ξ) := ξ∗JKJ ξ

ξ∗Jξ
= α + (β + γ + 2 Im ν3)|η|2 + 2|η||ν1 + ν2| sin φ,

where φ = arg η + arg(ν1 + ν2) ∈ R. This function describes the imaginary axis if β + γ +
2 Im ν3 = 0 and ν1 + ν2 /= 0. Hence, A has the asserted form. �

We note that if A is of the form (9), then the imaginary axis is also a flat portion on �W+
−J (A).

However, this is not true when A is of the form (10).
Now we investigate the existence of a single half-line on �W+

J (A) contained in the closed right
half-plane, and derive a canonical form for A.

Theorem 5. Let J = diag(1, 1,−1) and letA ∈ M3 be J -unitarily irreducible.Under J -unitary
similarity, translation, and rotation, A may be written in the form

A =
⎡
⎣ iα ν1 ν2

−ν1 a + iβ −a + ν3
ν2 a + ν3 −a − iγ

⎤
⎦ , (11)

where ν1, ν2, ν3 ∈ C, α, β, γ ∈ R, a > 0, β + γ + 2 Im ν3 > 0, and

α = |ν1 + ν2|2
β + γ + 2 Im ν3

,

if and only if WJ (A) has one closed half-line on its boundary. In this form, W+
J (A) has the

positive imaginary axis as a flat portion and is contained in the closed right half-plane.

Proof. (⇒) According to the hypothesis

JHJ =
⎡
⎣0 0 0

0 a −a
0 −a a

⎤
⎦ and JKJ =

⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ .

Since a > 0, it follows thatW+
J (H

J ) = [0,+∞[,W+
−J (HJ ) =] − ∞, 0[. We have ξ∗JHJ ξ = 0

for ξ = (1, η, η) ∈ C3, and we easily obtain

f (ξ) := ξ∗JKJ ξ

ξ∗Jξ
= α + (β + γ + 2 Im ν3)|η|2 + 2|η||ν1 + ν2| sin φ,

where φ = arg η + arg(ν1 + ν2). This function ranges over the positive imaginary axis because
β + γ + 2 Im ν3 is positive and α = |ν1 + ν2|2/(β + γ + 2 Im ν3).

(⇐) Let the positive imaginary axis be a flat portion on �W+
J (A). Let e1 ∈ C3 be such that

HJ e1 = 0, e∗1Je1 = 1. Consider the matrix representation of JHJ in the J -orthogonal basis
{e1, e2, e3}⎡

⎣0 0 0
0 a c

0 c̄ b

⎤
⎦ ,

where a, b are real and c is a complex number satisfying ab = |c|2. We cannot have |a| /= |c|,
because under this assumption we are lead to the cases treated in Theorems 2,3,4. Thus, |a| = |c|
and in a proper basis



N. Bebiano et al. / Linear Algebra and its Applications 428 (2008) 2863–2879 2873

JHJ =
⎡
⎣0 0 0

0 a −a
0 −a a

⎤
⎦ .

For a > 0, we get W+
J (H

J ) = [0,+∞[, W+
−J (HJ ) =] − ∞, 0[. Let

JKJ =
⎡
⎣ α −iν1 −iν2

iν1 β −iν3
iν2 iν3 γ

⎤
⎦ , α, β, γ ∈ R, ν1, ν2, ν3 ∈ C.

We easily find that ξ∗JHJ ξ = 0 for ξ = (1, η, η) ∈ C3, and we obtain

f (ξ) := ξ∗JKJ ξ

ξ∗Jξ
= α + (β + γ + 2 Im ν3)|η|2 + 2|η||ν1 + ν2| sin φ

with φ = arg η + arg(ν1 + ν2) ∈ R. If β + γ + 2 Im ν3 > 0, then f (ξ) describes a half-line of
the form [b′,+∞[. Taking α = |ν1 + ν2|2/(β + γ + 2 Im ν3), we have b′ = 0. �

3. WJ (A) for J-unitarily reducible 3 × 3 triangular matrices

We denote by Tr C2(B) the sum of the 2 × 2 principal minors of a matrix B. Easy calculations
show that:

Lemma 1. For A = HJ + iKJ ∈ M3 and J = Ir ⊕ −I3−r (0 � r � 3)

F JA (u, v,w)= w3 + det(HJ )u3 + det(KJ )v3 + Re Tr(A)uw2 + Im Tr(A)vw2

+ Im Tr C2(A)uvw + Tr C2(H
J )u2w + Tr C2(K

J )v2w

+ [det(HJ )− Re det(A)]uv2 + [det(KJ )+ Im det(A)]u2v.

If A ∈ M3 is J -unitarily reducible, then there exists a matrix U ∈ U2,1 such that U−1AU =
A1 ⊕ A2, and either the diagonal blockA1 has size 2 – Case 1, or size 1 – Case 2. First we analyze
Case 1.

Theorem 6. Let J = diag(1, 1,−1) and let

A =
⎡
⎣a d e

0 b f

0 0 c

⎤
⎦ ∈ M3.

The associated curve CJ (A) is the union of the ellipse E(possibly degenerating into a disk) with
foci a, b, minor axis of length s, and the point c if and only if

(1) s2 = |d|2 − |e|2 − |f |2 > 0 and
(2) s2c = c|d|2 − b|e|2 − a|f |2 + def.

Proof. Consider the matrix

B =
⎡
⎣a s 0

0 b 0
0 0 c

⎤
⎦ , s > 0,
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whose associated curve CJ (B) is the union of the ellipse E with foci a, b, minor axis of length
s, and the point c.

Using Lemma 1, we conclude that the polynomialsFJA(u, v,w) andFJB (u, v,w) have the same
coefficients, except possibly the coefficients of u3, v3, u2w and v2w. Moreover, the coefficients
of u2w and v2w in both polynomials are equal if and only if

s2 = |d|2 − |e|2 − |f |2 > 0.

On the other hand, the corresponding coefficients of u3, v3 are equal if and only if

s2c = c|d|2 − b|e|2 − a|f |2 + dēf.

Hence, conditions (1) and (2) are necessary and sufficient for the matricesA and B to have the
same associated curves. �

Remark 1. To obtain an invariant form of conditions (1) and (2) in Theorem 6, note that

|d|2 − |e|2 − |f |2 = Tr(JA∗JA)− (|a|2 + |b|2 + |c|2); (12)

c|d|2 − b|e|2 − a|f |2 + dēf = (|d|2 − |e|2 − |f |2)TrA− Tr(JA∗JA2)

+ (a|a|2 + b|b|2 + c|c|2). (13)

Thus, the following reformulation holds for conditions (1) and (2) and the theorem holds for
matrices in M3 that are J -unitarily triangularizable:

(1′) s2 = Tr(JA∗JA)− (|a|2 + |b|2 + |c|2) and
(2′) s2c = s2 TrA− Tr(JA∗JA2)+ (a|a|2 + b|b|2 + c|c|2).

Denote by σ+
J (A) (σ

−
J (A)) the set of eigenvalues of A ∈ Mn with associated eigenvectors

with positive (negative) J -norms.

Corollary 1. Under the assumptions of Theorem 6, WJ (A) is a “cone-like” figure (the pseudo-
convex hull of E and c) if and only if c lies outside E; and it is the whole complex plane if and
only if c lies inside E.

Proof. Conditions (1) and (2) are equivalent to CJ (A) being the union of the ellipse E and the
point c.WJ (A) is the pseudo-convex hull of c andE. If c is insideE, thenWJ (A) is the complex
plane, because c ∈ σ−

J (A) and the ellipse is generated by vectors with positive J -norms. If c lies
outside E, then WJ (A) is a “cone-like” figure. �

We observe that under the assumptions on J and A, WJ (A) may be neither an elliptical disk
nor a circular disk. Now we investigate when CJ (A) consists of a hyperbola and a point (Case 2).

Theorem 7. Let J = diag(1, 1,−1) and let

A =
⎡
⎣a d e

0 b f

0 0 c

⎤
⎦ ∈ M3.

The associated curve CJ (A) consists of the point a and the hyperbola with foci b, c and non-
transverse axis of length s if and only if
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(1) s2 = −|d|2 + |e|2 + |f |2 > 0 and
(2) s2a = −c|d|2 + b|e|2 + a|f |2 − dēf.

Proof. Consider the matrix

B =
⎡
⎣a 0 0

0 b s

0 0 c

⎤
⎦ ∈ M3, s > 0,

whose associated curve is the point a and the hyperbola with foci b and c and non-transverse axis
of length s. The proof follows analogous steps to the proof of Theorem 6. �

Remark 2. Recalling (12) and (13), we obtain an invariant form of conditions (1) and (2) in
Theorem 7:

(1′) s2 = −Tr(JA∗JA)+ |a|2 + |b|2 + |c|2 and
(2′) s2a = −s2 TrA+ Tr(JA∗JA2)− (a|a|2 + b|b|2 + c|c|2).

Corollary 2. Under the assumptions of Theorem 7, denote byH1(H2) the branch ofH containing
b (c) inside. Then WJ (A) is:

(1) C if and only if a is inside H2;
(2) the hyperbolical region limited by H if and only if a is inside H1;
(3) a “cone-like” figure (the pseudo-convex hull of H and a) if and only if a is outside H.

Proof. Under the hypothesis, conditions (1) and (2) in Theorem 7 are equivalent to CJ (A) being
the union of the hyperbola H and the point a. Since WJ (A) is the pseudo-convex hull of a and
H , and recalling that the point a ∈ σ+

J (A), we conclude that WJ (A) coincides with the complex
plane if the point a lies inside H2; if a lies inside H1, then the pseudo-convex hull of a and H
is the hyperbolical region limited by H ; finally, if a lies outside H , then WJ (A) is a “cone-like”
figure. �

The case of a triangular matrix with a triple eigenvalue is particularly simple.

Proposition 3. Let J = diag(1, 1,−1) and

A =
⎡
⎣p q r

0 p s

0 0 p

⎤
⎦ ∈ M3.

If at least one of the entries q, r or s is nonzero, then WJ (A) coincides with C. Otherwise, the
set reduces to {p}.

Proof. Obviously, if q = r = s = 0, then WJ (A) = {p}. If s /= 0, let A′ = A[2, 3] and J ′ =
diag(1,−1). Then WJ ′(A′) ⊆ WJ (A) and by the hyperbolical range theorem WJ ′(A′) is the
complex plane. The case r /= 0, may be analogously treated considering A′ = A[1, 3] and J ′ =
diag(1,−1). If q /= 0,we takeA′ = A[1, 2] and J ′ = diag(1, 1). By the elliptical range theorem,
WJ ′(A′) is a disc centered at p with radius |q|/2. The point p ∈ σ−

J (A) is in the interior of the
disc, and since the disc is generated by vectors with positive J -norm, the pseudo-convex hull of
the disc and of the point p is the whole complex plane. �
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4. Examples

We present illustrative examples of the obtained results. The figures were produce with Math-
ematica 5.1, and the boundaries of the convex setsW+

J (A) andW+
−J (A) are represented by thick

lines.

Example 1. Let

A =
⎡
⎣ i 0 1/2

0 0 1/2
1/2 1/2 −√

2

⎤
⎦ .

Easy calculations show that

FJA(u, v,w) = v3/4 + (v − 2
√

2u)vw/2 + (v − √
2u)w2 + w3.

The associated curveCJ (A), represented in Fig. 1, is quartic with a real cusp, being the imaginary
axis a double tangent. The set W+

J (A) is contained in the closed right half-plane and it is the
convex hull of the branch of CJ (A) in this half-plane. The line segment [0, i] is a flat portion
on �W+

J (A). On the other hand, W+
−J (A) is contained in the half-plane {z ∈ C : Re z � −√

2},
being the convex hull of the branch of CJ (A) in that region (see Theorem 2).

Example 2. Consider, now, the matrix

A =
⎡
⎣ 2 1 1/2

−1 i 0
1/2 0 0

⎤
⎦

with FJA(u, v,w) = v3/4 − 3v2w/4 + (vw + w2)(2u+ w). The associated curve CJ (A), rep-
resented in Fig. 2, is quartic with a real cusp and the imaginary axis is a double tangent of the
curve. Its pseudo-convex hull originates half-lines on �W+

J (A) and on �W+
−J (A), being W+

J (A)

(W+
−J (A)) contained in the closed right half-plane (closed left half-plane) (see Theorem 3).

-2 -1 1 2

-2

-1

1

2

Fig. 1. The line segment [0, i] is a flat portion on ∂W+
J
(A).
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-1 1 2

-2

-1

1

2

Fig. 2. The negative imaginary axis is a flat portion on ∂W+
−J (A) and the half-line of the positive imaginary axis with

endpoint i is a flat portion on ∂W+
J
(A).

Example 3. Let

A =
⎡
⎣ 0 1 1/2

−1 1 0
1/2 0 0

⎤
⎦ ,

whereFJA(u, v,w) = −3v2w/4 + u(v2/4 + w2)+ w3. The associated curveCJ (A), represented
in Fig. 3, is quartic with three real cusps and the imaginary axis is a double tangent of the curve (at
complex points). This example leads to a degenerate case, sinceW+

−J (A) = {z ∈ C: Re z � 0} and
W+
J (A) = {z ∈ C: Re z � 0}. The imaginary axis is a flat portion on �W+

J (A) and on �W+
−J (A)

(see Theorem 4 (9)).

-2 -1 1 2

-2

-1

1

2

Fig. 3. The imaginary axis is a flat portion on ∂W+
J
(A) and on ∂W+

−J (A).
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Example 4. Let

A =
⎡
⎣ 0 −1 −1

1 1 −1
−1 1 −1

⎤
⎦ ,

whereFJA(u, v,w) = 4uv2 + w3. The associated curveCJ (A), illustrated in Fig. 4, is cubic with a
real cusp and a real flex, both in the line of infinity. The flexional tangent is the imaginary axis. This
example leads also to a degenerate case, because W+

−J (A) = {z ∈ C: Re z < 0} and W+
J (A) =

{z ∈ C: Re z � 0}. The imaginary axis is a flat portion on �W+
J (A) (see Theorem 4 (10)).

-1 1 2

-2

-1

1

2

Fig. 4. The imaginary axis is a flat portion on ∂W+
J
(A).

-3 -2 -1 1 2 3 4 5 6

-5

-4

-3

-2

-1

1

2

3

4

5

Fig. 5. The positive imaginary axis is a flat portion on ∂W+
J
(A).
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Example 5. Finally, consider the matrix

A =
⎡
⎣i/16 −1/2 0

1/2 1 + i −1 + i
0 1 − i −1 − i

⎤
⎦ .

We get FJA(u, v,w) = 16w3 + vw2 − 64uvw − 4v2w + 4v3. The associated curve CJ (A), rep-
resented in Fig. 5, is quartic with a real cusp, being the imaginary axis a double tangent (at the
origin and at a point in the line of infinity). The set W+

J (A) (W
+
−J (A)) is contained in the closed

right half-plane (open left half-plane), and it is the convex hull of the branch of CJ (A) in this
half-plane. The positive imaginary axis is a flat portion on �W+

J (A) (see Theorem 5).
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