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Abstract

This paper extends the study of the cardinality impact on the portfolio performance, from
the traditional mean-variance framework to more general frameworks that include higher
moments. For each framework, we propose a bi-objective model that allows the investor to
explicitly analyse the efficient tradeoff between expected utility and cardinality. We applied
the proposed methodology to data from the Portuguese Stock Index (PSI20 index). The
empirical results show that, in-sample, the certainty equivalent and the Sharpe ratio increase
with the cardinality level in all frameworks. The results also suggest that there are no
performance gains, in-sample, in terms of certainty equivalent, when higher moments are
considered. Out-of-sample, the turnover increases up to a certain cardinality level, then
decreases. For certain cardinality levels, there are gains in terms of out-of-sample certainty
equivalent and Sharpe ratio, when skewness and kurtosis are considered. Finally, we check
the robustness of these results in a large dataset from the EUROSTOXX50 index.
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1 Introduction
Efficient wealth allocation is a crucial and challenging task faced by both individual and in-
stitutional investors. Since the classical Markowitz mean-variance model (Markowitz, 1952), it
became evident that it is important to analyse both the risk and expected return of portfolios.
In the classical model, the investor deals with the risk/return tradeoff by means of a bi-objective
mean-variance optimization model, whose solution is given as a Pareto front (the efficient fron-
tier). Efficient portfolios can be seen as those which have the minimum variance among all
feasible portfolios for a certain level of expected return. The classical model can be seen as a
two-stage problem: in the first-stage, the parameters (covariance matrix and vector of expected
returns) are estimated based on historical data and, in the second-stage, the mean-variance op-
timization is performed. Thus, in the first-stage there is some degree of estimation error that
is “optimized” in the second-stage (Michaud, 1989). Therefore, the mean-variance portfolios
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tend to be very unstable and to exhibit a poor out-of-sample performance. Furthermore, the
classical model implicitly assumes that returns follow a normal distribution or that investors
have a quadratic utility function.

It is known that the distribution of the returns exhibits fatter tails than the Gaussian dis-
tribution (see, e.g., Mandelbrot, 1963; Turner and Weigel, 1992). Arditti (1967), Kraus and
Litzenberger (1976) and Harvey and Siddique (2000) suggest that the investor’s utility function
is not quadratic, since investors have preference for positive skewness. In fact, there are several
studies suggesting gains if, instead of considering just the first two moments of the returns’ distri-
bution, higher moments are also included in the portfolio management problem (Chunhachinda
et al., 1997; Mencia and Sentana, 2009; Harvey et al., 2010).

With the aim of improving the performance of the classical mean-variance model, several
modifications or alternative strategies have been proposed. One well-known modification con-
sists in imposing a cardinality constraint (a constraint that limits the number of stocks in the
portfolio) to the classical mean-variance model, leading to the cardinality constrained mean-
variance model. This model can be seen as a mixed-integer quadratic problem and is no longer
solved in polynomial time. In the literature, several algorithms have been proposed to solve this
cardinality constrained portfolio management problem.

This paper focus on the analysis of the cardinality impact on the portfolio performance, in
the mean-variance (hereafter MV), the mean-variance-skewness (MVS) and the mean-variance-
skewness-kurtosis (MVSK) frameworks. Therefore, the analysis is conducted not only on the
impact of the cardinality constraint in each framework but also on the benefits of considering
higher moments in portfolio management. In this study we assume that the investor maximizes
her expected utility, characterized by constant relative risk aversion preferences (CRRA). This
is a common assumption in the related literature (see, e.g., Aït-Sahalia and Brandt, 2001). The
main reason why we have adopted this particular utility function is the same one that is stated
by Brandt et al. (2009), p. 3421: “the advantage of CRRA utility is that it incorporates pref-
erences toward higher moments in a parsimonious manner. In addition, the utility function is
twice continuously differentiable, which allows us to use more efficient numerical optimization
algorithms that make use of the analytic gradient and Hessian of the objective function”. Never-
theless, we point out that the presented procedures are quite flexible, and may be applied to any
other type of utility function. For each framework, we propose a bi-objective model that allows
the investor to directly analyse the efficient tradeoff between expected utility and cardinality.
Given the non-smoothness of the cardinality function and inspired in Brito and Vicente (2014),
we have decided to solve each bi-objective model using a derivative-free solver based on direct
multisearch (Custódio et al., 2011).

The contribution of this paper is twofold. First, this study extends the analysis of the cardi-
nality impact on the portfolio performance from the standard MV framework to the MVS and
MVSK frameworks. Second, we analyse the performance gains (in terms of certainty equiva-
lent and Sharpe ratio) when considering higher moments (skewness and kurtosis) at different
cardinality levels. The certainty equivalent, being a measure that takes into account the ex-
pected utility, is therefore a more suitable performance measure than the Sharpe ratio when
comparing the three frameworks. Although one needs to be careful when using the Sharpe ratio
as a performance measure, especially in the MVS and MVSK frameworks (the ratio does not
account for skewness or kurtosis), this is one of the most widely used performance measures in
the literature, even in non mean-variance settings (see, e.g., DeMiguel et al., 2009). Although
the Sharpe ratio is intrinsically related to the MV framework, it is interesting to see how the
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MVS and MVSK frameworks perform in this dimension in comparison with the MV framework
(even if the existence of performance gains, in terms of Sharpe ratio, of the MVS and MVSK
frameworks against the MV framework should be hard to get).

The empirical analysis is conducted on a dataset from the Portuguese Stock Index (PSI20
index). The daily data is collected from Thomson Reuters Datastream®. First, we compute the
expected utility/cardinality efficient frontiers for each one of the three frameworks and analyse
the in-sample cardinality impact using as performance measures the certainty equivalent and
the Sharpe ratio. Second, we perform an out-of-sample analysis using the certainty equivalent,
the Sharpe ratio, the turnover and the Sharpe ratio of returns net of transaction costs. The
results for each efficient expected utility/cardinality portfolio in each of the three frameworks
are reported.

The in-sample results show that both the certainty equivalent and the Sharpe ratio increase
with the cardinality level and suggest that there are no gains, in terms of certainty equivalent,
when considering higher moments. When transaction costs are not considered, the out-of-sample
results on the certainty equivalent and Sharpe ratio do not show a clear trend with cardinality.
However, the turnover increases up to a certain level of cardinality and then decreases. This
result leads to another interesting result that the out-of-sample net Sharpe ratio – that is, the
Sharpe ratio net of transaction costs – decreases up to a certain cardinality level, then increases
and afterwards behaves more erratically for larger values of the cardinality. So, for an important
range of cardinality levels, diversification has a positive effect when transaction costs are taken
into account.

The out-of-sample certainty equivalent and the Sharpe ratio suggest that there are gains, for
certain cardinality levels, when considering skewness and kurtosis (although these differences
were not statistically significant). In the case of the net Sharpe ratio and when considering
skewness, there statistical significant gains for certain cardinality levels.

Finally, as a kind of robustness check, we present some results for the out-of-sample cer-
tainty equivalent, Sharpe ratio, turnover and the net Sharpe ratio of a large dataset from the
EUROSTOXX50 index. The observed results are consistent with those for the PSI20 index.
However, since in this dataset we have a larger number of stocks, we are able to build portfolios
with a larger cardinality. We notice that, for larger levels of cardinality, the turnover and the
net Sharpe ratio no longer show a clear trend. After an initial increase in turnover, and the sub-
sequent decrease, the turnover increases again and tends to behave more erratically. Similarly,
after an initial decrease in the net Sharpe ratio, and the subsequent increase, the net Sharpe
ratio decreases again and tends to behave more erratically. This indicates that the best level of
cardinality should be a concern for investors wanting to diversify their portfolios, and that we
cannot assume that a larger cardinality is always better.

The remainder of the paper proceeds as follows. We present a brief literature review in
Section 2. In Section 3 we describe our approach and the proposed models. The empirical
application is presented in Section 4. We conclude in Section 5.

2 State of the Art
At least since the works of Mandelbrot (1963) and Fama (1965), it is well documented that one of
the stylized facts of financial series is that the distribution of the returns exhibits fat tails. This
fact was explored in major papers associated to ARCH type (e.g., Engle, 1982; Bollerslev, 1986;
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Nelson, 1991; Zakoian, 1994; Tavares et al., 2008) and stochastic volatility models (e.g., Taylor,
1986; Bai et al., 2003). Several studies have analysed this stylized fact for the specific case of
the Portuguese Stock Index (PSI20 index), (see, e.g., Curto et al., 2003; Rege et al., 2013). In
portfolio management, the use of just the first two moments of the returns distribution should
be questioned once we know that investors have preference for positive skewness (Arditti, 1967,
give us an analytical proof of this fact) and dislike high kurtosis (see, e.g., Maringer and Parpas,
2009). In fact, the sufficient conditions for using just the first two moments are the normal
distribution of returns and a quadratic utility function of the investors. But both of these
conditions are rarely verified, which suggests that the classical mean-variance analysis, proposed
by Markowitz (1952), may not be the most suitable approach for portfolio management. Hence it
seems that there may be real gains in portfolio management when higher moments are considered.
There are several studies incorporating higher moments in portfolio management (Chunhachinda
et al., 1997; Athayde and Flôres, 2004; Maringer and Parpas, 2009; Mencia and Sentana, 2009;
Harvey et al., 2010), however, its usefulness has not been clearly proven. For example, Cremers
et al. (2005) showed empirically that for an investor with log or power preferences there are
no significant differences between the mean-variance model and the other models with higher
moments.

Cardinality is a well-known measure of portfolio diversification. When cardinality increases,
the total risk of a portfolio decreases gradually, until a certain level of risk is achieved. After that
level, increases in cardinality only produce negligible reductions in the risk level (see, e.g., Evans
and Archer, 1968; Statman, 1987; Benartzi and Thaler, 2001). Therefore, the cardinality impact
on portfolio performance is a very important issue for both individual and institutional investors.

The starting point for the cardinality issue in portfolio management has been the classical
MV model, with the inclusion of a cardinality constraint. This model can be seen as a mixed-
integer quadratic problem that is no longer solved in polynomial time, therefore most studies
have focused on providing efficient algorithms to solve this problem. These algorithms vary
from exact algorithms (Bienstock, 1996; Vielma et al., 2008; Bertsimas and Shioda, 2009) to
heuristics (Chang et al., 2000; Fieldsend et al., 2004; Cesarone et al., 2009; Anagnostopoulos
and Mamanis, 2011; Woodside-Oriakhi et al., 2011; Brito and Vicente, 2014). With the aim of
promoting regularization of ill conditioning, DeMiguel et al. (2009) constrained the Markowitz
classical model by imposing a bound on the l1-norm of the vector of portfolio weights, among
other possibilities. Since the l1-norm is the exact convex relaxation of the l0-norm (cardinality),
DeMiguel et al. (2009) indirectly studied the effect of cardinality in the classical MV framework.
A similar idea was explored in Brodie et al. (2009).

In this paper we extend the study of the cardinality impact from the standard MV frame-
work to the MVS and MVSK frameworks. For each framework, based on the investor’s expected
utility maximization criterion, we propose a bi-objective model that allows the investor to di-
rectly analyse the efficient tradeoff between expected utility and cardinality. Given the lack
of derivatives of the cardinality function, and inspired by Brito and Vicente (2014), we ap-
ply a directional derivative-free algorithm (Custódio et al., 2011) to obtain the solution of the
bi-objective optimization problems.
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3 Methodology
Suppose that an investor has a certain wealth, W , to invest in a set of N stocks. Let u(·) be
the investor’s utility function. Assuming that the investor has CRRA (constant relative risk
aversion) preferences, her utility function is given by

u (rp,t+1) =
(1 + rp,t+1)

1−γ

1− γ
, with γ > 1, (1)

where rp,t+1 is the portfolio return at time t + 1 and γ is the relative risk aversion coefficient
(higher values of γ imply more risk aversion).

Considering the fourth order Taylor expansion of the expected utility, Et [u (rp,t+1)], around
the expected return of the portfolio, Et (rp,t+1), we have

Et [u (rp,t+1)] ≈ u [Et (rp,t+1)] +
1

2!
u′′ [Et (rp,t+1)]Vt (rp,t+1)

+
1

3!
u′′′ [Et (rp,t+1)]St (rp,t+1)

+
1

4!
u′′′′ [Et (rp,t+1)]Kt (rp,t+1) ,

(2)

where
Vt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]

2 ,

St (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
3 ,

Kt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
4 ,

are the portfolio variance, skewness and kurtosis, respectively. Since it is assumed that the
investor has CRRA preferences (with γ > 1), we have

u [Et (rp,t+1)] =
[1 + Et (rp,t+1)]

1−γ

1− γ
,

u′′ [Et (rp,t+1)] = −γ [1 + Et (rp,t+1)]
−(γ+1) ,

u′′′ [Et (rp,t+1)] = γ(γ + 1) [1 + Et (rp,t+1)]
−(γ+2) ,

u′′′′ [Et (rp,t+1)] = −γ(γ + 1)(γ + 2) [1 + Et (rp,t+1)]
−(γ+3) .
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Now, for the sake of notation simplicity, let us consider that

a = u [Et (rp,t+1)] ,

b = −u′′ [Et (rp,t+1)]

2
,

c =
u′′′ [Et (rp,t+1)]

6
,

d = −u′′′′ [Et (rp,t+1)]

24
.

Then Equation (2) can be rewritten as

Et [u (rp,t+1)] ≈ a− bVt (rp,t+1) + cSt (rp,t+1)− dKt (rp,t+1) (3)

3.1 The Expected Utility/Cardinality Bi-objective Model
We assume that the investor wants to choose a portfolio taking into account two criteria: an
expected utility that considers several moments of the portfolio return and the cardinality of
the portfolio.

The problem of maximizing the expected utility can be stated as the choice of the portfolio
weights, wi, that maximize the conditional expected utility of the portfolio’s return, rp,t+1,

max
w∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wiri,t+1

)]
subject to e⊤w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(4)

where e is the N × 1 vector of ones, and Li and Ui represent, respectively, lower and upper
bounds on the weights.

Adding to Problem (4) a constraint that limits the number of active positions on the portfolio
(a cardinality constraint), we have

max
w∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wiri,t+1

)]
subject to card(w) ≤ K

e⊤w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(5)

where card(w) = |{i ∈ {1, ..., N} : wi ̸= 0}| and K ∈ {1, . . . , N}. Despite card(x) being often
called, in the literature, the l0-norm, it is not a norm due to the fact that it doesn’t satisfy the
homogeneity property.

Here we suggest that cardinality should be included as a second objective in the problem,
instead of a constraint. Thus, we reformulate Problem (5) as
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max
w∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wiri,t+1

)]
min
w∈RN

card(w)

subject to e⊤w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(6)

The solution of Problem (6) is given by a Pareto front, i.e., as an efficient expected util-
ity/cardinality frontier. Efficient expected utility/cardinality portfolios can be seen as those
which have the maximum expected utility among all that have at most a certain level of cardi-
nality. The investor can thus directly analyse the efficient tradeoff between expected utility and
cardinality. The bi-objective Problem (6) has two objective functions, a linear constraint and
2N inequality constraints. The first objective, Et [u (rp,t+1)], is nonlinear but smooth. However,
the second objective, card(w), is a piecewise linear discontinuous function, and consequently
it is nonlinear and non-smooth. Since derivative-free algorithms are applicable to black-box
type functions (see Conn et al., 2009, for a survey on derivative-free optimization), they are
suitable to deal with the cardinality objective function. According with Custódio et al. (2011),
direct multisearch has the best performance among all derivative-free solvers for multiobjective
optimization. We have thus decided to solve Problem (6) using the DMS solver (version 0.3)1.

Taking into account Problem (6), we suggest to analyse separately the impact of cardinality
on the portfolio performance for three different frameworks (see Section 3.2): when the investor,
with CRRA preferences, has MV, MVS and MVSK expected utilities.

3.2 The MV, MVS and MVSK Expected Utility/Cardinality Efficient Fron-
tiers

If the investor with CRRA preferences (see Equation (1)) considers the second order Taylor
expansion of the expected utility, Et [u (rp,t+1)], around the expected return of the portfolio,
Et (rp,t+1), the second member of Equation (3) is truncated at the second term. Hence, in order
to investigate the cardinality impact, the following model can be solved when the investor has
a MV expected utility

max
w∈RN

a− bVt (rp,t+1)

min
w∈RN

card(w)

subject to e⊤w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(7)

By solving Problem (7), we identify a MV expected utility/cardinality efficient frontier. A
portfolio in this frontier is such that there exists no other feasible one which simultaneously
presents a higher expected MV utility and a lower cardinality. Given such an efficient frontier
and a cardinality target, an investor may directly find the answers to what is the optimal
(highest) expected utility level that can be attained while meeting the cardinality target and
what are the portfolios leading to such an expected utility level. The investor can thus directly
examine the efficient tradeoff between the MV expected utility and cardinality.

1The DMS solver is available, by request, at the site: http://www.mat.uc.pt/dms/.

7

http://www.mat.uc.pt/dms/


If the investor, besides the mean and variance, also considers the third moment (the second
member of Equation (3) is truncated at the third term), the following model can be solved

max
w∈RN

a− bVt (rp,t+1) + cSt (rp,t+1)

min
w∈RN

card(w)

subject to e⊤w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(8)

By solving Problem (8), we identify a MVS expected utility/cardinality efficient frontier.
The investor can thus directly analyse the efficient tradeoff between the MVS expected utility
and cardinality.

When the investor considers all the moments present in Equation (3), the model to be solved
is given by

max
w∈RN

a− bVt (rp,t+1) + cSt (rp,t+1)− dKt (rp,t+1)

min
w∈RN

card(w)

subject to e⊤w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(9)

By solving Problem (9), we identify a MVSK expected utility/cardinality efficient frontier.
The investor can thus directly analyse the efficient tradeoff between the MVSK expected utility
and cardinality.

4 Empirical performance
We tested the proposed methodology in one dataset based on the composition of the Portuguese
Stock Index (PSI20 index). We collected daily data from Thomson Reuters Datastream®, for
the time window from July 2007 to June 2014 (seven years). We chose 20 stocks of companies
that belonged to the PSI20 index at least once and that were traded during all this time (some
stocks changed designation, but all stocks were quoted during the entire period under analysis).
The composition of this dataset is given in Table 1.
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Table 1: The PSI20 dataset

List of stocks

ALTRI SGPS MARTIFER
BANCO BPI MEDIA CAPITAL
BANCO COMR.PORTUGUES ’R’ MOTA ENGIL SGPS
BANCO ESPIRITO SANTO NOS SGPS
COFINA NOVABASE
EDP ENERGIAS DE PORTUGAL PHAROL SGPS
GI.GLB.INTEL.TECHS.SGPS PORTUCEL EMPRESA
IMPRESA SGPS SEMAPA
INAPA SONAE INDUSTRIA SGPS
JERONIMO MARTINS SONAE SGPS

This table lists the composition of the PSI20 dataset used in the empirical work. Daily closing prices, from July
2007 to June 2014, of these 20 stocks were collected from the Thomson Reuters Datastream®.

Based on the daily closing prices, pi,t, we computed the discrete daily returns,

ri,t =
pi,t − pi,t−1

pi,t−1
, i = 1, . . . , N, t = 1, . . . , T,

where N is the number of stocks (N = 20) and T is the number of observations (T = 1827).
Some descriptive statistics of the returns, for the overall sample period, are reported in Table 2.

Table 2: Descriptive statistics for the PSI20 dataset

Number of days 1826
Minimum -0.1573

Median -0.0001
Maximum 0.2584

Mean -0.0002
Variance 0.0009
Skewness 0.8187
Kurtosis 15.6667

This table reports some descriptive statistics for the PSI20 dataset (the composition of the dataset is reported
in Table 1). These statistics are averaged cross-sectionally, i. e., they are computed for each stock and then the
arithmetic mean is taken.

During the period under scrutiny the discrete daily returns of the PSI20 stocks presented,
on average, a negative but near zero mean, positive skewness and about five times above normal
kurtosis.

We present the efficient expected utility/cardinality portfolios, with the expected utility
based on the MV, MVS and MVSK frameworks, in Section 4.1. In Section 4.2, based on a
rolling-sample approach, we analyse the out-of-sample performance of these efficient portfolios.
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Both in-sample and out-of-sample analysis were conducted assuming that the investor has CRRA
preferences and a parameter of relative risk aversion equal to five (this is a common assumption,
see, e.g., Brandt et al., 2009).

4.1 In-sample performance
We solved Problem (7), Problem (8) and Problem (9) for the general non-boundary case (i.e.,
Li = −∞ and Ui = +∞) using the DMS solver (version 0.3)2. Other choices for the bound-
aries could be made; for instance, if short selling is undesirable then Li ≥ 0 and consequently
Ui ≤ 1. We have decided to allow for short selling in order to make the models as general as
possible and to avoid the possibility of getting Pareto frontiers with few feasible cardinality lev-
els. Note that the greater the restriction on the portfolio weights, the more likely it is to obtain
Pareto frontiers without all the feasible cardinality levels (these “missing points” correspond
to strictly dominated points)3. Allowing for short selling in each model does not make them
less realistic, since most markets around the world allow short positions and, particularly, the
Portuguese Securities Market Commission (CMVM) allows to perform short selling in each one
of the constituents of the PSI20 index.

In the in-sample analysis we used the overall sample period, from July 2007 to June 2014
(seven years). The efficient expected utility/cardinality frontiers4, for the MV, MVS and MVSK
frameworks, are plotted in Figure 1. Direct multisearch aims to approximate the true Pareto
frontier. Theoretically it is only possible to prove that there is a limit point in a stationary form
of the Pareto frontier, as no aggregation or scalarization technique is incorporated (see Custódio
et al., 2011, for further details). However, some empirical applications have shown that this
method has a very good performance, even when applied to problems with discontinuous and
non-convex Pareto frontiers ( Custódio et al., 2011). In our application, we can observe that
direct multisearch was effective, in the sense that it allowed us to obtain frontiers for the three
frameworks, and we have all the reasons to believe that they are good approximations to the true
Pareto frontiers. From the analysis of these frontiers the investor can thus directly analyse the
efficient tradeoff (in each framework) and choose (according to some pre-established criteria), in
the expected utility/cardinality space, the portfolio that best fits her preferences.

2Following Chang et al. (2000) and Jobst et al. (2010), in practice the true cardinality is approximated by
introducing a tolerance ε = 1%, such that card(w) =

∑N
i=1 11{|wi|>ε}, where 11 represents the indicator function.

3Theoretically the solutions of Problem (7), Problem (8) and Problem (9) can be a single point that strictly
dominates all the others.

4Note that, with the 1% threshold for the cardinality computation, the maximum cardinality level that led to
non-dominated solutions was 16.
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Figure 1: Efficient expected utility/cardinality frontiers, for the MV, MVS and MVSK frame-
works

Table 3 reports the certainty equivalent return for the MV, MVS and MVSK frameworks.
The certainty equivalent return, ĈE, is defined as

U(ĈE) = EU(µ̂), (10)

where µ̂ denotes the portfolio mean and EU(.) represents the expected utility defined in Equa-
tion (3). The certainty equivalent can be interpreted as the risk-free rate that an investor is
willing to accept in order to give up a particular risky investment.
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Table 3: In-sample certainty equivalent return

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.2499 -0.2637 -0.2762
2 -0,0171 -0.0245 -0.0280
3 0.5494 0.5498 0.5365
4 0.6475 0.6437 0.6340
5 0.7735 0.7814 0.7661
6 0.8469 0.8516 0.8536
7 0.9543 0.9694 0.9638
8 0.9970 1.0127 0.9936
9 1.0596 1.0457 1.0256
10 1.0976 1.1020 1.0795
11 1.1279 1.1319 1.1074
12 1.1626 1.1694 1.1463
13 1.1815 1.1846 1.1623
14 1.1859 1.1889 1.1665
15 1.1905 1.1930 1.1709
16 1.1956 1.1989 1.1760

This table lists the in-sample certainty equivalent return (ĈE) of the efficient expected utility/cardinality port-
folios. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS
expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected utility/cardinality port-
folios. All the certainty equivalent values are multiplied by a factor of 1000.

Tables 4, 5 and 6 report some descriptive statistics (the in-sample mean, µ̂, standard
deviation, σ̂, skewness, ξ̂, kurtosis, κ̂, expected utility, Û , and Sharpe ratio, Ŝ) for the MV, MVS
and MVSK frameworks, respectively. These tables also report the ratio between the in-sample
Sharpe ratio of each efficient portfolio and the in-sample Sharpe ratio of the efficient portfolio
with cardinality 16, Ŝ/Ŝ16 (corresponding to the portfolio with the maximum cardinality level).
This ratio can be seen as a measure of the impact of portfolio diversification on the Sharpe
ratio. Given the time series of daily returns, for each portfolio, the Sharpe ratio is defined as
the sample mean of excess returns (over the risk-free asset5), µ̂, divided by its sample standard
deviation, σ̂:

Ŝ =
µ̂

σ̂
. (11)

5Without loss of generality, in this paper we set rf=0.
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Table 4: In-sample analysis of the efficient MV expected utility/cardinality portfolios

Efficient portfolios

Number of stocks µ̂ σ̂ ξ̂ κ̂ Û Ŝ Ŝ/Ŝ16

1 0.0008 0.0204 -0.3440 8.4078 -0.2503 0.0385 0.3485 (0.0038)
2 0.0007 0.0164 -0.3867 7.5859 -0.2500 0.0398 0.3593 (0.0036)
3 0.0019 0.0233 -0.1037 5.2381 -0.2495 0.0816 0.7373 (0.0486)
4 0.0019 0.0225 -0.1122 5.3278 -0.2494 0.0847 0.7659 (0.0556)
5 0.0023 0.0248 -0.0292 4.8302 -0.2492 0.0929 0.8394 (0.1356)
6 0.0023 0.0238 -0.0045 5.3832 -0.2492 0.0948 0.8566 (0.1480)
7 0.0025 0.0252 0.1553 6.1148 -0.2490 0.1005 0.9081 (0.2685)
8 0.0025 0.0243 0.1966 6.3847 -0.2490 0.1014 0.9164 (0.2531)
9 0.0027 0.0256 0.0374 5.8750 -0.2489 0.1049 0.9484 (0.4015)
10 0.0028 0.0259 0.0250 5.7805 -0.2489 0.1067 0.9644 (0.4727)
11 0.0029 0.0265 0.0159 5.7081 -0.2489 0.1083 0.9792 (0.6155)
12 0.0029 0.0263 0.0460 5.5404 -0.2488 0.1094 0.9893 (0.7229)
13 0.0029 0.0261 0.0054 5.5654 -0.2488 0.1100 0.9946 (0.7778)
14 0.0029 0.0261 0.0037 5.5670 -0.2488 0.1102 0.9963 (0.8238)
15 0.0029 0.0262 0.0105 5.6330 -0.2488 0.1105 0.9986 (0.9426)
16 0.0029 0.0261 0.0144 5.4855 -0.2488 0.1106 1

This table reports the in-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂), kurtosis (κ̂), Expected Utility
(Û) and the in-sample Sharpe ratio (Ŝ) of each efficient MV expected utility/cardinality portfolio. It also reports
the ratio, Ŝ/Ŝ16, between the in-sample Sharpe ratio of each efficient portfolio and the in-sample Sharpe ratio
of the efficient portfolio with cardinality 16 (the highest Sharpe ratio portfolio). The Ledoit and Wolf (2008)
bootstrap p-values for the statistical significance of the difference between the in-sample Sharpe ratio of the
efficient portfolio with cardinality 16 and the respective efficient portfolio are presented in parenthesis.
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Table 5: In-sample analysis of the efficient MVS expected utility/cardinality portfolios

Efficient portfolios

Number of stocks µ̂ σ̂ ξ̂ κ̂ Û Ŝ Ŝ/Ŝ16

1 0.0008 0.0204 -0.3441 8.4074 -0.2503 0.0385 0.3486 (0.0034)
2 0.0006 0.0163 -0.3851 7.5589 -0.2500 0.0396 0.3584 (0.0040)
3 0.0019 0.0232 -0.1021 5.2614 -0.2495 0.0817 0.7395 (0.0620)
4 0.0019 0.0224 -0.1103 5.3212 -0.2494 0.0847 0.7661 (0.0734)
5 0.0023 0.0246 -0.0158 4.8868 -0.2492 0.0929 0.8408 (0.1476)
6 0.0023 0.0239 -0.0035 5.3673 -0.2492 0.0950 0.8596 (0.1672)
7 0.0026 0.0254 0.2250 6.7244 -0.2490 0.1005 0.9095 (0.2589)
8 0.0025 0.0245 0.2437 6.8288 -0.2490 0.1015 0.9180 (0.2599)
9 0.0026 0.0251 0.2110 6.3837 -0.2490 0.1033 0.9349 (0.3155)
10 0.0028 0.0259 0.0857 6.1959 -0.2489 0.1066 0.9642 (0.4797)
11 0.0029 0.0265 0.0792 6.1399 -0.2489 0.1082 0.9790 (0.6107)
12 0.0029 0.0263 0.1165 6.0007 -0.2488 0.1093 0.9893 (0.7099)
13 0.0029 0.0260 0.0742 5.9680 -0.2488 0.1099 0.9942 (0.7754)
14 0.0029 0.0261 0.0722 5.9641 -0.2488 0.1101 0.9960 (0.8268)
15 0.0029 0.0261 0.0727 5.8957 -0.2488 0.1102 0.9974 (0.8518)
16 0.0029 0.0262 0.0832 5.9889 -0.2488 0.1105 1

This table reports the in-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂), kurtosis (κ̂), Expected Utility
(Û) and the in-sample Sharpe ratio (Ŝ) of each efficient MVS expected utility/cardinality portfolio. It also reports
the ratio, Ŝ/Ŝ16, between the in-sample Sharpe ratio of each efficient portfolio and the in-sample Sharpe ratio
of the efficient portfolio with cardinality 16 (the highest Sharpe ratio portfolio). The Ledoit and Wolf (2008)
bootstrap p-values for the statistical significance of the difference between the in-sample Sharpe ratio of the
efficient portfolio with cardinality 16 and the respective efficient portfolio are presented in parenthesis.
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Table 6: In-sample analysis of the efficient MVSK expected utility/cardinality portfolios

Efficient portfolios

Number of stocks µ̂ σ̂ ξ̂ κ̂ Û Ŝ Ŝ/Ŝ16

1 0.0008 0.0204 -0.3441 8.4074 -0.2503 0.0385 0.3497 (0.0038)
2 0.0006 0.0162 -0.3841 7.5402 -0.2500 0.0395 0.3589 (0.0044)
3 0.0019 0.0232 -0.1020 5.2611 -0.2495 0.0817 0.7418 (0.0566)
4 0.0019 0.0222 -0.1086 5.3120 -0.2494 0.0846 0.7675 (0.0624)
5 0.0023 0.0245 -0.0176 4.8963 -0.2492 0.0928 0.8426 (0.1488)
6 0.0024 0.0247 0.0047 5.0890 -0.2491 0.0966 0.8763 (0.1948)
7 0.0025 0.0246 0.1855 6.0367 -0.2490 0.1005 0.9124 (0.2460)
8 0.0025 0.0243 0.2066 6.4703 -0.2490 0.1015 0.9209 (0.2759)
9 0.0026 0.0249 0.1721 6.0183 -0.2490 0.1033 0.9375 (0.3251)
10 0.0027 0.0254 0.0649 6.0057 -0.2489 0.1062 0.9638 (0.4711)
11 0.0028 0.0259 0.0559 5.9411 -0.2489 0.1078 0.9783 (0.6153)
12 0.0028 0.0257 0.0920 5.7790 -0.2489 0.1090 0.9891 (0.7141)
13 0.0028 0.0255 0.0524 5.7804 -0.2488 0.1096 0.9943 (0.7774)
14 0.0028 0.0255 0.0517 5.7863 -0.2488 0.1098 0.9960 (0.8246)
15 0.0028 0.0255 0.0523 5.7182 -0.2488 0.1099 0.9975 (0.8472)
16 0.0028 0.0257 0.0599 5.7839 -0.2488 0.1102 1

This table reports the in-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂), kurtosis (κ̂), Expected Utility
(Û) and the in-sample Sharpe ratio (Ŝ) of each efficient MVSK expected utility/cardinality portfolio. It also
reports the ratio, Ŝ/Ŝ16, between the in-sample Sharpe ratio of each efficient portfolio and the in-sample Sharpe
ratio of the efficient portfolio with cardinality 16 (the highest Sharpe ratio portfolio). The Ledoit and Wolf
(2008) bootstrap p-values for the statistical significance of the difference between the in-sample Sharpe ratio of
the efficient portfolio with cardinality 16 and the respective efficient portfolio are presented in parenthesis.

One interesting result is that, in each of the three frameworks, the in-sample certainty equivalent
and Sharpe ratio increases gradually with cardinality, until the maximum cardinality level of
16 is achieved. Moreover, we computed the bootstrap p-values for the statistical significance of
the difference between the in-sample Sharpe ratio of the efficient portfolio with cardinality 16
and each other efficient portfolio. These p-values were computed according the Ledoit and Wolf
(2008) robust methodology. For the MV framework these bootstrap p-values show that only the
portfolios with cardinality 1, 2 and 3, consistently offer a Sharpe ratio significantly lower than
the Sharpe ratio of the portfolio with cardinality 16. For the MVS and MVSK frameworks, this
happens only for the portfolios with cardinality 1 and 2. This seems to suggest that, for this
dataset, most of the diversification gains occur at cardinalities of 3 or 4.

In these tables, it may seem puzzling that there is not a clear decreasing trend of the standard
deviation of portfolio returns with the increase of cardinality. However, we must point out that
we are, in fact, maximizing the expected utility for each level of cardinality. Therefore, with
a marginal increase in the cardinality level, we may choose a completely different set of stocks
(and associated weights) for which the benefits resulting from other moments of the return
distribution (expected return and, when applicable, skewness and/or kurtosis) more than offset
a possible increase in the standard deviation.

Results reported in Tables 3, 4, 5 and 6 point out that there are no significant differences
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between the three frameworks in terms of in-sample certainty equivalent and Sharpe ratio. For
example, in each of the three frameworks the maximum certainty equivalent return is achieved at
the maximum cardinality level and the values of ĈE are quite similar (0.11956%, 0.11989% and
0.11760%, respectively). Also the maximum in-sample Sharpe ratio is found, in each of the three
frameworks, at the maximum feasible cardinality level and with similar values for Ŝ (11.06%,
11.05% and 11.02%, respectively). These results suggest that, in-sample, the consideration of
higher moments does not produce relevant gains (in terms of certainty equivalent) for an investor
with CRRA preferences (γ = 5).

4.2 Out-of-sample performance
The out-of-sample analysis relies on a rolling-sample approach, with an estimation window of
1565 days. The initial estimation window begins in July 2007 and ends in June 2013. There are
261 evaluation periods (days) until June 2014.

In Table 7 it is reported the out-of-sample certainty equivalent return (computed according
Equation (10)), ĈE, for each one of the three frameworks.

Table 7: Out-of-sample certainty equivalent return

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.3605 -0.1337 -0.2635
2 -0.2165 -0.2886 -0.5271
3 -1.3200 -1.2945 -1.1657
4 -1.4815 -1.4850 -1.6058
5 -0.5165 -0.7985 -1.1355
6 -1.2108 -1.0303 -1.0729
7 -0.9808 -1.3350 -1.0559
8 -1.5770 -1.2233 -1.2436
9 -1.3603 -1.0098 -1.1505
10 -0.7319 -1.0514 -0.7085
11 -0.8519 -0.9998 -0.9240
12 -0.8622 -0.8066 -0.5946
13 -0.8368 -0.7737 -0.6427
14 -0.7461 -0.7586 -0.5603
15 -0.7741 -0.7319 -0.6841
16 -0.7593 -0.7701 -0.7048

This table lists the out-of-sample certainty equivalent return (ĈE) of the efficient expected utility/cardinality
portfolios. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient
MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected utility/cardinality
portfolios. All the certainty equivalent values are multiplied by a factor of 1000.

Tables 8, 9 and 10 report some out-of-sample statistics (the out-of-sample mean, µ̂, standard
deviation, σ̂, skewness, ξ̂, kurtosis, κ̂, expected utility, Û , and Sharpe ratio, Ŝ) for the MV, MVS
and MVSK frameworks, respectively. When the numerator of the Sharpe ratio (Ŝ) is negative,
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it should be refined in order to achieve a correct rank of the portfolios. The most widely used
methodology to refine the Sharpe ratio is the Israelsen (2005) methodology:

Ŝref =
µ̂

σ̂µ̂/abs(µ̂)
, (12)

where abs(.) is the absolute value function. Note that the refined Sharpe ratio (Ŝref ) is equal
to the Sharpe ratio (Ŝ) when the numerator is non-negative; in this case, Equation (11) is
equivalent to Equation (12).

Table 8: Out-of-sample analysis of the efficient MV expected utility/cardinality portfolios

Efficient portfolios

Number of stocks µ̂ σ̂ ξ̂ κ̂ Û Ŝ Ŝ/Ŝ16 Ŝref

1 0.0001 0.0137 -0.1952 4.1943 -0.2504 0.0084 0.1472 (0.5781) 0.0084
2 0.0002 0.0137 0.8597 8.7178 -0.2502 0.0177 0.3105 (0.5961) 0.0177
3 -0.0002 0.0209 -0.3217 5.2709 -0.2513 -0.0100 -0.1750 (0.0888) -0.0000
4 -0.0001 0.0231 0.0797 4.9952 -0.2515 -0.0065 -0.1137 (0.0624) -0.0000
5 0.0011 0.0249 -0.3433 4.3266 -0.2505 0.0430 0.7555 (0.6273) 0.0430
6 0.0006 0.0266 -0.4120 5.1481 -0.2512 0.0231 0.4060 (0.1562) 0.0231
7 0.0009 0.0272 -0.2345 3.8378 -0.2510 0.0329 0.5784 (0.1998) 0.0329
8 0.0004 0.0278 -0.3922 4.6299 -0.2516 0.0146 0.2569 (0.0282) 0.0146
9 0.0008 0.0287 -0.3905 4.4395 -0.2514 0.0266 0.4675 (0.0750) 0.0266
10 0.0015 0.0294 -0.3697 4.5972 -0.2507 0.0508 0.8928 (0.6575) 0.0508
11 0.0015 0.0301 -0.3385 4.3533 -0.2509 0.0490 0.8606 (0.4619) 0.0490
12 0.0016 0.0309 -0.4063 4.5166 -0.2509 0.0520 0.9129 (0.8708) 0.0520
13 0.0017 0.0312 -0.3999 4.5208 -0.2508 0.0538 0.9456 (0.5527) 0.0538
14 0.0018 0.0314 -0.3855 4.6060 -0.2507 0.0573 1.0064 (0.9100) 0.0573
15 0.0018 0.0314 -0.3909 4.5925 -0.2508 0.0563 0.9885 (0.6667) 0.0563
16 0.0018 0.0314 -0.4056 4.6114 -0.2508 0.0569 1 0.0569

This table reports the out-of-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂), kurtosis (κ̂), Expected
Utility (Û) and the out-of-sample Sharpe ratio (Ŝ) of each efficient MV expected utility/cardinality portfolio. It
also reports the ratio, Ŝ/Ŝ16, between the out-of-sample Sharpe ratio of each efficient portfolio and the out-of-
sample Sharpe ratio of the efficient portfolio with cardinality 16. The Ledoit and Wolf (2008) bootstrap p-values
for the statistical significance of the difference between the in-sample Sharpe ratio of the efficient portfolio with
cardinality 16 and the respective efficient portfolio are presented in parenthesis. The out-of-sample refined Sharpe
ratio (Ŝref ) of each efficient MV expected utility/cardinality portfolio is also reported. The refined out-of-sample
Sharpe ratio was computed according to the Israelsen (2005) methodology.
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Table 9: Out-of-sample analysis of the efficient MVS expected utility/cardinality portfolios

Efficient portfolios

Number of stocks µ̂ σ̂ ξ̂ κ̂ Û Ŝ Ŝ/Ŝ16 Ŝref

1 0.0003 0.0137 -0.2027 4.2231 -0.2501 0.0249 0.4410 (0.7243) 0.0249
2 0.0002 0.0134 0.8635 9.2178 -0.2503 0.0113 0.2001 (0.5447) 0.0113
3 -0.0002 0.0208 -0.3166 5.3093 -0.2513 -0.0091 -0.1618 (0.1044) -0.0000
4 -0.0001 0.0231 -0.0339 5.2009 -0.2515 -0.0059 -0.1053 (0.0726) -0.0000
5 0.0008 0.0254 -0.3214 4.1134 -0.2508 0.0334 0.5918 (0.3915) 0.0334
6 0.0007 0.0264 -0.2889 4.2218 -0.2510 0.0282 0.4994 (0.2456) 0.0282
7 0.0006 0.0274 -0.4334 4.5700 -0.2513 0.0219 0.3888 (0.0690) 0.0219
8 0.0007 0.0278 -0.3456 4.1169 -0.2512 0.0270 0.4788 (0.0852) 0.0270
9 0.0011 0.0287 -0.3050 4.4441 -0.2510 0.0382 0.6770 (0.2444) 0.0382
10 0.0011 0.0290 -0.3803 4.5557 -0.2511 0.0385 0.6829 (0.1652) 0.0385
11 0.0013 0.0302 -0.3448 4.4666 -0.2510 0.0445 0.7889 (0.3589) 0.0445
12 0.0016 0.0306 -0.3728 4.5447 -0.2508 0.0523 0.9269 (0.9046) 0.0523
13 0.0017 0.0311 -0.4084 4.5232 -0.2508 0.0555 0.9840 (0.8580) 0.0555
14 0.0018 0.0313 -0.3878 4.5733 -0.2508 0.0565 1.0026 (0.9690) 0.0565
15 0.0018 0.0313 -0.3999 4.5931 -0.2507 0.0575 1.0196 (0.5287) 0.0575
16 0.0018 0.0313 -0.4143 4.5854 -0.2508 0.0564 1 0.0564

This table reports the out-of-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂), kurtosis (κ̂), Expected
Utility (Û) and the out-of-sample Sharpe ratio (Ŝ) of each efficient MVS expected utility/cardinality portfolio.
It also reports the ratio, Ŝ/Ŝ16, between the out-of-sample Sharpe ratio of each efficient portfolio and the out-of-
sample Sharpe ratio of the efficient portfolio with cardinality 16. The Ledoit and Wolf (2008) bootstrap p-values
for the statistical significance of the difference between the in-sample Sharpe ratio of the efficient portfolio with
cardinality 16 and the respective efficient portfolio are presented in parenthesis. The out-of-sample refined Sharpe
ratio (Ŝref ) of each efficient MVS expected utility/cardinality portfolio is also reported. The refined out-of-sample
Sharpe ratio was computed according to the Israelsen (2005) methodology.
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Table 10: Out-of-sample analysis of the efficient MVSK expected utility/cardinality portfolios

Efficient portfolios

Number of stocks µ̂ σ̂ ξ̂ κ̂ Û Ŝ Ŝ/Ŝ16 Ŝref

1 0.0002 0.0138 -0.1811 4.1731 -0.2503 0.0155 0.2763 (0.6363) 0.0155
2 -0.0001 0.0123 -0.2762 4.3074 -0.2505 -0.0116 -0.2069 (0.3833) -0.0000
3 -0.0001 0.0206 -0.3015 5.5200 -0.2512 -0.0042 -0.0752 (0.1414) -0.0000
4 -0.0003 0.0228 0.0790 4.9650 -0.2516 -0.0130 -0.2318 (0.0508) -0.0000
5 0.0005 0.0251 -0.2708 4.3071 -0.2511 0.0185 0.3304 (0.1702) 0.0185
6 0.0006 0.0257 -0.2989 4.3997 -0.2511 0.0238 0.4246 (0.1846) 0.0238
7 0.0007 0.0265 -0.2967 3.8895 -0.2511 0.0277 0.4939 (0.1394) 0.0277
8 0.0007 0.0273 -0.4212 4.4027 -0.2512 0.0248 0.4410 (0.1260) 0.0248
9 0.0008 0.0274 -0.4249 4.5070 -0.2512 0.0283 0.5044 (0.0764) 0.0283
10 0.0014 0.0283 -0.4169 4.5242 -0.2507 0.0480 0.8545 (0.4993) 0.0480
11 0.0013 0.0295 -0.4497 4.6709 -0.2509 0.0448 0.7974 (0.3523) 0.0448
12 0.0017 0.0298 -0.3885 4.6517 -0.2506 0.0567 1.0100 (0.9812) 0.0567
13 0.0017 0.0304 -0.3968 4.5750 -0.2506 0.0573 1.0199 (0.8254) 0.0573
14 0.0019 0.0307 -0.3844 4.6244 -0.2506 0.0608 1.0838 (0.1760) 0.0608
15 0.0017 0.0307 -0.4052 4.6198 -0.2507 0.0570 1.0148 (0.6133) 0.0570
16 0.0017 0.0307 -0.4072 4.6057 -0.2507 0.0561 1 0.0561

This table reports the out-of-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂), kurtosis (κ̂), Expected Utility
(Û) and the out-of-sample Sharpe ratio (Ŝ) of each efficient MVSK expected utility/cardinality portfolio. It also
reports the ratio, Ŝ/Ŝ16, between the out-of-sample Sharpe ratio of each efficient portfolio and the out-of-sample
Sharpe ratio of the efficient portfolio with cardinality 16. The Ledoit and Wolf (2008) bootstrap p-values for the
statistical significance of the difference between the in-sample Sharpe ratio of the efficient portfolio with cardinality
16 and the respective efficient portfolio are presented in parenthesis. The out-of-sample refined Sharpe ratio (Ŝref )
of each efficient MVSK expected utility/cardinality portfolio is also reported. The refined out-of-sample Sharpe
ratio was computed according to the Israelsen (2005) methodology.

The out-of-sample certainty equivalent does not exhibit a clear trend with cardinality. In
the MV framework, the best out-of-sample certainty equivalent is achieved for the portfolio with
cardinality equal to 2 (-0.02165%). The bootstrap p-values (computed according the classical
methodology of Efron and Tibshirani, 1994) for the difference between the out-of-sample cer-
tainty equivalent of the efficient MV portfolio with cardinality 2 and the out-of-sample certainty
equivalent of the MVS and MVSK portfolios with the same cardinality level (equal to 2) are
both equal to 0.000. However, in the MVS and MVSK frameworks, the best out-of-sample cer-
tainty equivalent return is achieved for the portfolios with cardinality equal to 1 (-0.01337% and
-0.02635%, respectively for each framework). The bootstrap p-values for the difference between
the out-of-sample certainty equivalent of the efficient MV portfolio with cardinality 1 and the
out-of-sample certainty equivalent of the MVS and MVSK portfolios with the same cardinality
level (equal to 1) are both equal to 0.000. These results suggest gains in considering skewness
and kurtosis, for some cardinality levels. As we can see in Table 7, both the efficient MVS and
the efficient MVSK portfolios outperform the efficient MV portfolios for eight cardinality levels
(cardinality equal to 1, 3, 6, 8, 9, 12, 13 and 15).

From the analysis of the refined Sharpe ratios, we conclude that the best out-of-sample
performance is achieved by portfolios with cardinality 14, for the MV and MVSK frameworks,

19



and 15, for the MVS framework. For these cardinalities, the best portfolio is either the one
obtained within the MVSK framework (for cardinality 14) or the one obtained within the MVS
framework (for cardinality 15). However, we cannot reach strong conclusions regarding whether
or not there are gains in considering higher moments, since the bootstrap p-values indicate that
the performance of these portfolios is never significantly better than the one of the portfolios
obtained within the MV framework.

Tables 8 to 10 also report, for each of the three frameworks, the ratio, Ŝ/Ŝ16, between the
out-of-sample Sharpe ratio of each efficient portfolio and the out-of-sample Sharpe ratio of the
efficient portfolio corresponding to the maximum cardinality of 16. Based on these ratios, we
computed (according to the methodology of Ledoit and Wolf 2008) the bootstrap p-values for the
statistical significance of the difference between the out-of-sample Sharpe ratio of the efficient
portfolio with cardinality 16 and each other efficient portfolio. Except for the difference between
the out-of-sample Sharpe ratio of the MV portfolio with cardinality 8 and the MV portfolio
with cardinality 16 (where the first is lower than the second), none of these differences were
significant. This means that, for the three frameworks and except to the previous referred case,
none of the efficient expected utility/cardinality portfolios presents a Sharpe ratio significantly
higher or significantly lower than the Sharpe ratio of the efficient portfolio with cardinality 16.

Table 11 reports the bootstrap p-values of the difference between the out-of-sample Sharpe
ratio of each pair of frameworks (MV vs MVS, MV vs MVSK, and MVS vs MVSK) for the same
cardinality level. The efficient MVS portfolios outperform the MV portfolios, in terms of Sharpe
ratio, for nine cardinality levels (1, 3, 4, 6, 8, 9, 12, 13 and 15). Also for nine cardinality levels
(1, 3, 6, 8, 9, 12, 13, 14, 15), the efficient MVSK portfolios outperform the MV portfolios. In
total, for 75% of the cardinality levels (12 in 16), the efficient MV portfolios are outperformed
either by the corresponding efficient MVS portfolios or by the corresponding efficient MVSK
portfolios (although none of the differences are statistically significant at the 5% significance
level). This suggests that, for those cardinality levels, there may be small gains in considering
higher moments (skewness and kurtosis).
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Table 11: Bootstrap p-values for the Sharpe ratios

Efficient portfolios

Number of stocks MV vs MVS MV vs MVSK MVS vs MVSK

1 0.1794 (MVS) 0.4851 (MVSK) 0.1648 (MVS)
2 0.5515 (MV) 0.4803 (MV) 0.4713 (MVS)
3 0.8930 (MVS) 0.3801 (MVSK) 0.3439 (MVSK)
4 0.9540 (MVS) 0.5007 (MV) 0.3787 (MVS)
5 0.4251 (MV) 0.0658 (MV) 0.1792 (MVS)
6 0.6323 (MVS) 0.9478 (MVSK) 0.6743 (MVS)
7 0.1862 (MV) 0.6331 (MV) 0.5469 (MVSK)
8 0.4759 (MVS) 0.5353 (MVSK) 0.8630 (MVS)
9 0.4171 (MVS) 0.8924 (MVSK) 0.2198 (MVS)
10 0.1746 (MV) 0.7409 (MV) 0.2513 (MVSK)
11 0.4935 (MV) 0.5563 (MV) 0.9672 (MVSK)
12 0.9658 (MVS) 0.4541 (MVSK) 0.3415 (MVSK)
13 0.7003 (MVS) 0.3705 (MVSK) 0.2941 (MVSK)
14 0.7960 (MV) 0.1132 (MVSK) 0.0426 (MVSK)
15 0.6179 (MVS) 0.7844 (MVSK) 0.7674 (MVS)
16 0.7816 (MV) 0.6415 (MV) 0.7890 (MVS)

This table lists the bootstrap p-values of the difference between the Sharpe ratio of each pair of frameworks.
MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected
utility/cardinality portfolios, and MVSK refers to the efficient MVSK expected utility/cardinality portfolios. The
bootstrap p-values were computed according the Ledoit and Wolf (2008) methodology. In parenthesis there is the
indication of the framework with the highest Sharpe ratio.

Given the time series of daily out-of-sample returns, for each efficient portfolio considered,
we computed the portfolio turnover, defined as the average, over all time periods, of the absolute
changes in weights (corresponding to trades) across the N available stocks:

turnover = 1

#periods

#periods∑
t=1

N∑
i=1

(∣∣∣wi,t+1 − wh
i,t

∣∣∣) , (13)

where wi,t+1 is the portfolio weight after rebalancing at time t+1 and wh
i,t is the portfolio weight

before rebalancing at time t+ 1. Thus, wh
i,t, is computed as

wh
i,t = wi,t−1

1 + ri,t
1 + rp,t

,

where ri,t is the return at time t of the stock i and rp,t is the return at time t of the portfolio. The
results are reported in Table 12. In all the three frameworks, the turnover begins by increasing
up to a certain cardinality level (around 8 or 9, which corresponds to about 50% of the maximum
cardinality level). This is somehow expected, since the increase in the number of stocks should
increase the transaction costs. However, after reaching that cardinality level, we observe, in all
the three frameworks, the non-intuitive fact that the turnover decreases when the cardinality
increases. The explanation for this result is that the small fluctuations of the portfolio weights
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compensate the increment of the number of stocks in the portfolio. Thus, in this case, from the
cardinality level of about 8 (around 50% of the maximum cardinality), increasing the cardinality
of a portfolio allows the investor to reduce transaction costs.

Table 12: Portfolio turnover

Efficient portfolios

Number of stocks MV MVS MVSK

1 5.25 3.77 5.85
2 12.12 9.77 12.99
3 11.28 11.63 12.76
4 45.33 38.22 44.93
5 44.76 45.26 60.58
6 55.28 50.59 60.77
7 53.20 49.32 59.98
8 69.72 60.92 78.71
9 61.65 62.82 76.84
10 47.14 51.18 56.61
11 44.43 47.87 53.42
12 32.58 39.67 43.48
13 33.51 32.57 34.44
14 33.66 33.24 36.80
15 30.10 29.10 33.17
16 28.98 29.76 33.43

This table lists the portfolio turnover of the efficient expected utility/cardinality portfolios. MV refers to the
efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected utility/cardinality
portfolios and MVSK refers to the efficient MVSK expected utility/cardinality portfolios.

In order to assess the impact of transaction costs in the performance of the different strategies,
we computed the out-of-sample Sharpe ratio of returns net of transaction costs, defined as

Ŝtc =
µ̂tc

σ̂tc
,

where µ̂tc = µ̂ − tc is the out-of-sample time series of the mean of the returns (µ̂) deducted
by transaction costs (tc) and σ̂tc is the standard deviation of the out-of-sample returns after
transaction costs. We used proportional transaction costs defined as6

tc =

#periods∑
t=1

0.3%
N∑
i=1

(∣∣∣wi,t+1 − wh
i,t

∣∣∣) .
The refined Sharpe ratios after transaction costs for the efficient portfolios are reported in Ta-
ble 13. The inclusion of transaction costs may lead to completely different results (see, e.g., Brito

6According to the information received from several stock brokers in the Lisbon Stock Exchange (Euronext
Lisbon), for the stocks in the PSI20 index the proportional transaction cost was set equal to 30 basis points per
transaction.
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and Vicente, 2014; DeMiguel et al., 2014; DeMiguel and Olivares-Nadal, 2015). Not taking into
account the transaction costs in the out-of-sample analysis may result in the misleading conclu-
sion that diversification is not an important issue in portfolio management. For example, Brodie
et al. (2009) have implemented a specific algorithm in order to construct sparse portfolios (port-
folios with low cardinality) in the classical mean-variance setting. Their empirical out-of-sample
results, for two sets of portfolios constructed by Fama and French (FF48 and FF100), indicate
that sparse portfolios outperform (in terms of Sharpe ratio) the equally weighted portfolio, sug-
gesting that diversification does not produce positive results out-of-sample (for the FF48 dataset,
the Sharpe ratio even exhibits a decreasing trend with cardinality). However, the authors do
not account for transaction costs, limiting the real applicability of their findings.

The results that we obtained for the net Sharpe ratios highlight that in the three frameworks,
the pattern of the net Sharpe ratios is inversely related with the turnover pattern, i.e., the net
Sharpe ratios decrease to a certain level of cardinality (around 8 or 9) and then increases with
the cardinality level. For all frameworks, the portfolio with the minimum cardinality of 1 is
the portfolio with the highest refined Sharpe ratio after transaction costs. This is in agreement
with previous studies suggesting that sparse portfolios tend to exhibit a good performance (see,
e.g., Brodie et al., 2009). However, the results that we obtain go further and suggest that for
sufficiently large levels of cardinality, there are gains with diversification.

Table 13: Refined Sharpe ratios of returns net of transaction costs

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.0566 -0.0406 -0.0631
2 -0.1297 -0.1024 -0.1255
3 -0.1845 -0.1896 -0.2058
4 -0.8184 -0.6921 -0.8038
5 -0.8744 -0.9002 -1.1893
6 -1.1531 -1.0444 -1.2229
7 -1.1312 -1.0588 -1.2446
8 -1.5160 -1.3237 -1.6839
9 -1.3875 -1.4105 -1.6457
10 -1.0867 -1.1639 -1.2563
11 -1.0476 -1.1319 -1.2325
12 -0.7891 -0.9492 -1.0138
13 -0.8198 -0.7939 -0.8202
14 -0.8280 -0.8151 -0.8845
15 -0.7394 -0.7138 -0.7976
16 -0.7126 -0.7303 -0.8026

This table reports the refined Sharpe ratios of returns net of transaction costs for each efficient expected util-
ity/cardinality portfolio. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to
the efficient MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected util-
ity/cardinality portfolios. The refined net Sharpe ratios were computed according the Israelsen (2005) methodol-
ogy.
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In Table 14 we report the bootstrap p-values of the difference between the Sharpe ratio
after transaction costs for each pair of frameworks (MV vs MVS, MV vs MVSK, and MVS vs
MVSK) given a specific cardinality level. From the comparison between the MV and the MVS
portfolios we found that the MVS portfolios outperform the MV portfolios (the differences being
statistically significant) for nine cardinality levels (1, 2, 4, 6, 7, 8, 13, 14 and 15). Looking to the
MV and the MVSK portfolios, we found that the MVSK portfolios outperform the MV portfolios
only for two cardinality levels (2 and 4), but the differences are not statistically significant.
Summarizing, the MV portfolios underperform at least one of the efficient portfolios from the
two other frameworks for 9 of 16 cardinality levels. This indicates that when transaction costs
are taken into account, there are gains (in terms of Sharpe ratio) in considering the skewness,
for certain cardinality levels.

Table 14: Bootstrap p-values for the net Sharpe ratios

Efficient portfolios

Number of stocks MV vs MVS MV vs MVSK MVS vs MVSK

1 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
2 0.0002 (MVS) 0.1527 (MVSK) 0.0018 (MVS)
3 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
4 0.0002 (MVS) 0.9999 (MVSK) 0.0002 (MVS)
5 0.5037 (MV) 0.0002 (MV) 0.0002 (MVS)
6 0.0006 (MVS) 0.0002 (MV) 0.0002 (MVS)
7 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
8 0.0006 (MVS) 0.0002 (MV) 0.0002 (MVS)
9 0.2841 (MV) 0.0002 (MV) 0.0002 (MVS)
10 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
11 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
12 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
13 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
14 0.0014 (MVS) 0.0002 (MV) 0.0002 (MVS)
15 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
16 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)

This table lists the bootstrap p-values of the difference between the net Sharpe ratios of two different frameworks.
MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected
utility/cardinality portfolios, and MVSK refers to the efficient MVSK expected utility/cardinality portfolios. The
bootstrap p-values were computed according the Ledoit and Wolf (2008) methodology. The framework with the
highest Sharpe ratio is indicated in parenthesis.

The cardinality becomes even a more important issue in datasets with a larger number
of stocks. In order to provide an indication of whether certain patterns found in the results
discussed above (for the PSI20 index) remain valid in larger datasets, we decided to present
some results for a dataset from the EUROSTOXX50 index (see Table 15).
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Table 15: The EUROSTOXX50 dataset

List of stocks

AIR LIQUIDE IBERDROLA
AIRBUS GROUP INDITEX
ALLIANZ (XET) ING GROEP
ANHEUSER-BUSCH INBEV INTESA SANPAOLO
ASML HOLDING L’OREAL
ASSICURAZIONI GENERALI LVMH
AXA MUENCHENER RUCK (XET)
BANCO SANTANDER ORANGE
BASF (XET) PHILIPS ELTN KONINKLIJKE
BAYER (XET) REPSOL YPF
BBV.ARGENTARIA RWE (XET)
BMW (XET) SAINT GOBAIN
BNP PARIBAS SANOFI
CARREFOUR SAP (XET)
CRH (DUB) SCHNEIDER ELECTRIC SE
DAIMLER (XET) SIEMENS (XET)
DANONE SOCIETE GENERALE
DEUTSCHE BANK (XET) TELEFONICA
DEUTSCHE POST (XET) TOTAL
DEUTSCHE TELEKOM (XET) UNIBAIL-RODAMCO
E ON (XET) UNICREDIT
ENEL UNILEVER CERTS
ENI VINCI
ESSILOR INTL VIVENDI
GDF SUEZ VOLKSWAGEN PREF (XET)

This table lists the composition of the EUROSTOXX50 dataset. Daily closing prices, from July 2007 to June 2014,
of these 50 stocks (from the EUROSTOXX50 index) were collected from the Thomson Reuters Datastream®.

Similarly to the PSI20 dataset, the daily discrete returns of the EUROSTOXX50 dataset (see
Table 16), presented, on average, negative but near zero mean, positive skewness and above
normal kurtosis.
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Table 16: Descriptive statistics for the EUROSTOXX50 dataset

Number of days 1826

Minimum -0.12984

Median 0.00006

Maximum 0.16665

Mean 0.00019

Variance 0.00051

Skewness 0.33992

Kurtosis 10.2218

This table reports some descriptive statistics for the EUROSTOXX50 dataset (the composition of the dataset is
reported in Table 15). These statistics are averaged cross-sectionally, i.e., they are computed for each stock and
then the arithmetic mean is taken.

We applied, to the EUROSTOXX50 dataset, exactly the same rolling-sample approach de-
scribed in the beginning of this Section. Table 17 reports the out-of-sample certainty equivalent
(solution of Equation 10), ĈE, for the MV, MVS and MVSK frameworks7.

7Similarly to the PSI20 dataset case, the introduction of a threshold of 1% for the cardinality computation
reduced the maximum cardinality level that led to non-dominated solutions. In the case of the EUROSTOXX50
dataset the maximum cardinality is equal to 40.

26



Table 17: Certainty equivalent return for the EUROSTOXX50 dataset
Efficient portfolios

Number of stocks MV MVS MVSK

1 -1.1228 -1.2180 -0.8401
2 -0.7150 -0.8362 -0.5988
3 -1.6367 -1.5413 -1.5261
4 -1.3593 -1.2041 -1.3267
5 -1.7554 -1.8701 -1.6846
6 -2.1226 -2.3514 -1.9385
7 -2.2929 -2.3568 -2.3579
8 -2.8023 -2.9306 -2.8663
9 -3.0445 -2.9943 -2.9719
10 -3.4889 -3.3824 -2.9750
11 -3.4794 -3.5896 -3.3237
12 -3.4635 -3.7971 -3.5398
13 -3.6888 -4.1857 -3.7955
14 -3.8448 -4.1124 -3.9549
15 -4.0945 -4.3040 -4.0928
16 -4.0015 -4.2972 -4.0927
17 -3.9952 -4.1224 -4.0040
18 -4.0168 -4.1569 -4.1108
19 -4.0383 -4.1908 -4.2306
20 -4.2002 -4.1429 -4.3419
21 -4.1040 -4.3728 -4.3479
22 -4.1218 -4.2493 -4.1209
23 -4.1219 -4.2553 -3.9249
24 -4.3303 -4.2030 -4.1561
25 -4.1947 -4.2743 -4.1720
26 -4.2986 -4.2314 -4.1753
27 -4.0887 -4.1126 -4.1933
28 -4.0956 -3.9658 -4.0411
29 -4.1652 -4.0173 -4.0393
30 -4.1568 -4.0311 -4.0897
31 -4.1389 -4.1134 -4.0677
32 -4.1234 -4.0914 -4.0499
33 -4.1076 -4.0932 -4.0833
34 -3.8679 -4.0807 -4.0476
35 -3.9078 -4.0378 -4.0585
36 -4.2453 -3.9664 -3.9836
37 -3.7742 -3.9499 -3.9635
38 -3.9052 -3.9963 -4.0322
39 -3.7590 -3.9894 -4.0615
40 -3.9687 -3.9451 -3.9964

This table lists the out-of-sample certainty equivalent return (ĈE) of the efficient expected utility/cardinality
portfolios. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient
MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected utility/cardinality
portfolios. All the certainty equivalent values are multiplied by a factor of 1000.

From the results in Table 17 we can see that, similarly to what occurred with PSI20 dataset,
the certainty equivalent does not show a clear trend with increasing cardinality, and the best
certainty equivalent values always occur at a low cardinality level (cardinality 2 for all frame-
works).
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Table 18 reports the bootstrap p-values (computed according the Ledoit and Wolf, 2008
robust methodology) of the difference between the out-of-sample Sharpe ratio of each pair of
frameworks (MV vs MVS, MV vs MVSK, and MVS vs MVSK) for the same cardinality level.
Table 18 also reports, for each cardinality level, which framework shows the highest Sharpe
ratio. For most cardinality levels, either the MVS or the MVSK efficient portfolios outperform
the efficient MV portfolios, but such differences are never statistically significant.

The results for the out-of-sample certainty equivalent and Sharpe ratio, both suggest gains,
for certain cardinality levels, in considering higher moments. These results are in accordance
with the results obtained for the PSI20 dataset.
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Table 18: Bootstrap p-values for the Sharpe ratios, for the EUROSTOXX50 dataset

Efficient portfolios Bootstrap p-values

Number of stocks MV vs MVS MV vs MVSK MVS vs MVSK

1 0.8018 (MVS) 0.3827 (MVSK) 0.3101 (MVSK)
2 0.5583 (MVS) 0.4371 (MVSK) 0.2486 (MVSK)
3 0.5211 (MV) 0.7361 (MVSK) 0.8246 (MVSK)
4 0.4119 (MV) 0.9116 (MVSK) 0.5945 (MVS)
5 0.6313 (MVS) 0.8864 (MVSK) 0.3275 (MVSK)
6 0.4409 (MVS) 0.2242 (MVSK) 0.0058 (MVSK)
7 0.6443 (MVS) 0.5523 (MV) 0.8484 (MVS)
8 0.7281 (MVS) 0.4811 (MV) 0.5559 (MVSK)
9 0.5077 (MV) 0.6737 (MVSK) 0.6775 (MVSK)

10 0.6395 (MV) 0.0772 (MVSK) 0.0940 (MVSK)
11 0.7806 (MVS) 0.6211 (MVSK) 0.4017 (MVSK)
12 0.1296 (MVS) 0.4769 (MV) 0.3759 (MVSK)
13 0.0636 (MVS) 0.4425 (MV) 0.2064 (MVSK)
14 0.2040 (MVS) 0.3207 (MV) 0.7620 (MVSK)
15 0.5417 (MVS) 0.9442 (MVSK) 0.5455 (MVSK)
16 0.1772 (MVS) 0.5427 (MV) 0.3493 (MVSK)
17 0.5688 (MVS) 0.6474 (MVSK) 0.8520 (MVSK)
18 0.5113 (MVS) 0.5085 (MV) 0.9474 (MVSK)
19 0.5303 (MVS) 0.2328 (MV) 0.5893 (MVS)
20 0.6087 (MV) 0.2346 (MV) 0.0310 (MVS)
21 0.2791 (MVS) 0.0963 (MV) 0.5367 (MVSK)
22 0.7271 (MVS) 0.6437 (MVSK) 0.9012 (MVSK)
23 0.9340 (MVS) 0.3761 (MVSK) 0.2244 (MVSK)
24 0.2460 (MV) 0.6237 (MVSK) 0.4115 (MVSK)
25 0.8732 (MVS) 0.8746 (MVSK) 0.9968 (MVSK)
26 0.5815 (MV) 0.6839 (MVSK) 0.8890 (MVSK)
27 0.8546 (MVS) 0.4657 (MV) 0.4809 (MVS)
28 0.3017 (MV) 0.8048 (MVSK) 0.3069 (MVS)
29 0.1588 (MV) 0.3917 (MVSK) 0.5469 (MVS)
30 0.2401 (MV) 0.8660 (MVSK) 0.1978 (MVS)
31 0.4591 (MV) 0.8498 (MVSK) 0.4647 (MVSK)
32 0.3927 (MV) 0.6527 (MVSK) 0.6903 (MVSK)
33 0.4287 (MV) 0.9848 (MVSK) 0.3715 (MVSK)
34 0.3655 (MVS) 0.2334 (MV) 0.6139 (MVSK)
35 0.5713 (MVS) 0.0819 (MV) 0.1556 (MVS)
36 0.1554 (MV) 0.3589 (MVSK) 0.3579 (MVS)
37 0.4453 (MVS) 0.1414 (MV) 0.3659 (MVS)
38 0.9948 (MVS) 0.6247 (MV) 0.3119 (MVS)
39 0.2218 (MVS) 0.0321 (MV) 0.1838 (MVS)
40 0.6309 (MVS) 0.5311 (MV) 0.1858 (MVS)

This table lists the bootstrap p-values of the difference between the Sharpe ratio of each pair of frameworks.
MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected
utility/cardinality portfolios, and MVSK refers to the efficient MVSK expected utility/cardinality portfolios. The
bootstrap p-values were computed according the Ledoit and Wolf (2008) methodology. In parenthesis there is the
indication of the framework with the highest Sharpe ratio.
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Similarly to what occurred with the PSI20 dataset, the turnover exhibits a non-linear pattern
(see Table 19). In all the frameworks we observe that the turnover begins by increasing up to a
certain cardinality level (17 in the EUROSTOXX50 dataset case, which corresponds to 42.5%
of the maximum cardinality level), then decreases. However, starting from the cardinality level
equal to 24 we observe, again, an increase in the turnover. Then, for high cardinality levels, the
trend ceases to be clear.
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Table 19: Portfolio turnover, for the EUROSTOXX50 dataset

Efficient portfolios

Number of stocks MV MVS MVSK

1 13.91 13.83 15.03
2 13.13 14.68 15.07
3 40.13 44.38 49.43
4 56.03 60.37 64.73
5 50.12 60.78 55.56
6 80.35 78.80 83.38
7 84.60 82.01 87.81
8 81.93 97.10 102.55
9 72.52 96.75 97.60

10 107.11 130.02 130.80
11 133.03 132.08 144.80
12 138.50 142.45 148.69
13 138.05 150.00 146.92
14 141.36 138.21 141.51
15 137.17 137.64 148.30
16 139.56 143.85 149.47
17 141.55 141.74 153.49
18 126.50 131.27 136.05
19 125.16 124.90 129.02
20 123.98 126.50 127.59
21 125.75 120.89 122.24
22 118.06 120.93 122.45
23 117.59 119.51 121.68
24 118.82 122.29 130.72
25 127.28 134.03 135.81
26 128.94 135.64 136.83
27 129.05 136.34 139.51
28 136.11 139.21 140.43
29 135.31 137.47 143.29
30 139.45 139.46 143.51
31 136.33 141.39 141.24
32 136.19 140.40 143.50
33 133.07 141.99 142.56
34 141.78 142.74 141.08
35 136.67 140.69 143.49
36 166.34 142.33 142.41
37 145.50 138.73 144.47
38 166.21 160.99 157.54
39 145.69 139.39 146.63
40 137.55 139.72 141.86

This table lists the portfolio turnover of the efficient expected utility/cardinality portfolios. MV refers to the
efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected utility/cardinality
portfolios and MVSK refers to the efficient MVSK expected utility/cardinality portfolios.

31



Regarding the net Sharpe ratio (see Table 20), as for the PSI20 dataset, we observe that
sparse portfolios tend to exhibit the best performance: in all the three frameworks the efficient
portfolios corresponding to the cardinality level equal 2 are the portfolios with the highest refined
net Sharpe ratio. Finally, we notice that, for the EUROSTOXX50 dataset, the MV efficient
portfolios outperform the MVS and the MVSK efficient portfolios for most cardinalities.
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Table 20: Refined Sharpe ratios of returns net of transaction costs, for the EUROSTOXX50
dataset

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.1360 -0.1395 -0.1426
2 -0.1073 -0.1237 -0.1213
3 -0.4877 -0.5414 -0.5870
4 -0.6547 -0.7181 -0.7536
5 -0.6448 -0.7818 -0.7024
6 -1.0447 -1.0544 -1.0964
7 -1.1716 -1.1325 -1.2033
8 -1.2258 -1.4757 -1.4913
9 -1.0991 -1.5041 -1.4862
10 -1.6402 -2.0026 -1.9751
11 -2.0884 -2.0941 -2.2504
12 -2.2377 -2.2704 -2.3405
13 -2.2362 -2.4233 -2.3268
14 -2.3225 -2.2756 -2.2848
15 -2.2672 -2.2993 -2.4405
16 -2.3264 -2.3787 -2.4668
17 -2.3837 -2.3738 -2.5310
18 -2.1571 -2.2256 -2.2903
19 -2.1514 -2.1606 -2.2140
20 -2.1534 -2.2148 -2.1834
21 -2.2019 -2.1345 -2.1065
22 -2.0808 -2.1540 -2.1216
23 -2.0638 -2.1430 -2.1198
24 -2.1094 -2.2029 -2.2845
25 -2.2693 -2.4090 -2.3981
26 -2.3133 -2.4471 -2.4359
27 -2.3214 -2.4474 -2.4920
28 -2.4312 -2.5182 -2.5045
29 -2.4173 -2.4838 -2.5619
30 -2.4952 -2.5202 -2.5465
31 -2.4408 -2.5786 -2.5069
32 -2.4298 -2.5431 -2.5554
33 -2.3817 -2.5873 -2.5390
34 -2.5413 -2.5894 -2.5184
35 -2.4547 -2.5517 -2.5375
36 -2.9631 -2.5736 -2.5236
37 -2.6060 -2.5100 -2.5616
38 -2.9530 -2.9100 -2.7977
39 -2.6082 -2.5201 -2.6066
40 -2.4691 -2.5253 -2.5195

This table reports the refined Sharpe ratios of returns net of transaction costs for each efficient expected util-
ity/cardinality portfolio. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to
the efficient MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected util-
ity/cardinality portfolios. The refined net Sharpe ratios were computed according the Israelsen (2005) methodol-
ogy.
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5 Conclusions
This paper extends the analysis of the cardinality impact in the portfolio performance from the
standard mean-variance framework to frameworks with higher moments, namely by considering
the skewness and kurtosis. We propose a bi-objective model that allows the direct analysis of the
efficient tradeoff between expected utility and cardinality. This analysis was conducted assuming
an investor with CRRA preferences (with a relative risk aversion parameter of five) and within
mean-variance, mean-variance-skewness and mean-variance-skewness-kurtosis frameworks. Al-
though we have assumed a specific form for the investor’s utility, the proposed methodology
may easily be applied to any other utility type function.

We have conducted an empirical application of the proposed methodology to a dataset
based on the Portuguese Stock Index (PSI20 index). We also used a dataset based on the
EUROSTOXX50 index in order to check the robustness of those results. The results showed
that both the in-sample certainty equivalent and the in-sample Sharpe ratio increase with car-
dinality. The empirical analysis also suggests that there are no performance gains in-sample (in
terms of certainty equivalent) when higher moments are considered. On the other hand, the
out-of-sample certain equivalent and the out-of-sample Sharpe ratio show no clear trend with
increasing cardinality, when transaction costs are ignored.

The portfolio turnover presents a non-linear trend, increasing up to a certain cardinality
level, and then decreasing. In the case of the EUROSTOXX50, it afterwards increases again,
and shows an unclear trend for larger cardinality levels. This implies that diversification is an
important issue in portfolio management when transaction costs are considered, and therefore
when another degree of reality is brought into the analysis.

Finally, the out-of-sample comparison of different frameworks allows the conclusion that, in
some cases, the inclusion of higher moments in the portfolio management framework may lead
to some significant gains in terms of certainty equivalent and Sharpe ratio. However, this result
seems to be quite sensitive to the dataset and to the cardinality level.

In this study we assumed that the investor has CRRA preferences with a relative risk aversion
of five. In future research we are also interested in studying the sensitivity of these results to
different choices of the relative risk aversion level and also to different utility type functions (e.g.
HARA utility).

References
Aït-Sahalia, Y. and M. W. Brandt (2001). Variable selection for portfolio choice. Journal of Finance 56,

1297–1351.

Anagnostopoulos, K. P. and G. Mamanis (2011). The mean-variance cardinality constrained portfolio op-
timization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert
Systems with Applications 38, 14208–14217.

Arditti, F. D. (1967). Risk and the required return on equity. The Journal of Finance 22, 19–36.

Athayde, G. and R. Flôres (2004). Finding a maximum skewness portfolio: A general solution to three-
moments portfolio choice. Journal of Economic Dynamics & Control 28, 1335–1352.

Bai, X., J. R. Russell, and G. C. Tiao (2003). Kurtosis of GARCH and stochastic volatility models with
non-normal innovations. Journal of Econometrics 114, 349–360.

34



Benartzi, S. and R. H. Thaler (2001). Naive diversification strategies in defined contribution saving plans.
The American Economic Review 91, 79–98.

Bertsimas, D. and R. Shioda (2009). Algorithm for cardinality-constrained quadratic optimization. Com-
put. Optim. Appl. 43, 1–22.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems.
Math. Program. 74, 121–140.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Economet-
rics 31, 307–327.

Brandt, M. W., P. Santa-Clara, and R. Valkanov (2009). Parametric portfolio policies: Exploiting
characteristics in the cross-section of equity returns. Review of Financial Studies 22, 3411–3447.

Brito, R. P. and L. N. Vicente (2014). System Modeling and Optimization: 26th IFIP TC 7 Conference,
CSMO 2013, Klagenfurt, Austria, September 9-13, 2013, Revised Selected Papers, Chapter Efficient
Cardinality/Mean-Variance Portfolios, pp. 52–73. Springer Berlin Heidelberg.

Brodie, J., I. Daubechies, C. D. Mol, D. Giannone, and I. Loris (2009). Sparse and stable Markowitz
portfolios. Proc. Natl. Acad. Sci. USA 106, 12267–12272.

Cesarone, F., A. Scozzari, and F. Tardella (2009). Efficient algorithms for mean-variance portfolio opti-
mization with hard real-world constraints. Giornale dell’Istituto Italiano degli Attuari 72, 37–56.

Chang, T. J., N. Meade, J. E. Beasley, and Y. M. Sharaiha (2000). Heuristics for cardinality constrained
portfolio optimisation. Comput. Oper. Res. 27, 1271–1302.

Chunhachinda, P., K. Dandapani, S. Hamid, and A. J. Prakash (1997). Portfolio selection and skewness:
Evidence from international stock markets. Journal of Banking & Finance 21, 143–167.

Conn, A. R., K. Scheinberg, and L. Vicente (2009). Introduction to Derivative-Free Optimization.
Philadelphia: MPS-SIAM Series on Optimization.

Cremers, J. H., M. Kritzman, and S. Page (2005). Optimal hedge fund allocations - Do higher moments
matter? Journal of Portfolio Management 3, 70–81.

Curto, J., E. Reis, and J. Esperança (2003). Stable paretian distributions: an unconditional model for
psi20, dax and djia indexes. Review of Financial Markets 5, 5–18.

Custódio, A. L., J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente (2011). Direct multisearch for
multiobjective optimization. SIAM J. Optim. 21, 1109–1140.

DeMiguel, V., L. Garlappi, F. J. Nogales, and R. Uppal (2009). A generalized approach to portfolio
optimization: Improving performance by constrained portfolio norms. Management Science 55, 798–
812.

DeMiguel, V., F. J. Nogales, and R. Uppal (2014). Stock return serial dependence and out-of-sample
portfolio performance. The Review of Financial Studies 27, 1031–1073.

DeMiguel, V. and A. V. Olivares-Nadal (2015). A robust perspective on transaction costs in portfolio
optimization. Working paper, London Business School.

Efron, B. and R. J. Tibshirani (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC Mono-
graphs on Statistics & Applied Probability. Taylor & Francis.

35



Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of u.k.
inflation. Econometrica 50, 987–1008.

Evans, J. L. and S. H. Archer (1968). Diversification and the reduction of dispersion: An empirical
analysis. Journal of Finance 23, 761–767.

Fama, E. (1965). The behavior of stock-market prices. The Journal of Business 38, 34–105.

Fieldsend, J. E., J. Matatko, and M. Peng (2004). Cardinality constrained portfolio optimisation. In
Intelligent Data Engineering and Automated Learning – IDEAL 2004, Volume 3177 of Lecture Notes
in Computer Science, pp. 788–793. Berlin: Springer.

Harvey, C. R., J. Liechty, M. W. Liechty, and P. Mueller (2010). Portfolio selection with higher moments.
Quantitative Finance 10, 469–485.

Harvey, C. R. and A. Siddique (2000). Conditional skewness in asset pricing tests. The Journal of
Finance 55, 1263–1295.

Israelsen, C. L. (2005). A refinement to the sharpe ratio and information ratio. Journal of Asset Man-
agement 5, 423–427.

Jobst, N. J., M. D. Hornimam, C. A. Lucas, and G. Mitra (2010). Computational aspects of alternative
portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance 1,
489–501.

Kraus, A. and R. H. Litzenberger (1976). Skewness preference and the valuation of risk assets. The
Journal of Finance 31, 1085–1100.

Ledoit, O. and M. Wolf (2008). Robust performance hypothesis testing with the Sharpe ratio. Journal
of Empirical Finance 15, 850–859.

Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business 36, 394.

Maringer, D. and P. Parpas (2009). Global optimization of higher order moments in portfolio selection.
J. Global Optim. 43, 219–230.

Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance 7, 77–91.

Mencia, J. and E. Sentana (2009). Multivariate location-scale mixtures of normals and mean-variance-
skewness portfolio allocation. Journal of Econometrics 153, 105–121.

Michaud, R. O. (1989). The markowitz optimization enigma: Is optimized optimal? Financial Analysts
Journal 4, 31–42.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59,
347–370.

Rege, S., J. C. A. Teixeira, and A. G. Menezes (2013). The daily returns of the portuguese stock index:
a distributional characterization. Journal of Risk Model Validation 7, 53–70.

Statman, M. (1987). How many stocks make a diversified portfolio? Journal of Financial and Quantitative
Analysis 22, 353–363.

Tavares, A. B., J. D. Curto, and G. N. Tavares (2008). Modelling heavy tails and asymmetry using
arch-type models with stable paretian distributions. Nonlinear Dynamics 51, 231–243.

Taylor, S. J. (1986). Modelling Finantial Time Series. Chichester, UK: Wiley.

36



Turner, A. L. and E. J. Weigel (1992). Daily stock market volatility: 1928–1989. Management Science 38,
1586–1609.

Vielma, J. P., S. Ahmed, and G. L. Nemhauser (2008). A lifted linear programming branch-and-bound
algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20, 438–450.

Woodside-Oriakhi, M., C. Lucas, and J. E. Beasley (2011). Heuristic algorithms for the cardinality
constrained efficient frontier. European J. Oper. Res. 213, 538–550.

Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control 18,
931–955.

37


	Introduction
	State of the Art
	Methodology
	The Expected Utility/Cardinality Bi-objective Model
	The MV, MVS and MVSK Expected Utility/Cardinality Efficient Frontiers

	Empirical performance
	In-sample performance
	Out-of-sample performance

	Conclusions

