A convergence result in the study of bone remodeling contact problems

J.R. Fernández a,*, I.N. Figueiredo b, R. Martínez a

a Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Sur s/n, 15782 Santiago de Compostela, Spain

b Centro de Matemática da Universidade de Coimbra (CMUC), Department of Mathematics, University of Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

Received 3 August 2007
Available online 1 February 2008
Submitted by Y. Fu

Abstract

We consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle’s deformability coefficient converges to zero (that is, the obstacle’s stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini’s contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour.

Keywords: Bone remodeling; Signorini conditions; Normal compliance; Weak solutions; Convergence; Numerical simulations

0. Introduction

In this work, two contact problems between a body, made of a bone remodeling material, and an obstacle are considered from the variational point of view. The bone remodeling model, derived by Cowin and Hegedus (see [2,10]), is a generalization of the nonlinear elasticity, and it is based on the fact that the “living bone is continuously adapting itself to external stimuli.” The ability of the model presented in this paper to predict the bone remodeling is of great importance because this process has an enormous effect on the overall behaviour and health of the entire body.

During the last ten years, some papers dealt with mathematical issues of these models as the existence and uniqueness of weak solutions under some quite strong assumptions (see, e.g., [14–17,19]), the analysis of an asymptotic rod model [4–7] or the numerical stability of finite element models [9]. This paper concludes somehow the results
presented in [3] and [6], providing a theoretical result which states the convergence of the solution to the normal compliance contact problem to the solution to the Signorini contact problem, when the obstacle’s deformability coefficient converges to zero (i.e., when the stiffness coefficient tends to infinity). Moreover, some numerical results are also shown which demonstrate this convergence numerically.

The paper is outlined as follows. In Section 1 we describe briefly the mechanical problems and we derive their variational formulation. Our main theoretical result is then proved in Theorem 5. Finally, some numerical simulations, involving examples in one and two dimensions, are then provided in Section 2, which demonstrate numerically the accuracy and the behaviour of this convergence.

1. Mechanical and variational problems

In this section we present a brief description of the models (see [2] for further details of the bone remodeling model, [3] for the description of the contact problem with a deformable obstacle including bone remodeling and also [6] for the description of an asymptotic bone remodeling rod model with Signorini contact conditions).

Let us denote by $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$, an open bounded domain and let $\Gamma = \partial \Omega$ be its outer surface which is assumed to be Lipschitz continuous and it is divided into three disjoint parts Γ_D, Γ_N and Γ_C. The body is being acted upon by a volume force of density f, it is clamped on Γ_D and surface tractions with density g act on Γ_N. Finally, we assume that the body may come in contact with an obstacle, which can be deformable or rigid, on the boundary part Γ_C which is located at a distance s, measured along the outward unit normal vector ν (see Fig. 1).

Let u be the mechanical displacement field, σ the stress field, $\varepsilon(u) = (\varepsilon_{ij}(u))_{i,j=1}^d$ the linearized strain field given by

$$\varepsilon_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),$$

and e the so-called bone remodeling function, which measures the change in volume fraction of elastic material (present in the bone, which is a porous material), from a reference volume fraction of the elastic material denoted in the sequel by ξ_0.

According to [2,10], the constitutive law for the body Ω is the following,

$$\sigma = (\xi_0 + e)\mathcal{C}(e)\varepsilon(u),$$

where the fourth-order tensor $\mathcal{C}(e) = (C_{ijkl}(e))_{i,j,k,l=1}^d$ is a constitutive function whose properties will be described below in formula (1). We notice that the classical Hooke’s law is derived if $\xi_0 = 1$ and $e = 0$.

We turn now to the description of the contact conditions. First, we assume that the contact is produced with a deformable obstacle, and the well-known normal compliance contact condition is employed (see [11,13]); that is, the normal stress $\sigma_v = \sigma \cdot v$ on Γ_C is given by

$$-\sigma_v = \frac{1}{\mu}(u_v - s)_+, \quad \frac{1}{\mu} > 0,$$

where $u_v = u \cdot v$ denotes the normal displacement in such a way that, when $u_v > s$, the difference $u_v - s$ represents the interpenetration of the body’s asperities into those of the obstacle, $\mu > 0$ is a deformability coefficient (thus, $1/\mu$ represents somehow the stiffness of the obstacle) and $(u_v - s)_+ = \max\{0, u_v - s\}$.

Fig. 1. Contact problem for a bone remodeling body Ω.

Rigid or deformable obstacle
Secondly, we assume now that the contact is produced with a rigid obstacle, and the classical Signorini contact conditions are employed (see [12]); that is,

\[u_v \leq s, \quad \sigma_v \leq 0, \quad (u_v - s)\sigma_v = 0. \]

We remark the Signorini contact conditions can be understood as the limit of the normal compliance contact condition when \(\mu \to 0 \).

We also assume that the contact is frictionless for both problems, i.e. the tangential component of the stress field, denoted \(\sigma_{\tau} = \sigma - \sigma_v v \), vanishes on the contact surface.

Let us denote by \(\cdot \) the inner product in \(\mathbb{R}^d \) and by \(| \cdot | \) its corresponding norm. Let \(\mathcal{S}^d \) be the space of second order symmetric tensors on \(\mathbb{R}^d \), or equivalently, the space of symmetric matrices of order \(d \), and let : be its inner product and \(| \cdot | \) its norm.

The evolution of the bone remodeling function is obtained from the following first-order ordinary differential equation (see [2,10]),

\[\dot{e} = a(e) + A(e) : \varepsilon(u), \]

where \(a(e) \) and the second order tensor \(A(e) = (A_{ij}(e))_{i,j=1}^d \) are constitutive material coefficients depending upon the bone remodeling function \(e \). Again, their properties will be described below in formulas (2). Moreover, a dot above a variable represents the time derivative.

We emphasize that for the functions \(C(e), a(e) \) and \(A(e) \), which characterize the material properties, there are few experimental data concerning their form. In some papers, polynomial approximations have been employed (see, for instance, [10]).

Let us define the following truncation operator \(\Phi_L : \mathbb{R} \to [-L, L] \) by

\[\Phi_L(r) = \begin{cases} r & \text{if } |r| \leq L, \\ L & \text{otherwise.} \end{cases} \]

Finally, the model is assumed quasistatic and therefore, the inertia effects are neglected. Moreover, let \(e^{0}_\mu = e_\mu(t = 0) \) denote the initial bone remodeling function at time \(t = 0 \) for the normal compliance problem and \(e_0 = e(t = 0) \) for the Signorini’s problem.

If we suppose that the obstacle is deformable, then the strong formulation of the contact problem, within the framework of adaptive elasticity and small strains, is the following (see [3]).

Problem \(\mu \). Find the mechanical displacement field \(u_\mu : \Omega \times (0, T) \to \mathbb{R}^d \), the stress field \(\sigma_\mu : \Omega \times (0, T) \to \mathcal{S}^d \) and the bone remodeling function \(e_\mu : \Omega \times (0, T) \to \mathbb{R} \) such that \(e_\mu(0) = e^{0}_\mu \) and for a.e. \(t \in (0, T) \),

\[
\begin{align*}
\sigma_\mu(t) &= (\xi_0 + e_\mu(t))C(e_\mu(t))\varepsilon(u_\mu(t)) \quad \text{in } \Omega, \\
\dot{e}_\mu(t) &= a(e_\mu(t)) + A(e_\mu(t)) : \varepsilon(u_\mu(t)) \quad \text{in } \Omega, \\
- \text{Div} \sigma_\mu(t) &= \gamma(\xi_0 + \Phi_L(e_\mu(t)))f(t) \quad \text{in } \Omega, \\
u_\mu(t) &= 0 \quad \text{on } \Gamma_D, \\
\sigma_\mu(t)v &= g(t) \quad \text{on } \Gamma_N, \\
(\sigma_\mu)v(t) &= -\frac{1}{\mu}[(u_\mu)v(t) - s]_+ \quad \text{on } \Gamma_C.
\end{align*}
\]

Here, \(\gamma > 0 \) is assumed to be constant, for the sake of simplicity, and it represents the density of the full elastic material present in the bone.

If we assume that the obstacle is rigid and within exactly the same framework of the previous problem, the strong formulation of the problem with Signorini contact law is the following (compare with the asymptotic contact rod model of [6]).

Problem \(P \). Find the mechanical displacement field \(u : \Omega \times (0, T) \to \mathbb{R}^d \), the stress field \(\sigma : \Omega \times (0, T) \to \mathcal{S}^d \) and the bone remodeling function \(e : \Omega \times (0, T) \to \mathbb{R} \) such that \(e(0) = e_0 \) and for a.e. \(t \in (0, T) \),
\[\sigma(t) = (\xi_0 + e(t))C(e(t))\mathbf{e}(\mathbf{u}(t)) \quad \text{in } \Omega,\]
\[\dot{\mathbf{u}}(t) = a(e(t)) + A(e(t)) : \mathbf{e}(\mathbf{u}(t)) \quad \text{in } \Omega,\]
\[-\text{Div } \sigma(t) = \gamma(\xi_0 + \Phi_L(e(t)))f(t) \quad \text{in } \Omega,\]
\[\mathbf{u}(t) = \mathbf{0} \quad \text{on } \Gamma_D,\]
\[\sigma(t)v = g(t) \quad \text{on } \Gamma_N,\]
\[\sigma_\tau(t) = \mathbf{0}, \quad u_\nu(t) \leq s, \quad \sigma_\nu(t) \leq 0, \quad (u_\nu - s)\sigma_\nu = 0 \quad \text{on } \Gamma_C.\]

We observe that in the two equilibrium equations the truncation operator \(\Phi_L\) was applied on the respective bone remodeling functions. This is done from the mathematical point of view since these functions will be proved to be bound (see Theorems 2 and 3), and so we will can remove it.

We obtain now a variational formulation of both Problems \(P_\mu\) and \(P\). First, let us denote by \(H = [L^2(\Omega)]^d\), \(Y = L^2(\Omega)\), and define the following variational spaces
\[V = \{ \mathbf{w} \in [H^1(\Omega)]^d; \; \mathbf{w} = \mathbf{0} \; \text{on } \Gamma_D \},\]
\[Q = \{ \mathbf{r} = (r_{ij})_{i,j=1}^d \in [L^2(\Omega)]^{d \times d}; \; r_{ij} = r_{ji}, \; 1 \leq i, j \leq d \},\]
and let \(U\) be the admissible mechanical displacement convex set given by
\[U = \{ \mathbf{w} \in V; \; \mathbf{w} \cdot \mathbf{v} = w_\nu \leq s \; \text{on } \Gamma_C \}.

The following assumptions are done on the given data.

The elasticity coefficients \(C_{ijkl}(e)\) are assumed to satisfy the following properties:

(a) There exists \(L_C > 0\) such that for all \(e_1, e_2 \in \mathbb{R}\)
\[|(\xi_0 + e_1)C_{ijkl}(e_1) - (\xi_0 + e_2)C_{ijkl}(e_2)| \leq L_C|e_1 - e_2|,\]
(b) There exists \(M_C > 0\) such that
\[|(\xi_0 + e)C_{ijkl}(e)| \leq M_C \quad \forall e \in \mathbb{R}.\]
(c) \(C_{ijkl}(e) = C_{jikl}(e) = C_{klij}(e)\) for \(i, j, k, l = 1, \ldots, d, \; \forall e \in \mathbb{R}.\)
(d) There exists \(m_C > 0\) such that
\[(\xi_0 + e)C(e)\mathbf{r} : \mathbf{r} \geq m_C|\mathbf{r}|^2 \quad \forall \mathbf{r} \in \mathbb{R}^d, \; \forall e \in \mathbb{R}.\]

The constitutive function \(a(e)\) and the bone remodeling rate coefficients \(A_{ij}(e)\) are assumed Lipschitz and bounded functions. Therefore, there exist \(L_a, L_A, M_a\) and \(M_A\) such that

(a) \[|a(e_1) - a(e_2)| \leq L_a|e_1 - e_2|, \quad |a(e)| \leq M_a \quad \forall e_1, e_2, e \in \mathbb{R},\]
(b) \[|A(e_1) - A(e_2)| \leq L_A|e_1 - e_2|, \quad |A(e)| \leq M_A \quad \forall e_1, e_2, e \in \mathbb{R}.\]

Remark 1. Previous assumptions (1) and (2) are not too restrictive because the bone remodeling function is bounded, as we will prove later (see Theorems 2 and 3). Therefore, the usual examples for these functions, as provided in [10] using first-order polynomial approximations, will satisfy these assumptions.

The reference volume fraction \(\xi_0\) satisfies the following conditions for some \(\xi_0^m < 1\),
\[\xi_0 \in C(\overline{\Omega}), \quad 0 < \xi_0^m \leq \xi_0(x) \leq 1 \quad \text{for all } x \in \overline{\Omega}.\] (3)

The density forces have the regularity,
\[f \in C([0, T]; [C(\overline{\Omega})]^d), \quad \mathbf{g} \in C([0, T]; [C(\overline{\Gamma_N})]^d),\] (4)
and the initial values of the bone remodeling functions \(e_0\) and \(e_0^\mu\) verify that
\[e_0, e_0^\mu \in C(\overline{\Omega}).\] (5)
For every \(e \in L^\infty(\Omega) \), let us define the following bilinear form \(c(e; \cdot, \cdot) : V \times V \to \mathbb{R} \),
\[
c(e; u, v) = \int_\Omega (\xi_0 + e) \varepsilon(u) : \varepsilon(v) \, dx \quad \forall u, v \in V,
\]
and the linear form \(L(e; \cdot) : V \to \mathbb{R} \) given by
\[
L(e; v) = \int_\Omega \gamma(\xi_0 + \Phi_L(e)) f \cdot v \, dx + \int_{\Gamma_N} g \cdot v \, da \quad \forall v \in V.
\]
Let us define the contact functional \(j : V \times V \to \mathbb{R} \) as
\[
j(u, v) = \frac{1}{\mu} \int_{\Gamma_C} (u_v - s)_+ v_v \, da \quad \forall u, v \in V.
\]
Applying Green’s formula, we then derive the following variational formulations of Problems \(P_\mu \) and \(P \).

Problem \(VP_\mu \). Find the mechanical displacement field \(u_\mu : [0, T] \to V \) and the bone remodeling function \(e_\mu : [0, T] \to L^\infty(\Omega) \) such that \(e_\mu(0) = e_0 \) and for a.e. \(t \in (0, T) \),
\[
\begin{align*}
\dot{e}_\mu(t) &= a(e_\mu(t)) + A(e_\mu(t)) : \varepsilon(u_\mu(t)), \\
c(e_\mu(t); u_\mu(t), v) + j(u_\mu(t), v) &= L(e_\mu(t); v) \quad \forall v \in V.
\end{align*}
\]

Problem \(VP \). Find the mechanical displacement field \(u : [0, T] \to U \) and the bone remodeling function \(e : [0, T] \to L^\infty(\Omega) \) such that \(e(0) = e_0 \) and for a.e. \(t \in (0, T) \),
\[
\begin{align*}
\dot{e}(t) &= a(e(t)) + A(e(t)) : \varepsilon(u(t)), \\
c(e(t); u(t), v - u(t)) &\geq L(e(t); v - u(t)) \quad \forall v \in U.
\end{align*}
\]

The following result states the existence of a unique solution to Problem \(VP \). It can be proved by using similar arguments to those employed in [6] for the case of an asymptotic bone remodeling rod model with Signorini contact conditions (full details were provided recently in [18], see also [16]).

Theorem 2. Let the assumptions (1)–(5) hold. Assume that, for any given function \(e \in C^1([0, T]; C(\overline{\Omega})) \), the unique solution to the following problem:
\[
\begin{align*}
u(t) &\in U, \\
c(e(t); u(t), v - u(t)) &\geq L(e(t); v - u(t)) \quad \forall v \in U,
\end{align*}
\]
has the regularity \(u \in C([0, T]; [H^d(\Omega)]^d) \) for \(d = 2, 3 \) or the regularity \(u \in C([0, T]; H^2(\Omega)) \) for \(d = 1 \). Then, there exists a unique solution to Problem \(VP \) with the following regularity:
\[
u \in C([0, T]; [C^1(\overline{\Omega})]^d), \quad e \in C^1([0, T]; C(\overline{\Omega})).
\]

Arguing in an analogous way, we also have.

Theorem 3. Let the assumptions (1)–(5) hold. Assume that, for any given function \(e_\mu \in C^1([0, T]; C(\overline{\Omega})) \), the unique solution to the following problem:
\[
\begin{align*}
u_\mu(t) &\in V, \\
c(e_\mu(t); u_\mu(t), v) + j(u_\mu(t), v) &= L(e_\mu(t); v) \quad \forall v \in V,
\end{align*}
\]
has the regularity \(u_\mu \in C([0, T]; [H^d(\Omega)]^d) \) for \(d = 2, 3 \) or the regularity \(u \in C([0, T]; H^2(\Omega)) \) for \(d = 1 \). Then, there exists a unique solution to Problem \(VP_\mu \) with the following regularity:
\[
u_\mu \in C([0, T]; [C^1(\overline{\Omega})]^d), \quad e_\mu \in C^1([0, T]; C(\overline{\Omega})).
\]
Remark 4. We notice that these two existence and uniqueness results, Theorems 2 and 3, are obtained by assuming that the variational inequality (10) or the variational equation (11) have a unique solution with the required regularity $u, \mu \in C([0, T]; [H^2(\Omega)]^d)$ for $d = 2, 3$ or $u, \mu \in C([0, T]; H^2(\Omega))$ for $d = 1$. The proof of both results, detailed in the recent PhD thesis [18], is based on the existence and uniqueness result stated in [16] in the study of bone remodeling problems without contact. Anyway, the proof of both theorems, without such assumptions, is not done yet and it remains as an open and interesting problem which we hope to address in the near future.

The aim of this section, and of the paper, is to prove the convergence of the solution to Problem VP_{μ} to the solution to Problem VP, when the deformability coefficient μ tends to zero. This is established in the following.

Theorem 5. Let the assumptions (1)–(5) hold. Then, the solution (u_μ, e_μ) to Problem VP_{μ} converges to the solution (u, e) to Problem VP in the space $C([0, T]; V \times Y)$ when the deformability coefficient μ tends to the zero; that is,

$$
\max_{0 \leq t \leq T} \left\{ \left\| u_\mu(t) - u(t) \right\|_V + \left\| e_\mu(t) - e(t) \right\|_Y \right\} \to 0 \quad \text{when } \mu \to 0.
$$

(12)

Remark 6. In addition to the mathematical importance of this result, it is interesting to remark that, in applications, from this theorem we can conclude that the solution to the contact problem with a rigid obstacle may be then approached by the solution to the contact problem with a deformable foundation, for small obstacle’s deformability coefficients. This is very important for the applications, since contact problems with normal compliance give much better results than Signorini problems due to the loss of the regularity of its solution and they are easier to be solved.

Proof. In order to simplify the writing and the calculus we assume that $s = 0$ and that the initial conditions coincide (i.e. $e^0_\mu = e_0$ for all $\mu > 0$). Clearly, it is straightforward to extend the results presented below to more general situations.

First, let us estimate the error on the bone remodeling function. Integrating in time both differential equations (6) and (8) we have

$$
e(t) = \int_0^t \left\{ a(e(s)) + A(e(s)) : e(u(s)) \right\} ds + e_0,
$$

$$
e_\mu(t) = \int_0^t \left\{ a(e_\mu(s)) + A(e_\mu(s)) : e(u_\mu(s)) \right\} ds + e_0.
$$

Subtracting both expressions we find

$$
\left\| e(t) - e_\mu(t) \right\|_Y \leq \int_0^t \left(\left\| a(e(s)) - a(e_\mu(s)) \right\|_Y + \left\| A(e(s)) : e(u(s)) - A(e_\mu(s)) : e(u_\mu(s)) \right\|_Y \right) ds.
$$

Using now properties (2) it follows that

$$
\left\| a(e(s)) - a(e_\mu(s)) \right\|_Y \leq L_a \| e(s) - e_\mu(s) \|_Y,
$$

$$
\left\| A(e(s)) : e(u(s)) - A(e_\mu(s)) : e(u_\mu(s)) \right\|_Y \leq \left\| A(e_\mu(s)) : e(u_\mu(s)) - A(e_\mu(s)) : e(u_\mu(s)) \right\|_Y + \left\| A(e(s)) - A(e_\mu(s)) : e(u(s)) - A(e_\mu(s)) : e(u_\mu(s)) \right\|_Y
$$

$$
\leq C \left\{ \left\| u(s) - u_\mu(s) \right\|_V + \left\| e_\mu(s) - e(s) \right\|_Y \right\},
$$

where C, in what follows, is a generic positive constant which depends on the problem data and, here, it is linearly dependent on the norm $\| e(u) \|_{C(\overline{\Omega})^{d \times d}}$. Moreover, the regularity provided in Theorem 2 has been used.

Thus, we obtain that

$$
\left\| e(t) - e_\mu(t) \right\|_Y \leq C \int_0^t \left(\left\| u(s) - u_\mu(s) \right\|_V + \left\| e_\mu(s) - e(s) \right\|_Y \right) ds,
$$

(13)

where C is independent of μ, t and e.

We proceed now with the mechanical displacement fields. In what follows, we suppress the dependence on time to simplify the writing. Taking \(v = u - u_\mu \in V \) in the nonlinear variational equation (7) we have
\[
c(e; u, u - u_\mu) + j(u_\mu, u - u_\mu) = L(e; u, u - u_\mu),
\]
and using \(c(e; u, v - u_\mu + u_\mu - u) \) instead of \(c(e; u, v - u) \) in (9), it follows that
\[
c(e; u, u - u_\mu) \geq L(e; v - u) - c(e; u, v - u_\mu) \quad \forall v \in U.
\]
We observe that we cannot take \(v = u - u_\mu \in U \) in (9) because, in general, we cannot guarantee that \(u_\mu \in U \).
Since \(u_\nu \not\equiv 0 \) on \(\Gamma_C \), it is easy to check that
\[
j(u_\mu, u - u_\mu) = j(u_\mu, u) - j(u_\mu, u_\mu) \leq 0,
\]
and the previous equations can be rewritten as
\[
c(e; u, u - u_\mu) \leq L(e; u - u_\mu),
\]
\[
c(e; u, u - u_\mu) \leq L(e; u - v) + c(e; u, v - u_\mu) \quad \forall v \in U.
\]
Keeping in mind that
\[
-L(e; u - u_\mu) + L(e; u - v) = L(e; u - u_\mu) - L(e; u - u_\mu) + L(e; u - v) - L(e; u - u_\mu) \quad \forall v \in U,
\]
and
\[
c(e; u, u - u_\mu) + c(e; u, u - u_\mu) = c(e; u - u_\mu, u - u_\mu) + c(e; u, u - u_\mu) - c(e; u, u - u_\mu),
\]
adding the previous inequalities and using properties (1), (4) and the inequality
\[
ab \leq \epsilon a^2 + \frac{1}{4\epsilon} b^2, \quad a, b, \epsilon \in \mathbb{R}, \ \epsilon > 0,
\]
we find that
\[
\| u - u_\mu \|_V^2 \leq C \left(\| e - e_\mu \|_V^2 + \| v - u_\mu \|_H + \| v - u_\mu \|_{L^2(\Gamma_N)^d} + c(e; u, v - u_\mu) \right) \quad \forall v \in U.
\]
Therefore, we obtain the following estimates for the displacement field
\[
\| u - u_\mu \|_V \leq C \left(\| e - e_\mu \|_V + \| v - u_\mu \|_H^{1/2} + \| v - u_\mu \|_{L^2(\Gamma_N)^d}^{1/2} + \| c(e; u, v - u_\mu) \|^{1/2} \right) \quad \forall v \in U. \tag{14}
\]
Combining now estimates (13) and (14) and using Gronwall’s inequality we conclude that
\[
\max_{0 \leq t \leq T} \left\{ \left\| u(t) - u_\mu(t) \right\|_V + \| e(t) - e_\mu(t) \|_Y \right\}
\leq C \max_{0 \leq t \leq T} \left(\| v(t) - u_\mu(t) \|_H^{1/2} + \| v(t) - u_\mu(t) \|_{L^2(\Gamma_N)^d}^{1/2} + \| c(e; u, v - u_\mu(t)) \|^{1/2} \right) \frac{1}{4\epsilon} \quad \forall v \in C([0, T]; U).
\]
for all \(v \in C([0, T]; U) \). Taking into account that \(j(u_\mu(t), u_\mu(t)) \geq 0 \), using property (1)(d) we find that
\[
m_C \left\| u_\mu(t) \right\|_V^2 \leq c(e_\mu(t); u_\mu(t), u_\mu(t)) \leq L(e_\mu(t); u_\mu(t)) \leq C \left\| u_\mu(t) \right\|_V,
\]
and therefore, there exists \(M > 0 \), independent of \(\mu \), such that
\[
\left\| u_\mu(t) \right\|_V \leq M \quad \forall \mu > 0.
\]
Hence, there exists a subsequence of \((u_\mu(t)) \) denoted by \((u_{\mu_k}(t)) \) which is weakly convergent to an element \(\tilde{u}(t) \) belonging to \(V \) (since \(V \) is a closed space). Let us prove that \(\tilde{u}(t) \in U \), i.e. we shall verify that \(\tilde{u}_\nu(t) = \tilde{u}(t) \cdot v \leq 0 \) on \(\Gamma_C \).
Using again properties (1) it follows that \(c(e_{\mu_k}(t); u_{\mu_k}(t), u_{\mu_k}(t)) \geq 0 \), and thus we have
\[
j(u_{\mu_k}(t), u_{\mu_k}(t)) \leq L(e_{\mu_k}(t); u_{\mu_k}(t)) \leq C \left\| u_{\mu_k}(t) \right\|_V \leq CM,
\]
where \(C \) is a positive constant independent of \(t, \mu_k, u \) and \(e \).
Taking limits it follows that
\[
\lim_{\mu_k \to 0} \frac{1}{\mu_k} \int_{\Gamma C} \left[(u_{\mu_k}(t))_+ (u_{\mu_k}(t))_+ \right] \, da = CM = \text{constant},
\]
and, by Fatou’s lemma, we have
\[
0 \leq \int_{\Gamma C} \lim_{\mu_k \to 0} \left[(u_{\mu_k}(t))_+ (u_{\mu_k}(t))_+ \right] \, da \leq \int_{\Gamma C} \left[(u_{\mu_k}(t))_+ (u_{\mu_k}(t))_+ \right] \, da = 0,
\]
since \(u_{\mu_k}(t) \) converges strongly to \(\tilde{u}(t) \) on \(\Gamma C \) (the trace operator from \(V \) into \(L^2(\Gamma C)^d \) is compact). Thus, we find that \(\int_{\Gamma C} \left[u_{\nu(t)}(t)+\tilde{u}_\nu(t) \right] \, da = 0 \), which implies that \(\tilde{u}_\nu(t) \leq 0 \) on \(\Gamma C \). Therefore we have proved that \(\tilde{u}(t) \in U \).

Keeping in mind that \(V \) is compactly embedded in \(H \) (Rellich–Kondrachov theorem) and that the trace operator is also compact from \(V \) into \(L^2(\Gamma N)^d \), the subsequence \((u_{\mu_k}(t)) \) is also strongly convergent to \(\tilde{u}(t) \) in \(H \) and its trace is strongly convergent to the trace of \(\tilde{u}(t) \) in \(L^2(\Gamma N)^d \). Moreover, since \(u_{\mu_k}(t) \to \tilde{u}(t) \) in \(V \), taking \(v(t) = \tilde{u}(t) \) in (15) we have
\[
|c(e(t); u(t), \tilde{u}(t) - u_{\mu_k}(t))|^{1/2} \to 0 \quad \text{as} \quad \mu_k \to 0,
\]
and taking again \(v(t) = \tilde{u}(t) \) in (15) we conclude that
\[
\max_{0 \leq t \leq T} \left\{ \| u(t) - u_{\mu_k}(t) \|_V + \| e(t) - e_{\mu_k}(t) \|_Y \right\} \to 0 \quad \text{as} \quad \mu_k \to 0. \quad (16)
\]
Finally, for any other subsequence \((u_{\mu_i}(t)) \) of \((u_{\mu}(t)) \) weakly convergent to another element \(\hat{u}(t) \in V \) we can repeat these arguments and we again obtain that \(\hat{u}(t) \in U \), so the limits are equal to zero, as in (16). Thus we can conclude that (16) is verified for all the sequence \((u_{\mu}(t)) \). \(\square \)

2. Numerical results with a fully discrete scheme

In this section, we introduce a finite element algorithm for approximating solutions of both variational Problems \(VP \) and \(VP_{\mu} \), and present some results, involving test examples in one and two dimensions, which demonstrate numerically the convergence behaviour stated in Theorem 5.

2.1. Numerical algorithm

The discretization of the two variational problems is done in two steps. First, we consider the finite element spaces \(V^h \subset V \) and \(B^h \subset L^\infty(\Omega) \subset Y \) given by
\[
V^h = \left\{ w^h \in \left[C(\Omega) \right]^d; \ w^h_{tr} \in \left[P_1(Tr) \right]^d, \ Tr \in T^h, \ w^h = 0 \text{ on } \Gamma D \right\},
\]
\[
B^h = \left\{ \xi^h \in L^\infty(\Omega); \ \xi^h_{tr} \in P_0(Tr), \ Tr \in T^h \right\},
\]
where \(\Omega \) is a polyhedral domain, \(T^h \) denotes a triangulation of \(\Omega \) compatible with the partition of the boundary \(\Gamma = \partial \Omega \) into \(\Gamma_D, \Gamma_N \) and \(\Gamma_C \), and \(P_q(Tr), \ q = 0, 1 \), represents the space of polynomials of global degree less or equal to \(q \) in \(Tr \). Here, \(h > 0 \) denotes the spatial discretization parameter. Moreover, we define the discrete admissible mechanical displacement convex set \(U^h = U \cap V^h \); that is,
\[
U^h = \left\{ \omega^h \in V^h; \ w^h_{tr} = \omega^h \cdot v \leq s^h \text{ on } \Gamma_C \right\},
\]
where \(s^h \) is an appropriate approximation of the gap function \(s \).

Secondly, the time derivatives are discretized by using a uniform partition of the time interval \([0, T] \), denoted by \(0 = t_0 < t_1 < \cdots < t_N = T \), and let \(k \) be the time step size, \(k = T/N \). Moreover, for a continuous function \(f(t) \) we denote \(f_n = f(t_n) \).

Using the forward Euler scheme, the fully discrete approximations of Problems \(VP \) and \(VP_{\mu} \) are as follows.

Problem \(VP_{\mu}^h \): Find a discrete displacement field \(u_{\mu}^{hk} = \{u_{\mu}^{hk}\}_{n=0}^N \subset U^h \) and a discrete bone remodeling function \(e^{hk} = \{e^{hk}\}_{n=0}^N \subset B^h \) such that \(e^{hk}_0 = e_0^h \) and for \(n = 1, \ldots, N \).
Problem \mathcal{VP}^μ_h. Find a discrete displacement field $u^\mu_h = \{(u^\mu_n)_{n=0}^N \subset V^h$ and a discrete function $e^\mu_{0h} = \{(e^\mu_{n})_{n=0}^N \subset B^h$ such that $(e^\mu_{0})_{0h} = e^h_0$ and for $n = 1, \ldots, N$,
\[
(\mu^h_{\mu}, v^h) + j((u^\mu_n)^h, v^h) = L((e^\mu_{n})_{0h}; v^h) \quad \forall v^h \in V^h,
\]
where e^h_0 is an appropriate approximation of the initial condition e_0 (which we assumed, as in the previous section, equal to the initial condition for the Signorini’s problem) and (u^μ_{0h}) is the solution to the following problem,
\[
(u^\mu_{0h})^h \in V^h, \quad (e^\mu_{0h}); (u^\mu_{0h})^h + j((u^\mu_{0h})^h, v^h) = L((e^\mu_{0}); v^h) \quad \forall v^h \in V^h.
\]
From the properties (1), using classical results on nonlinear variational equations and nonlinear variational inequalities (see [8]), it is straightforward to obtain the existence and uniqueness of solution to both fully discrete problems (see also [4] for theoretical results dealing with the approximation of an asymptotic bone remodeling rod model without contact).

Remark 7. The numerical analysis of the fully discrete Problem \mathcal{VP}^μ_h was done in the recent paper [3]. There, we proved the following error estimates under suitable regularity conditions on the continuous solution,
\[
\max_{0 \leq n \leq N} \left\{ \| (u^\mu_n) - (u^h_{\mu,n})^h \|_V + \| (e^\mu_n) - (e^h_{\mu,n})^h \|_Y \right\} \leq C(h + k),
\]
where C is a positive constant independent of μ, h and k.

Proceeding in a similar way, we can also prove the following error estimates,
\[
\max_{0 \leq n \leq N} \left\{ \| u^h_n - u^\mu_n \|_V + \| e^h_n - e^\mu_n \|_Y \right\} \leq C(h^{1/2} + k).
\]
Therefore, combining the previous estimates and keeping into account Theorem 5 we can easily conclude that
\[
\max_{0 \leq n \leq N} \left\{ \| u^h_n - (u^\mu_n)^h \|_V + \| e^h_n - (e^\mu_n)^h \|_Y \right\} \\
\leq \max_{0 \leq n \leq N} \left\{ \| (u^\mu_n) - (u^h_{\mu,n})^h \|_V + \| (e^\mu_n) - (e^h_{\mu,n})^h \|_Y \right\} + \max_{0 \leq n \leq N} \left\{ \| u^h_n - (u^\mu_n) \|_V + \| e^h_n - (e^\mu_n) \|_Y \right\} \\
+ \max_{0 \leq n \leq N} \left\{ \| u^h_n - u^\mu_n \|_V + \| e^h_n - e^\mu_n \|_Y \right\} \rightarrow 0 \quad \text{as } \mu, h, k \rightarrow 0.
\]

We notice that the above fully discrete problems were solved by using a penalty-duality algorithm introduced in [1] and already applied to the solution of other contact problems. The numerical schemes were implemented on a 3.2 GHz PC using MATLAB.

2.2. Numerical results for a one-dimensional example

As a first example, we consider a one-dimensional setting. A bar which occupies the domain $\Omega = (0, 6)$ is assumed to be in contact with an obstacle (deformable or rigid) on its right corner, so $s = 0$ m. A positive compression force is then applied on its left end, which enforces the body to maintain the contact with the obstacle (see Fig. 2).

The following data have been employed in the numerical simulations (polynomial approximations as in [10] for $\mathcal{C}(e)$, $a(e)$ and $\mathcal{A}(e)$ are used):
Fig. 2. Example 1D: A bar in contact with an obstacle.

Fig. 3. Convergence of the solution when $\mu \to 0$.

Moreover, we assume that the initial bone remodeling function is given by

e_0(x) = 0 \quad \forall x \in (0, 6).

Our aim here is to show the numerical convergence of the solution when the deformability coefficient μ tends to zero as stated in Theorem 5. Therefore, two fine uniform partitions of both the time interval and the domain have been considered with the discretization parameters $h = k = 0.001$.

In Fig. 3 we plot the evolution in time of the mechanical displacement of the contact point $x = 6$ for several values of μ (left-hand side) and the evolution, with respect to μ, of the mechanical displacement of this node at final time $T = 100$ days (right-hand side). As can be seen, the convergence to the Signorini case ($u(6, t) = 0$ for all $t \in [0, 100]$) is shown. Moreover, we notice that a similar behaviour can be reported for the respective discrete bone remodeling functions.

The errors, given by

$$E_{\mu}^{hk} = \max_{0 \leq h \leq N} \left\{ \| (u_{\mu})_h - u_{\mu}^h \|_V + \| (e_{\mu})_h - e_{\mu}^h \|_Y \right\}$$
and obtained for different values of μ, are shown in Fig. 4. We notice that the convergence of the solution when $\mu \to 0$ is clearly observed (in fact, it seems that a linear behaviour is achieved).

2.3. Numerical results for a two-dimensional problem ($d = 2$)

As a two-dimensional example, we consider the rectangular domain $\Omega = (0, 6) \times (0, 1.2)$ which is clamped on the boundary part $\Gamma_D = \{0\} \times [0, 1.2]$. No volume forces are supposed to act in the body, a linearly increasing surface force acts on the boundary part $[0, 6] \times \{1.2\}$ and, finally, the body is supposed to be in contact with a deformable obstacle on the contact boundary $\Gamma_C = [0, 6] \times \{0\}$ (see Fig. 5).

The following data were employed in this example:

- $T = 100$ days, $f = 0$ N/m3, $g(x, y, t) = (0, -5x)$ MPa,
- $C(e) = \frac{1}{\xi_0 + e}(C^0 + C^1e)$, $A(e) = A^0 + A^1e$, $\xi_0 = 0.892$, $\gamma = 1740$ kg/m3,
- $s = 0$ m, $a(e) = a_0 + a_1e + a_2e^2$, $a_0 = -1296 \times 10^{-4}$ (100 days)$^{-1}$,
- $a_1 = -1296 \times 10^{-2}$ (100 days)$^{-1}$, $a_2 = 216 \times 10^{-2}$ (100 days)$^{-1}$,
where the fourth-order tensors $C^0 = (C^0_{ijkl})_{i,j,k,l=1}^2$ and $C^1 = (C^1_{ijkl})_{i,j,k,l=1}^2$ and the second-order tensors $A^0 = (A^0_{ij})_{i,j=1}^2$ and $A^1 = (A^1_{ij})_{i,j=1}^2$ have the following components:

\[
C^0_{1111} = 25.69 \text{ GPa}, \quad C^0_{2211} = 11.67 \text{ GPa}, \quad C^0_{2222} = 25.69 \text{ GPa}, \\
C^1_{1111} = 252.08 \text{ GPa}, \quad C^1_{2211} = 114.58 \text{ GPa}, \quad C^1_{2222} = 252.08 \text{ GPa}, \\
A^0_{11} = 68.75 \text{ GPa}, \quad A^0_{12} = 0, \quad A^1_{11} = 216 \text{ (100 days)$^{-1}$}, \quad A^1_{12} = 216 \text{ (100 days)$^{-1}$}, \quad A^1_{21} = 0.
\]

Moreover, we assume that the initial bone remodeling function is given by

\[e_0(x, y) = 0 \quad \forall (x, y) \in (0, 6) \times (0, 1.2). \]

Taking $k = 0.01$, as the time discretization parameter, the mechanical displacement field (multiplied by 20) at final time together with the reference configuration are plotted in Fig. 6 for a deformable obstacle (left) and for a rigid one (right). We notice that, if we assume that the obstacle is deformable, a clear penetration is produced, but if the obstacle is rigid, then no penetration is obtained.

The transverse mechanical displacement of the contact boundary is plotted in Fig. 7 at final time T for different values of μ. As can be seen, the displacement converges to zero when $\mu \to 0$ since we assume that the body was in contact with the obstacle.
3. Conclusions

This paper deals with the approximation of the solution to the contact problem with a rigid obstacle by the solution to the contact problem with a deformable obstacle, when its stiffness tends to infinity. The bone remodeling of the material was also taken into account. A convergence result, Theorem 5, was proved by using a priori estimates of both the displacements and the bone remodeling function, Gronwall’s inequality and Fatou’s lemma. Then, some numerical examples were performed in one and two dimensions to demonstrate, from the numerical point of view,
such convergence behaviour. First, a simple one-dimensional example was considered, from which the numerical convergence of the solution to the normal compliance problem to the solution to the Signorini’s problem was clearly observed, when the deformability coefficient μ tends to zero, either pointwise (see Fig. 3) or either in the energy norm for the displacements and in the $L^2(\Omega)$-norm for the bone remodeling function (see Fig. 4). We noticed that a linear convergence with respect to the parameter μ seemed to be achieved, but it was not theoretically proved yet. Secondly, a two-dimensional example was presented. The numerical results shown in Figs. 6 and 8 demonstrated that different solutions were obtained for each problem (for instance, a clear penetration into the obstacle was produced if the obstacle was assumed deformable and different bone remodeling functions were obtained). In order to show the convergence behaviour numerically, in Figs. 7 and 9 we depicted the displacement fields and the bone remodeling functions, respectively, at final time and on the contact boundary for some deformability coefficients. Again, the convergence to the solution to the contact problem with Signorini’s conditions was shown.

Acknowledgments

The authors would like to thank the two referees whose comments and remarks improved the final version of this paper.

References