

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 428 (2008) 2863-2879

www.elsevier.com/locate/laa

Flat portions on the boundary of the indefinite numerical range of 3×3 matrices

N. Bebiano^{a,*}, J. da Providência^b, R. Teixeira^{c,1}

^a CMUC, Department of Mathematics, University of Coimbra, Portugal
 ^b Department of Physics, University of Coimbra, Portugal
 ^c CMUC and Department of Mathematics, University of Azores, Portugal

Received 27 June 2007; accepted 20 January 2008 Available online 5 March 2008 Submitted by C. Mehl

Abstract

We focus on complex 3×3 matrices whose indefinite numerical ranges have a flat portion on the boundary. The results here obtained are parallel to those of Keeler, Rodman and Spitkovsky for the classical numerical range.

© 2008 Elsevier Inc. All rights reserved.

AMS classification: 15A60; 15A63; 46C20

Keywords: Indefinite numerical range; Indefinite inner product space; Plane algebraic curve; Flat portion

1. Introduction

For $J = I_r \oplus -I_{n-r}$ (0 < r < n), where I_m denotes the identity matrix of order m, consider \mathbb{C}^n endowed with the Krein structure defined by the indefinite inner product $\langle \xi_1, \xi_2 \rangle_J = \xi_2^* J \xi_1, \xi_1, \xi_2 \in \mathbb{C}^n$. Let M_n be the algebra of $n \times n$ complex matrices. The *J*-numerical range of $A \in M_n$ is defined as

0024-3795/\$ - see front matter $_{\odot}$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.01.017

^{*} Corresponding author.

E-mail addresses: bebiano@mat.uc.pt (N. Bebiano), providencia@teor.fis.uc.pt (J. da Providência), rteixeira@notes.uac.pt (R. Teixeira).

¹ The work of this author was partially supported by the Portuguese foundation FCT, in the scope of program POCI 2010.

$$W_J(A) = \left\{ \frac{\xi^* J A \xi}{\xi^* J \xi} : \xi \in \mathbb{C}^n, \, \xi^* J \xi \neq 0 \right\}$$

If $J = \pm I_n$, then $W_J(A)$ reduces to the well-known *classical numerical range* of A, usually denoted by W(A).

For $A \in M_n$, W(A) is a compact and convex set [5], but $W_J(A)$ may not be closed and is either unbounded or a singleton [8,9,10,12]. On the other hand, $W_J(A)$ is the union of the convex sets

$$W_J(A) = W_I^+(A) \cup W_{-I}^+(A),$$

where

$$W_J^{\pm}(A) = \left\{ \xi^* J A \xi \colon \xi \in \mathbb{C}^n, \, \xi^* J \xi = \pm 1 \right\}$$

and $W_{-I}^+(A) = -W_I^-(A)$ [10,12].

For $A \in M_n$, we have $W_J(\alpha I_n + \beta A) = \alpha + \beta W_J(A), \alpha, \beta \in \mathbb{C}$. A matrix A can be uniquely expressed as $A = H^J + iK^J$, where $H^J = (A + JA^*J)/2$ and $K^J = (A - JA^*J)/(2i)$ are *J*-*Hermitian* matrices, that is, $H^J = J(H^J)^*J$ and $K^J = J(K^J)^*J$. Denoting by Re S and Im S the projection of $S \subseteq \mathbb{C}$ on the real and imaginary axes, respectively, we have Re $W_J(A) = W_J(H^J)$ and Im $W_J(A) = W_J(K^J)$.

The supporting lines of $W_J(A)$ are the supporting lines of the convex sets $W_J^+(A)$ and $W_{-J}^+(A)$. In [1,12], it was proved that if ux + vy + w = 0 is the equation of a supporting line of $W_J^+(A)$ $(W_{-J}^+(A))$, then the polynomial of Kippenhahn, $F_A^J(u, v, w) = \det(uH^J + vK^J + wI_n)$, satisfies

$$F_{A}^{J}(u, v, w) = 0. (1)$$

Eq. (1), with u, v, w viewed as homogeneous line coordinates, defines an algebraic curve of class n on the complex projective plane $P_2(\mathbb{C})$ and its n real foci are the eigenvalues of A [3]. The real affine part of this curve is denoted by $C_J(A)$ and called the *associated curve* of $W_J(A)$. If $J = \pm I_n, C_J(A)$ is simply denoted by C(A) and generates W(A) as its convex hull [7]. The relation between $C_J(A)$ and $W_J(A)$ is described in [2,3]. For the degenerate cases, $W_J(A)$ may be a singleton, a line, a subset of a line, the whole complex plane, or the complex plane except a line. For the nondegenerate cases, $W_J(A)$ is the pseudo-convex hull of $C_J(A)$ defined as follows. Let $X = X^+ \cup X^-$ be a nonempty subset of \mathbb{C} , such that $X^+ \subseteq W_J^+(A)$ and $X^- \subseteq W_{-J}^+(A)$. For any pair of points p, q in X^+ , or in X^- , take the closed line segment [p, q], and for any pair of points p, q in X^+ , or in X and Y and Y and for any pair of points p, q. The set so obtained is called the *pseudo-convex hull* of X, denoted by PC[X].

A matrix A is essentially J-Hermitian if there exist $\alpha, \beta \in \mathbb{C}$ such that $\alpha A + \beta I_n$ is J-Hermitian. Obviously, a matrix A is essentially J-Hermitian if and only $W_J(A)$ is a subset of a line. Let A be a non-essentially J-Hermitian matrix. Suppose that the straight line

$$\ell = \{ (x, y) \in \mathbb{R}^2 : ax + by + c = 0, a, b, c \in \mathbb{R} \}$$

is a supporting line of $W_J(A)$. Let $\partial W_J(A)$ denote the boundary of $W_J(A)$. If $\ell \cap \partial W_J(A)$ contains more than one point, $\ell \cap \partial W_J(A)$ is called a *flat portion* on the boundary of $W_J(A)$. The definition of flat portions on $\partial W_J^+(A)$ (or on $\partial W_{-J}^+(A)$) is analogous. A matrix $U \in M_n$ is *J*-unitary if $U^{-1} = JU^*J$ and all $n \times n$ *J*-unitary matrices form a group denoted by $\mathcal{U}_{r,n-r}$. For any $U \in \mathcal{U}_{r,n-r}$, we have $W_J(A) = W_J(U^{-1}AU)$. We say that a matrix A is *J*-unitarily reducible if there exists a *J*-unitary matrix $U \in \mathcal{U}_{r,n-r}$ such that $U^{-1}AU = A_1 \oplus A_2, U^{-1}JU = J_1 \oplus J_2$, where $A_1, J_1 \in M_m, m \neq 0, n$, and we have $W_J(A) = \text{PC}[W_{J_1}(A_1) \cup W_{J_2}(A_2)]$.

For a *J*-unitarily reducible matrix, the existence of flat portions on the boundary of its *J*numerical range is a common occurrence. If *A* is *J*-normal with anisotropic eigenvectors, that is, eigenvectors ξ such that $\xi^*J\xi \neq 0$, then $W_J(A)$ is the pseudo-convex hull of the eigenvalues of *A* [2] and flat portions appear on $\partial W_J(A)$. The smallest value of *n* for which there exist *J*unitarily irreducible matrices whose numerical ranges have a flat portion on $\partial W_J(A)$ is n = 3, and henceforth we concentrate on this case.

For $A \in M_2$, the elliptical range theorem [11] states that W(A) is an elliptical disc (possibly degenerate) whose foci are the eigenvalues α_1 and α_2 of A, being the major and minor axis of length

$$\sqrt{\operatorname{Tr}(A^*A) - 2\operatorname{Re}(\overline{\alpha_1}\alpha_2)}$$
 and $\sqrt{\operatorname{Tr}(A^*A) - |\alpha_1|^2 - |\alpha_2|^2}$,

respectively. In the indefinite case, for $A \in M_2$ and J = diag(1, -1), the hyperbolical range theorem [1] states that $W_J(A)$ is bounded by the hyperbola (possibly degenerate) with foci at α_1 and α_2 , and transverse and non-transverse axis of length

$$\sqrt{\operatorname{Tr}(JA^*JA) - 2\operatorname{Re}(\overline{\alpha_1}\alpha_2)}$$
 and $\sqrt{|\alpha_1|^2 + |\alpha_2|^2 - \operatorname{Tr}(JA^*JA)},$

respectively.

The description of $W_J(A)$, when $A \in M_n$ and n > 2, is in general difficult. In certain cases, $W_J(A)$ is still an hyperbola and its interior, independently of the size of A. The 3×3 case was studied in [3] using the classification of $C_J(A)$ based on the factorability of $F_A^J(u, v, w)$. However, a constructive procedure allowing us to determine the shape of $W_J(A)$ for an arbitrary matrix $A \in M_3$ is not provided. In Section 2, we investigate J-unitarily irreducible matrices in M_3 having a flat portion on the boundary of the J-numerical range. In Section 3, we determine $W_J(A)$ for upper triangular matrices $A \in M_3$. The particularly simple case of triangular matrices with one-point spectrum is discussed. The results obtained here are inspired by those obtained by Keeler et al. for the classical numerical range [6].

2. *J*-unitarily irreducible 3×3 matrices with a flat portion on $\partial W_J(A)$

A flat portion on the boundary of the *J*-numerical range may be a (closed) line segment, two (closed) half-lines of the same line, a (closed) half-line or a whole line. The proof of the next result uses well-known formulas for the maximum number of singularities of an algebraic curve of order n (see, for example, [4, p. 49]).

Proposition 1. For $A \in M_n$, with n > 2, the number of flat portions $l_J(A)$ on $\partial W_J(A)$ is less than or equal to n(n-1)/2. If $F_A^J(u, v, w)$ is irreducible, then

$$l_J(A) \leqslant \frac{(n-1)(n-2)}{2}.$$

Proof. Each line originating a flat portion on $\partial W_J(A)$, $A \in M_n$, is a flexional tangent or a multiple tangent of $C_J(A)$. By dual considerations, we obtain a singular point of the dual curve of $C_J(A)$. Since $C_J(A)$ is a curve of class *n*, its dual curve has order *n* and the number of its singularities is less than or equal to n(n-1)/2. For an irreducible curve of order *n*, the upper bound is (n-1)(n-2)/2. \Box

Proposition 2. Let $A = H^J + iK^J \in M_n$. If $\partial W_J(A)$ contains a flat portion, then for a certain real direction (u, v), $u = \cos \theta$, $v = \sin \theta$, $\theta \in \mathbb{R}$, the matrix $uH^J + vK^J$ has a multiple eigenvalue.

Proof. By a translation and a rotation, we consider the flat portion on the imaginary axis. The imaginary axis defines a flat portion on $\partial W_J(A)$ if and only if it is a flexional tangent of $C_J(A)$ or a multiple tangent of the associated curve (at least) at two distinct points (the points can be finite or infinite, real or complex). Consider the dual curve of $C_J(A)$, defined in homogeneous point coordinates by

$$F_A^J(x, y, t) = \det(xH^J + yK^J + tI_n) = 0.$$

By dual considerations, if x = 0 is a flexional or a multiple tangent of $C_J(A)$, then (1:0:0) is a singular point of the dual curve, with multiplicity $m \ge 2$. It follows that

$$F_A^J(1,0,0) = \frac{\partial F_A^J}{\partial t}(1,0,0) = \dots = \frac{\partial^{m-1} F_A^J}{\partial t^{m-1}}(1,0,0) = 0,$$

which implies that the coefficients x^n , $x^{n-1}t$, ..., $x^{n-(m-1)}t^{m-1}$ of the polynomial $F_A^J(x, y, t)$ vanish. Analyzing the solutions of the secular equation $\det(H^J - \lambda I_n) = 0$, we conclude that 0 is an eigenvalue of H^J with multiplicity at least m. \Box

Throughout this section we assume that J = diag(1, 1, -1), and that $A \in M_3$ is a *J*-unitarily irreducible matrix written as $A = H^J + iK^J$, where H^J and K^J are *J*-Hermitian matrices. To avoid trivial cases we also assume that *A* is not essentially *J*-Hermitian.

Theorem 1. Let J = diag(1, 1, -1) and let $A \in M_3$ be a J-unitarily irreducible matrix. If $W_J(A)$ has a line segment on its boundary, then it lies on $\partial W_J^+(A)$. Analogously, if there exists a single half-line on $\partial W_J(A)$, then it lies on $\partial W_I^+(A)$.

Proof. We prove (by contradiction) that the line segment on $\partial W_J(A)$ necessarily belongs to $\partial W_J^+(A)$. Indeed, assume that $W_{-J}^+(A)$ contains this line segment. After translation, rotation, and scaling of A, we may assume that the line segment has endpoints 0 and i. By Proposition 2, 0 is an eigenvalue of H^J with multiplicity at least 2. There exists $e_3 \in \mathbb{C}^n$ such that $e_3^*Je_3 = -1$ and $H^Je_3 = 0$. Consider also two vectors $e_1, e_2 \in \mathbb{C}^n$, $e_1^*Je_1 = e_2^*Je_2 = 1$, such that $\{e_1, e_2, e_3\}$ is a *J*-orthogonal basis of \mathbb{C}^3 . The matrix representation of JH^J in this basis is

$$\begin{bmatrix} a & c & 0\\ \bar{c} & b & 0\\ 0 & 0 & 0 \end{bmatrix}, \quad a, b \in \mathbb{R}, \ c \in \mathbb{C},$$

where $ab = |c|^2 \neq 0$, because A is not essentially J-Hermitian. Hence, under a J-unitary similarity transformation JH^J may be written as

$$JH^{J} = \begin{bmatrix} a' & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

with a' = a + b. The quadratic form $\xi^* J H^J \xi$ vanishes if and only if $\xi = (0, \zeta, \eta) \in \mathbb{C}^3$. Let *S* be the subspace generated by e_2, e_3 , and denote by $A' \in M_2$ the restriction of *A* to *S*. For J' = diag(1, -1), $W_{J'}(A')$ may be the real line, the real line except a point, or two half-rays.

Henceforth, it may not degenerate either to a half-line or to a line segment. Hence, [0, i] is contained in the boundary of $W_I^+(A)$.

To prove the second part of the theorem, we may suppose that the flat portion on $\partial W_J(A)$ is contained on the positive imaginary axis, and analogous arguments hold. \Box

Next, we derive a canonical form for an irreducible matrix with a closed line segment on the boundary of the *J*-numerical range.

Theorem 2. Let J = diag(1, 1, -1) and let $A \in M_3$ be *J*-unitarily irreducible. Under *J*-unitary similarity, translation, rotation, and scaling, A may be written in the form

$$A = \begin{bmatrix} i & 0 & c_1 \\ 0 & 0 & c_2 \\ c_1 & c_2 & \psi \end{bmatrix},$$
 (2)

where c_1 , c_2 are positive real numbers and $\operatorname{Re} \psi < 0$, if and only if $W_J(A)$ has a closed line segment on its boundary. In this form, $W_J^+(A)$ has the line segment [0, i] as a flat portion and is contained in the closed right half-plane.

Proof. (\Rightarrow) Assume that under *J*-unitary similarity, translation, rotation, and scaling, *A* is written in the form (2). Consider the Hermitian matrices

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\operatorname{Re} \psi \end{bmatrix} \text{ and } JK^{J} = \begin{bmatrix} 1 & 0 & -\operatorname{i}c_{1} \\ 0 & 0 & -\operatorname{i}c_{2} \\ \operatorname{i}c_{1} & \operatorname{i}c_{2} & -\operatorname{Im} \psi \end{bmatrix}.$$

Since Re $\psi < 0$, we have $W_{-J}^+(H^J) =] - \infty$, Re ψ], $W_J^+(H^J) = [0, +\infty[$, and so $W_J^+(A)$ is entirely contained in the right half-plane. Furthermore, $\xi^* J H^J \xi$ vanishes if $\xi = (\zeta, \eta, 0) \in \mathbb{C}^3$ and we get

$$\frac{\xi^* J K^J \xi}{\xi^* J \xi} = \frac{|\zeta|^2}{|\zeta|^2 + |\eta|^2}.$$

Thus, the interval [0, 1] is described, and so the line segment [0, i] is contained in $W_J^+(A)$, being the imaginary axis a supporting line of $W_J^+(A)$.

(⇐) Let $W_J^+(A)$ have a closed line segment as a flat portion on its boundary. After translation, rotation and scaling, we may assume that this line segment is [0, i]. By Proposition 2, 0 is an eigenvalue of H^J with multiplicity at least 2. There exists $e_1 \in \mathbb{C}^n$ such that $e_1^*Je_1 = 1$ and $H^Je_1 = 0$. Consider two vectors $e_2, e_3 \in \mathbb{C}^n, e_2^*Je_2 = 1, e_3^*Je_3 = -1$, such that $\{e_1, e_2, e_3\}$ is a *J*-orthogonal basis of \mathbb{C}^3 . In this basis, the matrix representation of JH^J is

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a & c \\ 0 & \bar{c} & b \end{bmatrix},$$
 (3)

where a, b are real and c is a complex number satisfying $ab = |c|^2$. Since A is not an essentially J-Hermitian matrix, it is clear that $JH^J \neq 0$, and so $|c| \neq 0$. We prove (by contradiction) that $|a| \neq |c|$. Let |a| = |c| and without loss of generality we may suppose c > 0. Two possibilities may occur: a = b = c or a = b = -c. Assume that a = b = c. Since we have $\xi^*JH^J\xi = 0$ if $\xi = (1, \eta, -\eta) \in \mathbb{C}^3$, consider the matrix representation of JK^J in the basis $\{e_1, e_2, e_3\}$

$$JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}, \quad \alpha, \beta, \gamma \in \mathbb{R}, \ \nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{C}$$

and the function

$$f(\xi) := \xi^* J K^J \xi = \alpha + (\beta + \gamma - 2 \operatorname{Im} \nu_3) |\eta|^2 + 2|\eta| |\nu_1 - \nu_2| \sin \phi,$$

where $\phi = \arg \eta + \arg(\nu_1 - \nu_2)$. This function reduces to a point if $\beta + \gamma - 2 \operatorname{Im} \nu_3 = 0$ and $\nu_1 - \nu_2 = 0$, describes the whole real line if $\beta + \gamma - 2 \operatorname{Im} \nu_3 = 0$ and $\nu_1 - \nu_2 \neq 0$, and a half-line of the real line if $\beta + \gamma - 2 \operatorname{Im} \nu_3 \neq 0$. However, a line segment is never produced, contradicting the hypothesis. Then $|a| \neq |c|$, and so in a certain basis the matrix (3) is either of the form

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a' & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(4)

or of the form

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -a' \end{bmatrix}$$
(5)

with a' = a - b. It can be easily seen that the form (4) leads to a contradiction, because it is incompatible with the existence of a line segment on the boundary. Hence, we necessarily have (5). Thus, $W_J^+(H^J) = [0, +\infty[$ and $W_{-J}^+(H^J) =] - \infty, -a']$, being -a' < 0 since $W_J^+(A)$ is contained in the closed right half-plane.

The quadratic form $\xi^* J H^J \xi$ vanishes for $\xi = (\zeta, \eta, 0) \in \mathbb{C}^3$. Let A' be the principal submatrix of

$$A = H^{J} + iK^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -a' \end{bmatrix} + i\begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ -i\overline{\nu_{2}} & -i\overline{\nu_{3}} & -\gamma \end{bmatrix},$$

 $\alpha, \beta, \gamma \in \mathbb{R}, \nu_1, \nu_2, \nu_3 \in \mathbb{C}$, in the first two rows and columns and let J' = diag(1, 1). Observe that $W_{J'}(A')$, which is a subset of $W_J(A)$, is a line segment with endpoints i $\left(\frac{\alpha+\beta}{2} \pm \sqrt{\frac{(\alpha-\beta)^2}{4} + |\nu_1|^2}\right)$. If $\alpha = 1, \beta = 0, \nu_1 = 0$, then this line segment is [0, i], and

$$A = H^{J} + iK^{J} = \begin{bmatrix} i & 0 & v_{2} \\ 0 & 0 & v_{3} \\ \hline v_{2} & \overline{v_{3}} & -a' - i\gamma \end{bmatrix},$$

where -a' < 0. Without loss of generality, we may assume that $c_1 = v_2 > 0$, $c_2 = v_3 > 0$. Hence, *A* is of the asserted form. \Box

If $\partial W_J(A)$ has a flat portion constituted by two half-lines of the same line, then one of the half-lines must be contained in $\partial W_J^+(A)$ and the other one in $\partial W_{-J}^+(A)$. This is an obvious consequence of the convexity of $W_J^+(A)$ and $W_{-J}^+(A)$.

Theorem 3. Let J = diag(1, 1, -1) and let $A \in M_3$ be *J*-unitarily irreducible. Under *J*-unitary similarity, translation, rotation, and scaling, A may be written in the form

$$A = \begin{bmatrix} a + i\alpha & b & c \\ -b & i & 0 \\ c & 0 & 0 \end{bmatrix},$$
(6)

where $\alpha \in \mathbb{R}$ and a, b, c > 0, if and only if $W_J(A)$ has two closed half-lines of the same line on its boundary. In this form, $W_J^+(A)$ is contained in the closed right half-plane, the half-line of the positive imaginary axis with endpoint i is contained in $\partial W_J^+(A)$, while the closed negative imaginary axis belongs to $\partial W_{-J}^+(A)$.

Proof. (\Rightarrow) Let *A* be of the asserted form. Then

$$JH^{J} = \begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } JK^{J} = \begin{bmatrix} \alpha & -\mathbf{i}b & -\mathbf{i}c \\ \mathbf{i}b & 1 & 0 \\ \mathbf{i}c & 0 & 0 \end{bmatrix}.$$

Since a > 0, we have $W_J^+(H^J) = [0, +\infty[, W_{-J}^+(H^J) =] - \infty, 0]$. On the other hand, $\xi^* J H^J \xi$ vanishes if $\xi = (0, \zeta, \eta) \in \mathbb{C}^3$. For ξ of the above form, we obtain

$$\frac{\xi^* J K^J \xi}{\xi^* J \xi} = \frac{|\zeta|^2}{|\zeta|^2 - |\eta|^2}.$$

If $\xi^* J\xi < 0$ this quotient describes $] - \infty$, 0], while if $\xi^* J\xi > 0$ it describes the interval $[1, +\infty[$. Thus, $W_J^+(A)$ is contained in the closed right half-plane and the asserted half-line is contained in this set. On the other hand, $W_{-J}^+(A)$ is contained in the closed left half-plane and the negative imaginary axis belongs to this set.

(\Leftarrow) Without loss of generality, we may assume that $W_J(A)$ has the asserted closed half-lines on its boundary. Let $\{e_1, e_2, e_3\}$ be a *J*-orthogonal basis of \mathbb{C}^3 satisfying $H^J e_2 = 0$, $e_1^* J e_1 = e_2^* J e_2 = 1$, $e_3^* J e_3 = -1$. Consider the matrix representation of $J H^J$ in this basis

$$JH^{J} = \begin{bmatrix} a & 0 & c \\ 0 & 0 & 0 \\ \bar{c} & 0 & b \end{bmatrix},$$

where a, b are real and c is a complex number obeying $ab = |c|^2$. By the same technique used in Theorem 2, we necessarily have $|a| \neq |c|$, and so the principal submatrix of H^J in the first and third rows and columns has the eigenvalues 0 and a - b, with two linearly independent anisotropic associated eigenvectors, and therefore, it can be diagonalized by a J-unitary similarity. Thus, in a proper basis

$$JH^{J} = \begin{bmatrix} a' & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(7)

or

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -a' \end{bmatrix}$$
(8)

with a' = a - b. It can be easily seen that the form (8) leads to a contradiction, because it is incompatible with the existence of two half-rays on the boundary of $W_J(A)$, and so we necessarily have (7). Thus, $W_J^+(H^J) = [0, +\infty[$ and $W_{-J}^+(H^J) =] - \infty, 0]$, being a' > 0 since $W_J^+(A)$ is contained in the closed right half-plane. Let

$$JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}, \quad \alpha, \beta, \gamma \in \mathbb{R}, \ \nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{C}.$$

Now, let J' = diag(1, -1) and consider the 2 × 2 principal submatrix of $A = H^J + iK^J$

$$A' = i \begin{bmatrix} \beta & -i\nu_3 \\ -i\overline{\nu_3} & -\gamma \end{bmatrix}.$$

By the hyperbolical range theorem, $W_{J'}(A')$ reduces to two half-rays on the imaginary axis with endpoints i $\left(\frac{\beta-\gamma}{2} \pm \sqrt{\frac{(\beta+\gamma)^2}{4} - |\nu_3|^2}\right)$. These endpoints coincide with 0 and i when we choose a basis such that $\beta = 1, \gamma = 0, \nu_3 = 0$. \Box

Now we investigate the existence of a whole line in $\partial W_J^+(A)$, and derive a canonical form for *A*.

Theorem 4. Let J = diag(1, 1, -1) and let $A \in M_3$ be *J*-unitarily irreducible. Under *J*-unitary similarity, translation, and rotation, A may be written in the form

$$A = \begin{bmatrix} 0 & \nu_1 & \nu_2 \\ -\overline{\nu_1} & a' + i\beta & \nu_3 \\ \overline{\nu_2} & \overline{\nu_3} & 0 \end{bmatrix},$$
(9)

where $v_1, v_3 \in \mathbb{C}, v_2 \in \mathbb{C} \setminus \{0\}, \beta \in \mathbb{R}, a' > 0$, or in the form

$$A = \begin{bmatrix} i\alpha & \nu_1 & \nu_2 \\ -\overline{\nu_1} & a + i\beta & -a + \nu_3 \\ \overline{\nu_2} & a + \overline{\nu_3} & -a - i\gamma \end{bmatrix},$$
(10)

where $v_1, v_2, v_3 \in \mathbb{C}$, $\alpha, \beta, \gamma \in \mathbb{R}$, a > 0, $\beta + \gamma + 2 \operatorname{Im} v_3 = 0$, $v_1 + v_2 \neq 0$, if and only if $\partial W_J^+(A)$ coincides with a line. In these forms, $W_J^+(A)$ is contained in the closed right half-plane, being the imaginary axis the boundary of $W_J^+(A)$.

Proof. (\Rightarrow) According to the hypothesis, for A in the form (9) we have

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a' & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } JK^{J} = \begin{bmatrix} 0 & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & 0 \end{bmatrix}.$$

Since a' > 0, we have $W_J^+(H^J) = [0, +\infty[$ and $W_{-J}^+(H^J) =]-\infty, 0]$. Moreover, $\xi^*JH^J\xi = 0$ when $\xi = (\zeta, 0, \eta) \in \mathbb{C}^3$ and the quotient

$$\frac{\xi^* J K^J \xi}{\xi^* J \xi} = \frac{2|\nu_2||\zeta||\eta|\sin\theta}{|\zeta|^2 - |\eta|^2}$$

 $\theta = \arg v_2 - \arg \zeta + \arg \eta$, describes the real line when ζ , η range over \mathbb{C} since by hypothesis $v_2 \neq 0$.

For A in the form (10), we have

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a & -a \\ 0 & -a & a \end{bmatrix} \text{ and } JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}$$

Since a > 0, then $W_J^+(H^J) = [0, +\infty[$ and $W_{-J}^+(H^J) =] - \infty, 0[$. Moreover, $\xi^* J H^J \xi = 0$ if $\xi = (1, \eta, \eta) \in \mathbb{C}^3$, and so

$$\frac{\xi^* J K^J \xi}{\xi^* J \xi} = \alpha + (\beta + \gamma + 2 \operatorname{Im} \nu_3) |\eta|^2 + 2|\nu_1 + \nu_2||\eta| \sin \phi,$$

 $\phi = \arg(\nu_1 + \nu_2) + \arg \eta$, describes the real line when $\eta \in \mathbb{C}$, since by hypothesis the coefficient of $|\eta|^2$ is zero and $|\nu_1 + \nu_2| \neq 0$.

(⇐) Suppose that $\partial W_J^+(A)$ coincides with the imaginary axis. Let $e_1 \in \mathbb{C}^3$ such that $H^J e_1 = 0$, $e_1^* J e_1 = 1$. Consider the matrix representation of $J H^J$ in the *J*-orthogonal basis $\{e_1, e_2, e_3\}$

Γ0	0	0]	
0	а	с	,
0	\bar{c}	b	

where a, b are real and c is a complex number satisfying $ab = |c|^2$. If we have $|a| \neq |c|$, then in a proper basis JH^J may be taken either in the form

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -a' \end{bmatrix}$$

or in the form

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a' & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

where a' = a - b. The first case leads to a contradiction, because it gives rise to a line segment on the boundary. In the second case, we have, for a' > 0, $W_J^+(H^J) = [0, +\infty[, W_{-J}^+(H^J) =] - \infty, 0]$, and $\xi^*JH^J\xi = 0$ if $\xi = (\zeta, 0, \eta) \in \mathbb{C}^3$. Let

$$JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}, \quad \alpha, \beta, \gamma \in \mathbb{R}, \ \nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{C}$$

and consider the principal submatrix of $A = H^J + iK^J$

$$A' = \begin{bmatrix} i\alpha & \nu_2 \\ \overline{\nu_2} & -i\gamma \end{bmatrix}$$

For J' = diag(1, -1), then $W_{J'}(A')$ is the imaginary axis if $(\alpha + \gamma)^2 - 4|\nu_2|^2 < 0$, and without loss of generality we may take $\alpha = \gamma = 0$, $\nu_2 \neq 0$, and so

$$A = \begin{bmatrix} 0 & \nu_1 & \nu_2 \\ -\overline{\nu_1} & a' + \mathbf{i}\beta & \nu_3 \\ \overline{\nu_2} & \overline{\nu_3} & 0 \end{bmatrix}.$$

If |a| = |c|, then JH^J may be taken in the form

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a & -a \\ 0 & -a & a \end{bmatrix}.$$

For a > 0, we get $W_J^+(H^J) = [0, +\infty[, W_{-J}^+(H^J) =] - \infty, 0[$. On the other hand, if $\xi = (1, \eta, \eta) \in \mathbb{C}^3$ then $\xi^* J H^J \xi = 0$. Let

$$JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}, \quad \alpha, \beta, \gamma \in \mathbb{R}, \ \nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{C}$$

and

$$f(\xi) := \frac{\xi^* J K^J \xi}{\xi^* J \xi} = \alpha + (\beta + \gamma + 2 \operatorname{Im} \nu_3) |\eta|^2 + 2|\eta| |\nu_1 + \nu_2| \sin \phi,$$

where $\phi = \arg \eta + \arg(\nu_1 + \nu_2) \in \mathbb{R}$. This function describes the imaginary axis if $\beta + \gamma + 2 \operatorname{Im} \nu_3 = 0$ and $\nu_1 + \nu_2 \neq 0$. Hence, A has the asserted form. \Box

We note that if A is of the form (9), then the imaginary axis is also a flat portion on $\partial W^+_{-J}(A)$. However, this is not true when A is of the form (10).

Now we investigate the existence of a single half-line on $\partial W_J^+(A)$ contained in the closed right half-plane, and derive a canonical form for A.

Theorem 5. Let J = diag(1, 1, -1) and let $A \in M_3$ be *J*-unitarily irreducible. Under *J*-unitary similarity, translation, and rotation, A may be written in the form

$$A = \begin{bmatrix} i\alpha & \nu_1 & \nu_2 \\ -\overline{\nu_1} & a + i\beta & -a + \nu_3 \\ \overline{\nu_2} & a + \overline{\nu_3} & -a - i\gamma \end{bmatrix},$$
(11)

where $v_1, v_2, v_3 \in \mathbb{C}, \alpha, \beta, \gamma \in \mathbb{R}, a > 0, \beta + \gamma + 2 \operatorname{Im} v_3 > 0, and$

$$\alpha = \frac{|\nu_1 + \nu_2|^2}{\beta + \gamma + 2\operatorname{Im}\nu_3}$$

.

if and only if $W_J(A)$ has one closed half-line on its boundary. In this form, $W_J^+(A)$ has the positive imaginary axis as a flat portion and is contained in the closed right half-plane.

Proof. (\Rightarrow) According to the hypothesis

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a & -a \\ 0 & -a & a \end{bmatrix} \text{ and } JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}$$

Since a > 0, it follows that $W_J^+(H^J) = [0, +\infty[, W_{-J}^+(H^J) =] -\infty, 0[$. We have $\xi^*JH^J\xi = 0$ for $\xi = (1, \eta, \eta) \in \mathbb{C}^3$, and we easily obtain

$$f(\xi) := \frac{\xi^* J K^J \xi}{\xi^* J \xi} = \alpha + (\beta + \gamma + 2 \operatorname{Im} \nu_3) |\eta|^2 + 2|\eta| |\nu_1 + \nu_2| \sin \phi,$$

where $\phi = \arg \eta + \arg(\nu_1 + \nu_2)$. This function ranges over the positive imaginary axis because $\beta + \gamma + 2 \operatorname{Im} \nu_3$ is positive and $\alpha = |\nu_1 + \nu_2|^2 / (\beta + \gamma + 2 \operatorname{Im} \nu_3)$.

(\Leftarrow) Let the positive imaginary axis be a flat portion on $\partial W_J^+(A)$. Let $e_1 \in \mathbb{C}^3$ be such that $H^J e_1 = 0$, $e_1^* J e_1 = 1$. Consider the matrix representation of $J H^J$ in the *J*-orthogonal basis $\{e_1, e_2, e_3\}$

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & a & c \\ 0 & \bar{c} & b \end{bmatrix},$

where a, b are real and c is a complex number satisfying $ab = |c|^2$. We cannot have $|a| \neq |c|$, because under this assumption we are lead to the cases treated in Theorems 2,3,4. Thus, |a| = |c| and in a proper basis

$$JH^{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a & -a \\ 0 & -a & a \end{bmatrix}.$$

For a > 0, we get $W_J^+(H^J) = [0, +\infty[, W_{-J}^+(H^J) =] - \infty, 0[$. Let

$$JK^{J} = \begin{bmatrix} \alpha & -i\nu_{1} & -i\nu_{2} \\ i\overline{\nu_{1}} & \beta & -i\nu_{3} \\ i\overline{\nu_{2}} & i\overline{\nu_{3}} & \gamma \end{bmatrix}, \quad \alpha, \beta, \gamma \in \mathbb{R}, \ \nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{C}.$$

We easily find that $\xi^* J H^J \xi = 0$ for $\xi = (1, \eta, \eta) \in \mathbb{C}^3$, and we obtain

$$f(\xi) := \frac{\xi^* J K^J \xi}{\xi^* J \xi} = \alpha + (\beta + \gamma + 2 \operatorname{Im} \nu_3) |\eta|^2 + 2|\eta| |\nu_1 + \nu_2| \sin \phi$$

with $\phi = \arg \eta + \arg(\nu_1 + \nu_2) \in \mathbb{R}$. If $\beta + \gamma + 2 \operatorname{Im} \nu_3 > 0$, then $f(\xi)$ describes a half-line of the form $[b', +\infty[$. Taking $\alpha = |\nu_1 + \nu_2|^2/(\beta + \gamma + 2 \operatorname{Im} \nu_3)$, we have b' = 0. \Box

3. $W_J(A)$ for J-unitarily reducible 3 \times 3 triangular matrices

We denote by Tr $\mathscr{C}_2(B)$ the sum of the 2 × 2 principal minors of a matrix *B*. Easy calculations show that:

Lemma 1. For $A = H^J + iK^J \in M_3$ and $J = I_r \oplus -I_{3-r}$ $(0 \le r \le 3)$

$$F_A^J(u, v, w) = w^3 + \det(H^J)u^3 + \det(K^J)v^3 + \operatorname{Re}\operatorname{Tr}(A)uw^2 + \operatorname{Im}\operatorname{Tr}(A)vw^2$$

+ Im Tr $\mathscr{C}_2(A)uvw + \operatorname{Tr}\mathscr{C}_2(H^J)u^2w + \operatorname{Tr}\mathscr{C}_2(K^J)v^2w$
+ [det(H^J) - Re det(A)] uv^2 + [det(K^J) + Im det(A)] u^2v .

If $A \in M_3$ is *J*-unitarily reducible, then there exists a matrix $U \in \mathcal{U}_{2,1}$ such that $U^{-1}AU = A_1 \oplus A_2$, and either the diagonal block A_1 has size 2 – Case 1, or size 1 – Case 2. First we analyze Case 1.

Theorem 6. *Let* J = diag(1, 1, -1) *and let*

$$A = \begin{bmatrix} a & d & e \\ 0 & b & f \\ 0 & 0 & c \end{bmatrix} \in M_3$$

The associated curve $C_J(A)$ is the union of the ellipse E(possibly degenerating into a disk) with foci a, b, minor axis of length s, and the point c if and only if

(1)
$$s^2 = |d|^2 - |e|^2 - |f|^2 > 0$$
 and
(2) $s^2c = c|d|^2 - b|e|^2 - a|f|^2 + d\overline{e}f.$

Proof. Consider the matrix

$$B = \begin{bmatrix} a & s & 0\\ 0 & b & 0\\ 0 & 0 & c \end{bmatrix}, \quad s > 0,$$

whose associated curve $C_J(B)$ is the union of the ellipse E with foci a, b, minor axis of length s, and the point c.

Using Lemma 1, we conclude that the polynomials $F_A^J(u, v, w)$ and $F_B^J(u, v, w)$ have the same coefficients, except possibly the coefficients of u^3 , v^3 , u^2w and v^2w . Moreover, the coefficients of u^2w and v^2w in both polynomials are equal if and only if

$$s^{2} = |d|^{2} - |e|^{2} - |f|^{2} > 0.$$

On the other hand, the corresponding coefficients of u^3 , v^3 are equal if and only if

$$s^{2}c = c|d|^{2} - b|e|^{2} - a|f|^{2} + d\bar{e}f.$$

Hence, conditions (1) and (2) are necessary and sufficient for the matrices A and B to have the same associated curves. \Box

Remark 1. To obtain an invariant form of conditions (1) and (2) in Theorem 6, note that

$$|d|^{2} - |e|^{2} - |f|^{2} = \operatorname{Tr}(JA^{*}JA) - (|a|^{2} + |b|^{2} + |c|^{2});$$
(12)

$$c|d|^{2} - b|e|^{2} - a|f|^{2} + d\bar{e}f = (|d|^{2} - |e|^{2} - |f|^{2})\operatorname{Tr} A - \operatorname{Tr}(JA^{*}JA^{2}) + (a|a|^{2} + b|b|^{2} + c|c|^{2}).$$
(13)

Thus, the following reformulation holds for conditions (1) and (2) and the theorem holds for matrices in M_3 that are *J*-unitarily triangularizable:

(1') $s^2 = \text{Tr}(JA^*JA) - (|a|^2 + |b|^2 + |c|^2)$ and (2') $s^2c = s^2 \text{Tr} A - \text{Tr}(JA^*JA^2) + (a|a|^2 + b|b|^2 + c|c|^2).$

Denote by $\sigma_J^+(A)$ ($\sigma_J^-(A)$) the set of eigenvalues of $A \in M_n$ with associated eigenvectors with positive (negative) *J*-norms.

Corollary 1. Under the assumptions of Theorem 6, $W_J(A)$ is a "cone-like" figure (the pseudoconvex hull of E and c) if and only if c lies outside E; and it is the whole complex plane if and only if c lies inside E.

Proof. Conditions (1) and (2) are equivalent to $C_J(A)$ being the union of the ellipse *E* and the point *c*. $W_J(A)$ is the pseudo-convex hull of *c* and *E*. If *c* is inside *E*, then $W_J(A)$ is the complex plane, because $c \in \sigma_J^-(A)$ and the ellipse is generated by vectors with positive *J*-norms. If *c* lies outside *E*, then $W_J(A)$ is a "cone-like" figure. \Box

We observe that under the assumptions on J and A, $W_J(A)$ may be neither an elliptical disk nor a circular disk. Now we investigate when $C_J(A)$ consists of a hyperbola and a point (Case 2).

Theorem 7. Let J = diag(1, 1, -1) and let

$$A = \begin{bmatrix} a & d & e \\ 0 & b & f \\ 0 & 0 & c \end{bmatrix} \in M_3$$

The associated curve $C_J(A)$ consists of the point *a* and the hyperbola with foci *b*, *c* and non-transverse axis of length *s* if and only if

(1)
$$s^2 = -|d|^2 + |e|^2 + |f|^2 > 0$$
 and
(2) $s^2 a = -c|d|^2 + b|e|^2 + a|f|^2 - d\bar{e}f$.

Proof. Consider the matrix

$$B = \begin{bmatrix} a & 0 & 0 \\ 0 & b & s \\ 0 & 0 & c \end{bmatrix} \in M_3, \quad s > 0.$$

whose associated curve is the point a and the hyperbola with foci b and c and non-transverse axis of length s. The proof follows analogous steps to the proof of Theorem 6. \Box

Remark 2. Recalling (12) and (13), we obtain an invariant form of conditions (1) and (2) in Theorem 7:

(1') $s^2 = -\text{Tr}(JA^*JA) + |a|^2 + |b|^2 + |c|^2$ and (2') $s^2a = -s^2 \text{Tr} A + \text{Tr}(JA^*JA^2) - (a|a|^2 + b|b|^2 + c|c|^2).$

Corollary 2. Under the assumptions of Theorem 7, denote by $H_1(H_2)$ the branch of H containing b(c) inside. Then $W_J(A)$ is:

(1) \mathbb{C} if and only if a is inside H_2 ;

(2) the hyperbolical region limited by H if and only if a is inside H_1 ;

(3) a "cone-like" figure (the pseudo-convex hull of H and a) if and only if a is outside H.

Proof. Under the hypothesis, conditions (1) and (2) in Theorem 7 are equivalent to $C_J(A)$ being the union of the hyperbola H and the point a. Since $W_J(A)$ is the pseudo-convex hull of a and H, and recalling that the point $a \in \sigma_J^+(A)$, we conclude that $W_J(A)$ coincides with the complex plane if the point a lies inside H_2 ; if a lies inside H_1 , then the pseudo-convex hull of a and H is the hyperbolical region limited by H; finally, if a lies outside H, then $W_J(A)$ is a "cone-like" figure. \Box

The case of a triangular matrix with a triple eigenvalue is particularly simple.

Proposition 3. Let J = diag(1, 1, -1) and

$$A = \begin{bmatrix} p & q & r \\ 0 & p & s \\ 0 & 0 & p \end{bmatrix} \in M_3$$

If at least one of the entries q, r or s is nonzero, then $W_J(A)$ coincides with \mathbb{C} . Otherwise, the set reduces to $\{p\}$.

Proof. Obviously, if q = r = s = 0, then $W_J(A) = \{p\}$. If $s \neq 0$, let A' = A[2, 3] and J' = diag(1, -1). Then $W_{J'}(A') \subseteq W_J(A)$ and by the hyperbolical range theorem $W_{J'}(A')$ is the complex plane. The case $r \neq 0$, may be analogously treated considering A' = A[1, 3] and J' = diag(1, -1). If $q \neq 0$, we take A' = A[1, 2] and J' = diag(1, 1). By the elliptical range theorem, $W_{J'}(A')$ is a disc centered at p with radius |q|/2. The point $p \in \sigma_J^-(A)$ is in the interior of the disc, and since the disc is generated by vectors with positive J-norm, the pseudo-convex hull of the disc and of the point p is the whole complex plane. \Box

4. Examples

We present illustrative examples of the obtained results. The figures were produce with *Mathematica* 5.1, and the boundaries of the convex sets $W_J^+(A)$ and $W_{-J}^+(A)$ are represented by thick lines.

Example 1. Let

$$A = \begin{bmatrix} i & 0 & 1/2 \\ 0 & 0 & 1/2 \\ 1/2 & 1/2 & -\sqrt{2} \end{bmatrix}.$$

Easy calculations show that

$$F_A^J(u, v, w) = v^3/4 + (v - 2\sqrt{2}u)vw/2 + (v - \sqrt{2}u)w^2 + w^3.$$

The associated curve $C_J(A)$, represented in Fig. 1, is quartic with a real cusp, being the imaginary axis a double tangent. The set $W_J^+(A)$ is contained in the closed right half-plane and it is the convex hull of the branch of $C_J(A)$ in this half-plane. The line segment [0, i] is a flat portion on $\partial W_J^+(A)$. On the other hand, $W_{-J}^+(A)$ is contained in the half-plane $\{z \in \mathbb{C} : \text{Re } z \leq -\sqrt{2}\}$, being the convex hull of the branch of $C_J(A)$ in that region (see Theorem 2).

Example 2. Consider, now, the matrix

$$A = \begin{bmatrix} 2 & 1 & 1/2 \\ -1 & i & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$

with $F_A^J(u, v, w) = v^3/4 - 3v^2w/4 + (vw + w^2)(2u + w)$. The associated curve $C_J(A)$, represented in Fig. 2, is quartic with a real cusp and the imaginary axis is a double tangent of the curve. Its pseudo-convex hull originates half-lines on $\partial W_J^+(A)$ and on $\partial W_{-J}^+(A)$, being $W_J^+(A)$ ($W_{-J}^+(A)$) contained in the closed right half-plane (closed left half-plane) (see Theorem 3).

Fig. 1. The line segment [0, i] is a flat portion on $\partial W_J^+(A)$.

Fig. 2. The negative imaginary axis is a flat portion on $\partial W^+_{-J}(A)$ and the half-line of the positive imaginary axis with endpoint *i* is a flat portion on $\partial W^+_J(A)$.

Example 3. Let

$$A = \begin{bmatrix} 0 & 1 & 1/2 \\ -1 & 1 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$$

where $F_A^J(u, v, w) = -3v^2w/4 + u(v^2/4 + w^2) + w^3$. The associated curve $C_J(A)$, represented in Fig. 3, is quartic with three real cusps and the imaginary axis is a double tangent of the curve (at complex points). This example leads to a degenerate case, since $W_{-J}^+(A) = \{z \in \mathbb{C} : \text{Re } z \leq 0\}$ and $W_J^+(A) = \{z \in \mathbb{C} : \text{Re } z \geq 0\}$. The imaginary axis is a flat portion on $\partial W_J^+(A)$ and on $\partial W_{-J}^+(A)$ (see Theorem 4 (9)).

Fig. 3. The imaginary axis is a flat portion on $\partial W_J^+(A)$ and on $\partial W_{-J}^+(A)$.

Example 4. Let

$$A = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix},$$

where $F_A^J(u, v, w) = 4uv^2 + w^3$. The associated curve $C_J(A)$, illustrated in Fig. 4, is cubic with a real cusp and a real flex, both in the line of infinity. The flexional tangent is the imaginary axis. This example leads also to a degenerate case, because $W_{-J}^+(A) = \{z \in \mathbb{C} : \text{Re } z < 0\}$ and $W_J^+(A) = \{z \in \mathbb{C} : \text{Re } z > 0\}$. The imaginary axis is a flat portion on $\partial W_J^+(A)$ (see Theorem 4 (10)).

Fig. 4. The imaginary axis is a flat portion on $\partial W_J^+(A)$.

Fig. 5. The positive imaginary axis is a flat portion on $\partial W_I^+(A)$.

Example 5. Finally, consider the matrix

$$A = \begin{bmatrix} i/16 & -1/2 & 0\\ 1/2 & 1+i & -1+i\\ 0 & 1-i & -1-i \end{bmatrix}$$

We get $F_A^J(u, v, w) = 16w^3 + vw^2 - 64uvw - 4v^2w + 4v^3$. The associated curve $C_J(A)$, represented in Fig. 5, is quartic with a real cusp, being the imaginary axis a double tangent (at the origin and at a point in the line of infinity). The set $W_J^+(A)$ ($W_{-J}^+(A)$) is contained in the closed right half-plane (open left half-plane), and it is the convex hull of the branch of $C_J(A)$ in this half-plane. The positive imaginary axis is a flat portion on $\partial W_I^+(A)$ (see Theorem 5).

Acknowledgment

The authors are grateful to the Referee for the careful reading of the manuscript and valuable suggestions.

References

- N. Bebiano, R. Lemos, J. da Providência, G. Soares, On generalized numerical ranges of operators on an indefinite inner product space, Linear and Multilinear Algebra, 52 (2004) 203–233.
- [2] N. Bebiano, R. Lemos, J. da Providência, G. Soares, On the geometry of numerical ranges in spaces with an indefinite inner product, Linear Algebra Appl. 399 (2005) 17–34.
- [3] N. Bebiano, J. da Providência, R. Teixeira, Indefinite numerical range of 3×3 matrices, submitted for publication.
- [4] G. Fischer, Plane Algebraic Curves, American Mathematical Society, Providence, 2001.
- [5] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
- [6] D. Keeler, L. Rodman, I. Spitkovsky, The numerical range of 3 × 3 matrices, Linear Algebra Appl. 252 (1997) 115–139.
- [7] R. Kippenhahn, Über den wertevorrat einer matrix, Math. Nachr. 6 (1951) 193–228.
- [8] C.-K. Li, L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite metric, Proc. Amer. Math. Soc. 126 (1998) 973–982.
- [9] C.-K. Li, L. Rodman, Shapes and computer generation of numerical ranges of Krein space operators, Electron. J. Linear Algebra 3 (1998) 31–47.
- [10] C.-K. Li, N.K. Tsing, F. Uhlig, Numerical ranges of an operator in an indefinite inner product space, Electron. J. Linear Algebra 1 (1996) 1–17.
- [11] F.D. Murnaghan, On the field of values of a square matrix, Proc. Natl. Acad. Sci. USA 18 (1932) 246-248.
- [12] P. Psarrakos, Numerical range of linear pencils, Linear Algebra Appl. 317 (2000) 127-141.