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Abstract

This paper suggests a new approach for portfolio choice. In this framework, the investor,
with CRRA preferences, has two objectives: the maximization of the expected utility and
the minimization of the portfolio expected illiquidity. The CRRA utility is measured using
the portfolio realized volatility, realized skewness and realized kurtosis, while the portfolio
illiquidity is measured using the well-known Amihud illiquidity ratio. Therefore, the investor
is able to make her choices directly in the expected utility/liquidity (EU/L) bi-dimensional
space. We conduct an empirical analysis in a set of fourteen stocks of the CAC 40 stock
market index, using high frequency data for the time span from January 1999 to December
2005 (seven years). The robustness of the proposed model is checked according to the
out-of-sample performance of different EU/L portfolios relative to the minimum variance
and equally weighted portfolios. For different risk aversion levels, the EU/L portfolios are
quite competitive and in several cases consistently outperform those benchmarks, in terms
of utility, liquidity and certainty equivalent.
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1 Introduction

The traditional mean-variance approach of Markowitz (1952) suggests that the optimal strategy
is to allocate the investor’s wealth bearing in mind the trade-off between the mean and the
variance of the portfolio’s return. However, the classical mean-variance portfolios tend to be very
unstable, as the portfolio weights are quite sensitive to the input information set. Additionally,
the poor out-of-sample performance of these portfolios has been widely documented in the
literature (e.g., Michaud, 1989; Jagannathan and Ma, 2003; DeMiguel et al., 2009). Among a
wide stream of literature proposing different ways of improving the properties of the classical
portfolio choice model, some studies suggest the usefulness of incorporating more than just the
two first moments of the returns’ distribution (Chunhachinda et al., 1997; Athayde and Flôres,
2004; Maringer and Parpas, 2009; Mencia and Sentana, 2009; Harvey et al., 2010).
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The availability of high frequency financial databases has increased exponentially in recent
years, which has opened new fields of research both in financial economics and financial econo-
metrics. Although Merton (1980) has observed that the variance can be accurately estimated as
the sum of the realizations of the squared intraday returns, the researchers’ attention has been
devoted to ARCH type (Engle, 1982; Bollerslev, 1986; Nelson, 1991) and stochastic volatility
models (Taylor, 1986), at least until the end of the ‘90s. Nevertheless, based on the work of Schw-
ert (1989) and Hsieh (1991), authors such as Andersen et al. (2001) and Barndorff-Nielsen and
Shephard (2002) began to use intraday data to estimate the variance as the sum of squared
returns, sampled at very short intraday intervals. This new approach, known in the literature
as realized volatility, has a straightforward reasoning: since the sample path of the variance is
continuous, the accuracy of the variance estimates increases with the sampling frequency. More-
over, it is quite appealing as it is a model-free and an error-free measure of volatility (because it
is observable) which converges to the quadratic variation (Andersen et al., 2006). Several useful
surveys on realized volatility can be found in the literature (see, e.g., Barndorff-Nielsen and
Shephard, 2005; Andersen et al., 2006; McAleer and Medeiros, 2008; Meddahi et al., 2011). Pa-
pers like Andersen et al. (2001), Andersen et al. (2001), Areal and Taylor (2002), and Koopman
et al. (2005) use the realized volatility in univariate frameworks. Other papers, like Andersen
et al. (2003), Flemming et al. (2003), Barndorff-Nielsen and Shephard (2004), Liu (2009), Fan
et al. (2012), and Hautsch et al. (2012) extend the approach to multivariate cases. With the
remarkable growth of related literature, special attention has been given to two ubiquitous
problems when dealing with high frequency financial data: market microstructure noise and
asynchronous price observations. The most common response to the presence of microstruc-
ture noise has been to reduce the sampling frequency to some arbitrary level, say 5-minutes or
30-minutes (Andersen et al., 2001; Hansen and Lunde, 2006). Another possibility is to use all
the available high frequency data (seconds, milliseconds) and taking explicitly into account the
microstructure noise in the volatility estimation (Aı̈t-Sahalia et al., 2005a;b; 2011). Regarding
the non-synchronous price observations, Barndorff-Nielsen et al. (2011) have proposed the well-
known realized kernel estimator for the multivariate case, which has the advantage of being a
positive-definite estimator, quite suitable for dealing with asynchronous data.

The approaches originally defined for realized volatility can be extended, with equal interest
and potential, to higher moments. Neuberger (2012) introduced the realized skewness as the sum
of the 3rd power of returns, while Amaya et al. (2015) defined the realized kurtosis as the sum
of the 4th power of returns. These authors also found significant negative and positive effects
of skewness and kurtosis on weekly stock returns, respectively.

The majority of studies in portfolio choice assume that securities’ returns are the only source
of information. However, the subprime crisis, which led to a worldwide market liquidity crisis,
has highlighted the importance of liquidity not only for each particular investor but also for the
achievement of the allocative rationale inherent to financial markets. Liquidity is the easiness
to trade a security. Although quite simple to enunciate, liquidity is an elusive concept, and
in fact, one may enumerate three main dimensions of a liquid market: depth (high quantities
available for sale or purchase away from the current market price), breadth (large number of
market participants) and resiliency (price impacts caused by trading are small and transitory).
Some authors have found a positive relationship between stock returns and alternative proxies
for liquidity: Amihud and Mendelsen (1986) and Datar et al. (1998) used as a liquidity proxy
the bid-ask spread; Brennan and Subrahmanyam (1996) used price impacts; Easley et al. (2002)
used the probability of informed trading (PIN). Other papers found the existence of commonality

2



and predictability in liquidity (Chordia et al., 2001; Hasbrouck and Seppi, 2001; Huberman and
Halka, 2001; Amihud, 2002; Pástor and Stambaugh, 2003).

It is known that liquidity is a direct function of the implicit and explicit trading costs. How-
ever, the quantification of these costs is not a trivial task, not only due to its conceptual vagueness
but also, sometimes, due to the lack of information. Thus, there are several proxies to measure
liquidity: bid-ask spread, trading volume, turnover, quote size and price impact. Goyenko et al.
(2009) compared different liquidity measures and found that the Amihud illiquidity ratio (Ami-
hud, 2002) is one of the best liquidity proxies, having a strong correlation with several other
liquidity measures.

In this paper we suggest the construction of expected utility-liquidity portfolios. By solving
the proposed expected utility-liquidity (EU/L) problem, the investor will be able to identify the
optimal portfolios, which have the maximum expected utility among all that provide at least a
certain expected liquidity level. We assume that the investor has a CRRA (constant relative risk
aversion) utility, as it is often assumed in the literature (Aı̈t-Sahalia and Brandt, 2001). The
reason behind the use of this particular utility function is clearly stated by Brandt et al. (2009,
p. 3421): “the advantage of CRRA utility is that it incorporates preferences toward higher
moments in a parsimonious manner. In addition, the utility function is twice continuously
differentiable, which allows us to use more efficient numerical optimization algorithms that
make use of the analytic gradient and Hessian of the objective function”. However, it is worth
noticing that the proposed methodology is applicable to any other type of utility function. In
this study, we consider the fourth order Taylor expansion of the expected utility, around the
portfolio expected return. Thus the expected utility is a function of the portfolio expected return,
variance, skewness and kurtosis. Relying on intraday transaction data, we use the daily estimates
of the portfolio’s moments as inputs for the optimization model, using as estimators the portfolio
realized variance, realized skewness and realized kurtosis. In addition, since we are interested
on the relationship between liquidity and the behaviour of stock prices, following Goyenko et al.
(2009) and Chiang and Zheng (2015), the daily illiquidity level is measured by the intraday
Amihud illiquidity ratio (Amihud, 2002).

In summary, this paper presents a new methodology for portfolio choice in the expected
utility-liquidity space. The proposed EU/L model allows the investor to identify the optimal
portfolios, which have the maximum expected utility, computed with higher moments, among
all that provide at least a certain expected level of liquidity. This paper also considers high
frequency data by using realized estimators as the inputs of the optimization model.

For the empirical application we use intraday data on fourteen French stocks for seven years
(from January 1999 to December 2005, which corresponds to 14.5GB of raw data). These data
were provided by EUROFIDAI (European Financial Data Institute), and were not subjected
to any kind of sample selection. These fourteen stocks are constituents of the French Stock
Market Index (CAC 40) at current date (March, 2017). In-sample we compute the EU/L Pareto
frontier for a moderately risk averse investor. The EU/L Pareto frontier shows the existence of a
positive relationship between the expected utility and the expected illiquidity. Out-of-sample, we
compute three different EU/L optimal portfolios (according to three different, pre-established,
illiquidity levels) and compare their performance with two hard to beat benchmark portfolios:
the minimum variance and the equally weighted portfolios. The EU/L optimal portfolios are
very competitive and in most cases are able to consistently beat the benchmarks. This is
observable in terms of out-of-sample utility, liquidity and certainty equivalent. These results
hold for different risk aversion levels, which indicates that the proposed EU/L model is quite
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robust.
The paper is organized as follows. Section 2 introduces some notation and presents the

expected utility-liquidity problem (EU/L problem). Section 3 describes the data, the proce-
dures and the main results from the empirical application. Finally, Section 4 presents the main
conclusions and some directions for future work.

2 The Expected Utility-Liquidity Optimization Problem

2.1 The Portfolio Choice with Higher Moments

In this subsection, in order to formulate the investor’s problem with higher moments, we fol-
low Brito et al. (ming). Let us then begin by considering that an investor has a given wealth
to invest in a universe of N stocks. The investor wants to maximize her expected utility,
Et [u (rp,t+1)], where rp,t+1 represents the portfolio’s return at day t + 1, in the feasible space,
X. Thus, the standard utility maximization investor’s problem can be formulated as

max
x∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

xiri,t+1

)]
such that x ∈ X,

(1)

where x is the N×1 vector of weights, ri,t+1 represents the return of stock i, with i ∈ {1, . . . , N},
at day t + 1, and X = {x ∈ RN :

∑N
i=1 xi = 1, xi ≥ 0, i = 1, . . . , n} is a polyhedral set. Note

that the feasible set excludes short-selling, which in some markets is total or circumstantially
forbidden.

Assuming that the investor has CRRA preferences, then

u (rp,t+1) =


(1 + rp,t+1)

1−γ

1− γ
if γ > 1,

log(1 + rp,t+1) if γ = 1,

(2)

where γ represents the relative risk aversion coefficient (the higher the value of γ the more risk
averse is the investor). Let us denote

Vt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
2 ,

St (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
3 ,

Kt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
4 ,

(3)

as the portfolio variance, skewness and kurtosis at day t + 1, respectively. Then, the fourth
order Taylor expansion of the expected utility, Et [u (rp,t+1)], around the expected return of the
portfolio, Et (rp,t+1), is given by
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Et [u (rp,t+1)] ≈ u [Et (rp,t+1)] +
1

2!
u′′ [Et (rp,t+1)]Vt (rp,t+1)

+
1

3!
u′′′ [Et (rp,t+1)]St (rp,t+1)

+
1

4!
u′′′′ [Et (rp,t+1)]Kt (rp,t+1) .

(4)

Defining

a = u [Et (rp,t+1)] , b = −u
′′ [Et (rp,t+1)]

2
,

c =
u′′′ [Et (rp,t+1)]

6
, d = −u

′′′′ [Et (rp,t+1)]

24
,

(5)

where

u [Et (rp,t+1)] =


[1 + Et (rp,t+1)]

1−γ

1− γ
if γ > 1,

log [1 + Et (rp,t+1)] if γ = 1,

u′′ [Et (rp,t+1)] =


−γ [1 + Et (rp,t+1)]

−(γ+1) if γ > 1,

− 1

[1 + Et (rp,t+1)]
2 if γ = 1,

u′′′ [Et (rp,t+1)] =


γ(γ + 1) [1 + Et (rp,t+1)]

−(γ+2) if γ > 1,

2

[1 + Et (rp,t+1)]
3 if γ = 1,

u′′′′ [Et (rp,t+1)] =


−γ(γ + 1)(γ + 2) [1 + Et (rp,t+1)]

−(γ+3) if > 1,

− 6

[1 + Et (rp,t+1)]
4 if γ = 1,

(6)

we can rewrite Equation (4) as

Et [u (rp,t+1)] ≈ a (rp,t+1)− b (rp,t+1)Vt (rp,t+1)

+ c (rp,t+1)St (rp,t+1)− d (rp,t+1)Kt (rp,t+1)
(7)
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Thus the investor’s problem with higher moments can be stated as

max
x∈RN

a (rp,t+1)− b (rp,t+1)Vt (rp,t+1)

+c (rp,t+1)St (rp,t+1)− d (rp,t+1)Kt (rp,t+1)

such that x ∈ X.

(8)

2.2 The Realized Higher Moments

When the available intraday trading data suffer from nonsynchronous trading effects, this induces
potentially serious biases in the moments and co-moments of returns (Campbell et al., 1997, p.
84-98). In such case, we should adopt some procedure in order to synchronize the data. One
possible way to accomplish this, is using the all refresh-time method (Barndorff-Nielsen et al.,
2011).

Supposing that for each stock, i ∈ {1, . . . , N}, we have K synchronized intraday price ob-
servations, in day t + 1 we have Pt+(k/K), with k ∈ {1, . . . ,K}, price observations. Note that
the closing price of day t + 1 is given by Pt+(K/K) = Pt+1. In this setting, the daily realized
variance (Andersen et al., 2001) at day t+ 1, for each individual stock i, is given by

RV K
i,t+1 =

K∑
k=1

r2i,t+(k/K), (9)

where ri,t+(k/K) is the return of stock i in the intraday period k. For each pair of stocks, i and
j, with i, j ∈ {1, . . . , N}, the corresponding daily realized covariance, at day t+ 1, is given by

RCOV K
i,j,t+1 =

K∑
k=1

ri,t+(k/K)rj,t+(k/K). (10)

The daily portfolio realized variance can thus be computed as

RΣ(x) = x>RM2x, (11)

where RM2 represents the realized covariance matrix. Each entry, cij,t+1, of the RM2 matrix is
given by

cij,t+1 =
K∑
k=1

ri,t+(k/K)rj,t+(k/K). (12)

Analogously to the realized variance approach, the daily realized skewness (Neuberger, 2012)
at day t+ 1, for each individual stock i, can be defined as

RSKi,t+1 =
K∑
k=1

r3i,t+(k/K). (13)

The realized coskewness matrix can be computed as a N ×N2 matrix (as described in detail
by Athayde and Flôres, 2004). According to this procedure, the daily portfolio realized skewness
can be computed as
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RΦ(x) = x>RM3(x⊗ x), (14)

where RM3 is the realized coskewness matrix and ⊗ represents the Kronecker product. The
realized coskewness matrix corresponds to N matrixes Aijl,t+1 of dimension N ×N such that

RM3 =
[
A1jl,t+1 A2jl,t+1 · · · ANjl,t+1

]
, (15)

where each element, aijl,t+1, is given by

aijl,t+1 =

K∑
k=1

ri,t+(k/K)rj,t+(k/K)rl,t+(k/K). (16)

Finally, the daily realized kurtosis (Amaya et al., 2015) at day t+1, for each individual stock
i, can be defined as

RKK
i,t+1 =

K∑
k=1

r4i,t+(k/K). (17)

The daily portfolio realized kurtosis, can be obtained by computing the following products

RΨ(x) = x>RM4(x⊗ x⊗ x), (18)

where RM4 represents the realized cokurtosis matrix. The RM4 matrix corresponds to N2

matrixes Bijlm,t+1 of dimension N ×N such that

RM4 =
[
B11lm,t+1 B12lm,t+1 · · · B1Nlm,t+1 | B21lm,t+1 B22lm,t+1 · · · B2Nlm,t+1 | · · · | BN1lm,t+1 BN2lm,t+1 · · · BNNlm,t+1

], (19)

where each element, bijlm,t+1, is given by

bijlm,t+1 =
K∑
k=1

ri,t+(k/K)rj,t+(k/K)rl,t+(k/K)rm,t+(k/K). (20)

As discussed before, we propose the use of intraday data to compute the realized moments
as inputs of Problem (8):

Vt (rp,t+1) ≈ RΣ(x) = x>RM2x,

St (rp,t+1) ≈ RΦ(x) = x>RM3(x⊗ x),

Kt (rp,t+1) ≈ RΨ(x) = x>RM4(x⊗ x⊗ x).

(21)

Hence, Problem (8) can be reformulated as

max
x∈RN

a(x)− b(x)RΣ(x) + c(x)RΦ(x)− d(x)RΨ(x)

such that x ∈ X. (22)

Notice that in estimating the daily return, ri,t+1, of each stock i (with i ∈ {1, . . . , N}), from
high-frequency data, only the first and last price observations will matter:
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ri,t+1 =

K∑
k=1

[
ln(Pi,t+(k/K))− ln(Pi,t+(k−1/K))

]
=

[
ln(Pi,t+(1/K))− ln(Pi,t)

]
+
[
ln(Pi,t+(2/K))− ln(Pi,t+(1/K))

]
+ . . .

+
[
ln(Pi,t+1)− ln(Pi,t+(K−1/K))

]
= [ln(Pi,t+1)− ln(Pi,t)]

(23)

Consequently, the estimation of the daily portfolio mean, Et (rp,t+1), is given by

Et (rp,t+1) ≈ µ(x) = m>x, (24)

where m represents the vector of dimension N × 1 where each entry corresponds to the daily
mean return of each stock i.

2.3 The EU/L Problem

As referred by Goyenko et al. (2009) and Chiang and Zheng (2015), the Amihud illiquidity ratio
is one of the best proxies to measure stock liquidity since it has a strong correlation with several
other measures of liquidity. The Amihud illiquidity ratio for stock i at day t+ 1, Ai,t+1, is given
by

Ai,t+1 =
1

K

K∑
k=1

|ri,t+(k/K)|
vi,t+(k/K)

, (25)

where ri,t+(k/K) represents the return of stock i in the intraday period k, and vi,t+(k/K) the
corresponding trading volume in euros.

In this paper, we suggest the construction of efficient portfolios, where the investors maximise
their expected utility while taking into account the liquidity level associated to those portfo-
lios. Thereby, motivated by Problem (22) and using the Amihud illiquidity ratio as a liquidity
measure, we propose the following expected utility-liquidity (EU/L) problem

max
x∈RN

a(x)− b(x)RΣ(x) + c(x)RΦ(x)− d(x)RΨ(x)

such that I>x ≤ Itarget,

x ∈ X,
(26)

where I represents the vector of dimension N × 1, with elements equal to the expected Amihud
illiquidity ratio (computed according to Equation (25)) of each stock i ∈ {1, . . . , N}, and Itarget
is a given illiquidity upper limit. The objective function of the EU/L problem (Problem (26)),
f(x) = a(x) − b(x)RΣ(x) + c(x)RΦ(x) − d(x)RΨ(x), is as continuous nonlinear but smooth
function, all constraints are linear and the feasible space is compact (it is a bounded and closed
space). Given these properties, the existence of a maximum for the EU/L problem is guaranteed
by the well-known Weierstrass theorem. By solving Problem (26), which can be done by using
any standard nonlinear optimization software for constrained optimization, one can identify the
efficient EU/L frontier, i.e. those portfolios which have the maximum expected utility among
all feasible portfolios that provide at least a certain level of expected liquidity.
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3 Empirical Application

3.1 The Data

The empirical application is conducted on fourteen French stocks1. These stocks were traded
during all the sample period in the French Stock Market (Euronext Paris) and belonged to the
CAC 40 Index at least once (but not necessarily always). All stocks are currently constituents
of the CAC 40 Index (March, 2017). For each stock, we have access to intraday data gathered
during each trading session (from 09:00 a.m. to 17:30 p.m., local time) for a total of 1777
trading days, from January 1999 to December 2005. The database was provided by the European
Financial Institute (EUROFIDAI). In these files, for each stock, among many other information,
we just retained the transactions timestamps, the stock trading prices and the traded number
of securities.

The available intraday price observations, for the fourteen stocks, were not synchronized.
Refresh-time methods used for synchronizing intraday trading among stocks include the pair-
wise refresh-time method and the all refresh-time method. The pairwise refresh-time method
synchronizes the trading for each pair of stocks separately, allowing us to retain more data points
(compared to the all refresh-time method); however, the resulting covariance matrix is not nec-
essarily positive definite. In turn, the all refresh-time method synchronizes all stocks simultane-
ously and ensures that the resulting covariance matrix is positive definite (see Barndorff-Nielsen
et al. (2011), for further details).

To ensure the positive-definiteness of the covariance matrix, in this paper we chose the all
refresh-time method (Barndorff-Nielsen et al., 2011). This method was implemented through a
C++ routine. Briefly, this method can be described as follows:

• Let τ1 be the first intraday period at day t+ 1 where all the available stocks have changed
their price at least once since the market opening;

• Let τ2 be the first intraday period at day t+ 1 where all the available stocks have changed
their price at least once since τ1;

• Proceeding in this way, allows the sequential definition of timestamps τk, with k ∈ {1, . . . ,K},
until τK is defined, corresponding to the market closure;

• Then we can compute the intraday returns for each stock i ∈ {1, . . . , N}, in irregularly
spaced but perfectly synchronous intervals

ri,t+τk = ln(Pi,t+τk)− ln(Pi,t+τk−1
), with k = 2, . . . ,K. (27)

After overcoming the nonsynchronous trading problem, we obtained an average of about
61 synchronized price changes per day, which corresponds to an average duration of around 8-
minutes (see Figure 1). From this figure it is also visible that the trading intensity has increased
on average about five times during the period under scrutiny. Hereafter, when estimating the
realized moments, it is assumed that microstructure noise does not exist.

The proposed methodology (described in Section 2.3) was implemented through MATLAB.
By default, MATLAB has a 16 digit precision, which ensures the inexistence of relevant rounding

1In alphabetic order, the stocks are: AIR LIQUIDE; AXA; CARREFOUR; DANONE; ESSILOR INTL;
FRANCE TELECOM; L’OREAL; LVMH; MICHELIN; PERNOD RICARD; SAINT GOBAIN; SANOFI AVEN-
TIS; TOTAL; UNIBAIL
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errors when computing the realized moments and co-moments2. Additionally, we have computed
the condition number of the realized covariance (Equation (12)), realized coskewness (Equation
(15)) and realized cokurtosis (Equation (19)) matrixes (for all the sample period) and we have
obtained the values of 8.56, 10.26 and 22.88, respectively. This suggests that the estimates of
the realized moments and co-moments are relatively stable.

Figure 1: Averaged number of intraday price changes

This figure reports the averaged (over the fourteen stocks) number of changes in the intraday price observations

for each day. The horizontal axis corresponds to the number of trading days. In the vertical axis are the respective

averaged intraday price changes. The horizontal line represents the averaged (on the overall sample) number of

price changes per day (equal to 61.4347 price changes).

We can look to the EU/L problem (Problem (26)) as a biobjective problem

max
x∈RN

a(x)− b(x)RΣ(x) + c(x)RΦ(x)− d(x)RΨ(x)

min
x∈RN

I>x.

such that x ∈ X
(28)

The solution of Problem (28) is given in the form of a Pareto frontier in the expected utility-
illiquidity space, allowing the investor to directly analyse the efficient trade-off between these
two dimensions. Problem (28) can be solved using a multiobjective algorithm. Motivated by
previous works (see Brito et al., 2016; ming) and since the first objective, a(x) − b(x)RΣ(x) +
c(x)RΦ(x)− d(x)RΨ(x), is a highly nonlinear function, we have decided to use a derivative-free
solver based on direct multisearch (see Custódio et al., 2011, for a detailed description of the
direct multisearch algorithm).

Setting the in-sample period equal to all the available time window (January 1999 to De-
cember 2005), we applied the solver dms3 (version 0.3) to determine the EU/L Pareto frontier.

2The most critical co-moment, in terms of possible rounding errors, is cokurtosis, since it involves summing
returns raised to the fourth power. Concerning this co-moment, we start by noticing that, in the dataset, we have
double digit stock prices (no higher). With double digit stocks prices and ticks of 1c, high frequency returns can
be as low as 10−4 and their fourth power can be of the 10−16 order. In turn, the highest value that the realized
cokurtosis takes is of the 10−4 order. Therefore, since we work with a 16 digit precision, in the computation of
the realized cokurtosis at least 4 significant digits of the fourth power of the high frequency returns are preserved.

3This solver is public and available by request at http://www.mat.uc.pt/dms/.
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Figure 2 contains the plot of the EU/L Pareto frontier for an investor with a constant relative
risk aversion parameter equal to 5 (see Equation (31)).

Figure 2: EU/L Pareto frontier

This figure reports the solution of the EU/L biobjective Problem (Problem (28)). The vertical axis corresponds

to the first objective function (expected utility) and the horizontal axis represents the second objective function

(expected illiquidity). This solution is for a moderate risk aversion parameter (γ = 5).

From the analysis of Figure 2, we can observe a positive relationship between the expected
utility and the expected illiquidity4.

Portfolio constraints commonly used in practice (e.g. turnover constraints, buy-in threshold
constraints, cardinality constraints) can be introduced and explored in the proposed EU/L
model. For example, if we introduce a turnover constraint5 we obtain a different EU/L frontier
(see Figure 3). From the comparison between the EU/L Pareto frontier (see Figure 2) and
the EU/L Pareto frontier with a turnover constraint (see Figure 3), it is possible to verify
that the inclusion of a turnover constraint leads to a deterioration of the portfolios in the two
consider objectives (expected utility and expected illiquidity) although the frontier maintains
its convexity.

4The same pattern was found for two different choices of the relative risk aversion parameter (γ = 1 and
γ = 10).

5A turnover constraint can be formulated as
∑N

i=1 |xi,t+1 − x0i,t| ≤ h, where x0i,t is the reference portfolio and
h is the turnover upper bound.
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Figure 3: EU/L Pareto frontier with a turnover constraint

This figure reports the solution of the EU/L biobjective Problem (Problem (28)) with the inclusion of a turnover

constraint (the reference portfolio was the equally weighted portfolio and the turnover upper bound was set to 5%).

The vertical axis corresponds to the first objective function (expected utility) and the horizontal axis represents

the second objective function (expected illiquidity). This solution is for a moderate risk aversion parameter

(γ = 5).

3.2 Out-of-Sample Results and Sensitivity to Risk Aversion

In order to analyse the robustness of the efficient portfolios on the EU/L space, this subsection
compares the out-of-sample performance of three different EU/L optimal portfolios in relation
to two benchmark portfolios.

The three chosen EU/L optimal portfolios are: xI10 , xI50 and xI90 , the portfolios that corre-
spond to the solution of Problem (26) for Itarget = I10, Itarget = I50 and Itarget = I90, respectively,
where Iy represents the yth percentile of the expected illiquidity across all stocks. Hence, by
construction, the aggregate level of liquidity of the resulting efficient portfolios diminishes with
the increasing percentile.

Previous works, such as Brito et al. (2016) and DeMiguel et al. (2009), have showed the
good out-of-sample performance of the well-known minimum variance portfolio, xmv, and the
equally weighted portfolio, xew. In this study, we have thus decided to use these two portfolios as
benchmark portfolios. The xmv portfolio corresponds to the solution of the following quadratic
problem

min
x∈RN

x>M2x

such that x ∈ X, (29)

where M2 denotes the daily covariance matrix (estimated with daily returns). The minimum
variance portfolio, xmv, is commonly mentioned in the literature as a hard to beat benchmark
portfolio. The explanation for the good out-of-sample performance of the minimum variance
portfolio lies on the fact that the estimation error of the expected returns is absent by definition,
while excluding short selling from the problem contributes to reducing the ill-conditioning of
the covariance matrix (see Jagannathan and Ma, 2003, for further details).
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The equally weighted portfolio, xew, corresponds to the adage “do not put all the eggs in
the same basket”, that is

xi =
1

N
, i = 1, . . . , N. (30)

In a provocative article, DeMiguel et al. (2009) showed the superior out-of-sample performance
of the equally weighted portfolio regarding several portfolio optimization models. Arguably
this puzzling result is due to the absence of estimation errors and to the intrinsic high level of
diversification.

As it is usual in the literature (see, e.g., DeMiguel et al., 2009), we used a rolling-sample
approach for the out-of-sample performance evaluation. We considered an estimation window of
1520 days, while the remaining 257 days are used for evaluating the out-of-sample performance
measures. The first estimation window is from January 1999 to December 2004, and January
3, 2005 is the first day where we evaluate the out-of-sample performance. For each estimation
window, we computed the two benchmark portfolios, xmv and xew, using the daily returns and
three optimal EU/L portfolios, xI10 , xI50 and xI90 , for each of three different levels of risk aversion
(γ = 1, γ = 5 and γ = 10), using intraday data. Then each portfolio was held fixed and its
daily returns were observed over the next day. The estimation window was then moved forward
one day, and the daily returns were computed for the next day of the evaluation period. The
process was thus repeated until exhausting the 257 trading days of 2005.

Table 1 presents some out-of-sample descriptive statistics. The returns of all portfolios
present above normal kurtosis and are skewed. For γ = 1 and γ = 5, all the EU/L portfolios
present a higher out-of-sample mean than the benchmark portfolios (with equally higher out-of-
sample standard deviation). It is interesting to notice that the most liquid EU/L portfolio, xI10 ,
has a higher out-of-sample mean than the benchmark portfolios, for two different risk aversion
levels (γ = 1 and γ = 5).

Given the time series of daily out-of-sample returns for each portfolio (two benchmark port-
folios and nine EU/L optimal portfolios), we computed three performance evaluation measures.
The out-of-sample utility, Û , defined as

Û =


(1 + µ̂)1−γ

1− γ
if γ > 1,

log(1 + µ̂) if γ = 1,

(31)

where µ̂ corresponds to the out-of-sample mean return. The out-of-sample illiquidity, Î, defined
as the averaged out-of-sample portfolio illiquidity. And, the certainty equivalent, ĈE,

U(ĈE) = EU(Rp,t+1), (32)

where EU(.) represents the expected utility defined in Equation (7). The certainty equivalent
can be interpreted as the risk-free rate that an investor is willing to accept in order to give up
a particular risky portfolio.

The results for these three performance evaluation measures are presented in tables 2 to 4.
The three EU/L optimal portfolios (xI10 , xI50 and xI90) consistently have a lower illiquidity

level than the benchmark portfolios (xmv and xew), for any of the considered risk aversion
levels. A possible explanation for this result is that liquidity has a persistent nature, thus the
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Table 1: Out-of-sample descriptive statistics

Descriptive statistics µ̂ σ̂ ξ̂ κ̂

Benchmark portfolios

xmv 0.00072746 0.0068 -0.0407 3.3707
xew 0.00069979 0.0064 -0.1181 3.5758

EU/L portfolios

γ = 1

xI10 0.00077098 0.0085 0.2823 4.5101
xI50 0.00075402 0.0084 0.2350 4.5533
xI90 0.00077375 0.0085 0.2836 4.5155

γ = 5

xI10 0.00074280 0.0075 -0.0281 3.4576
xI50 0.00074384 0.0075 -0.0260 3.4545
xI90 0.00074411 0.0075 -0.0258 3.4547

γ = 10

xI10 0.00070052 0.0073 -0.2337 3.7339
xI50 0.00071437 0.0073 -0.2407 3.7289
xI90 0.00070040 0.0073 -0.2340 3.7342

This table reports the out-of-sample mean (µ̂), standard deviation (σ̂), skewness (ξ̂) and kurtosis (κ̂) for each

portfolio. The benchmark portfolios, xmv and xew, refer to the minimum variance and equally weighted portfolios,

computed using daily data. The three portfolios xI10 , xI50 and xI90 , denote the optimal expected utility/liquidity

portfolios considering percentiles 10, 50 and 90 of the overall illiquidity spectrum across all stocks, and are

computed using intraday data. For the computation of the EU/L optimal portfolios we considered three different

levels of risk aversion: γ = 1, γ = 5 and γ = 10.
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most liquid stocks ex-ante tend to be the most liquid ones ex-post. This result highlights the
robustness of the EU/L model in building reliably liquid portfolios.

The robustness of the EU/L model is also reflected in the out-of-sample utility, Û , results.
For γ = 1 and γ = 5, all the EU/L portfolios consistently show a significant (at a 5% significance
level) higher utility than the benchmarks portfolios. In turn, when the investor is more sensitive
to losses, the case of γ = 10, all the EU/L portfolios significantly underperform one of the
benchmark portfolios (the xmv portfolio) and slightly outperform the other (the xew portfolio).

In terms of out-of-sample certainty equivalent return, ĈE, for a low (γ = 1) and a moderate
(γ = 5) risk aversion levels, the three chosen EU/L portfolios present a competitive certainty
equivalent (compared with the benchmark portfolios). However, this pattern does not hold for
γ = 10: here the EU/L portfolios clearly underperform the benchmark portfolios in terms of
certainty equivalent return. We must note that both the utility and the certainty equivalent
do not take the liquidity into account; since the EU/L portfolios must also take into account
liquidity, it is not surprising that they underperform (or at least some of them underperform)
the benchmark portfolios.

Table 2: Out-of-sample performance evaluation for γ = 1

Performance measures Û Î ĈE

Benchmark portfolios

xmv 7.2719E-04 3.7452E-07 7.0416E-04
xew 6.9955E-04 4.7819E-07 6.7900E-04

EU/L portfolios

xI10 7.7069E-04 2.7257E-07 7.3464E-04
(0.0079)mv(0.0024)ew (0.0000)mv(0.0000)ew (0.0028)mv(0.0017)ew

xI50 7.5374E-04 2.7632E-07 7.1865E-04
(0.0204)mv(0.0021)ew (0.0000)mv(0.0000)ew (0.0049)mv(0.0191)ew

xI90 7.7345E-04 2.7253E-07 7.3742E-04
(0.0011)mv(0.0045)ew (0.0000)mv(0.0000)ew (0.0041)mv(0.0054)ew

This table reports the out-of-sample utility (Û), illiquidity (Î) and certainty equivalent (ĈE), for each portfolio. In

parenthesis are the bootstrap p-values of the difference between the respective performance measure of each EU/L

portfolio and the benchmark portfolios, denoted by the superscripts mv and ew, respectively. These bootstrap

p-values were computed according the classical methodology proposed by Efron and Tibshirani (1994).

In addition to the three aforementioned performance measures, we decided to include in this
out-of-sample analysis the Sharpe ratio and net Sharpe ratio. We point out the need to be
careful when using the Sharpe ratio when the returns are not normally distributed (the ratio
does not account for skewness or kurtosis). However, as the Sharpe ratio is one of the most
referenced out-of-sample performance evaluation measures in the literature and the net Sharpe
ratio allows the analysis of the impact of transaction costs, we decided to investigate how the
EU/L portfolios behave in these two performance evaluation measures comparatively to the
benchmark portfolios. The out-of-sample Sharpe ratio, Ŝ, is defined as
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Table 3: Out-of-sample performance evaluation for γ = 5

Performance measures Û Î ĈE

Benchmark portfolios

xmv -0.2492739 3.7452E-07 6.1095E-04
xew -0.2493014 4.7819E-07 5.9574E-04

EU/L portfolios

xI10 -0.2492586 3.1594E-07 6.0192E-04
(0.0075)mv(0.0030)ew (0.0000)mv(0.0000)ew (0.0524)mv(0.0918)ew

xI50 -0.2492575 3.1595E-07 6.0298E-04
(0.0051)mv(0.0000)ew (0.0000)mv(0.0000)ew (0.0599)mv(0.0353)ew

xI90 -0.2492573 3.1596E-07 6.0325E-04
(0.0049)mv(0.0000)ew (0.0000)mv(0.0000)ew (0.0847)mv(0.0141)ew

This table reports the out-of-sample utility (Û), illiquidity (Î) and certainty equivalent (ĈE), for each portfolio.

In parenthesis are the bootstrap p-values of the difference between the respective performance measure of each

EU/L portfolio and the benchmark portfolios, denoted by the superscripts mv and ew, respectively. These

bootstrap p-values were computed according the classical methodology proposed by Efron and Tibshirani (1994).

Table 4: Out-of-sample performance evaluation for γ = 10

Performance measures Û Î ĈE

Benchmark portfolios

xmv -0.1103863 3.7452E-07 4.9432E-04
xew -0.1104138 4.7819E-07 4.9142E-04

EU/L portfolios

xI10 -0.1104130 3.4059E-07 4.3180E-04
(0.0000)mv(0.2212)ew (0.0000)mv(0.0000)ew (0.0000)mv(0.0000)ew

xI50 -0.1104131 3.2626E-07 4.3166E-04
(0.0000)mv(0.3077)ew (0.0000)mv(0.0000)ew (0.0000)mv(0.0000)ew

xI90 -0.1104130 3.2626E-07 4.3171E-04
(0.0000)mv(0.2402)ew (0.0000)mv(0.0000)ew (0.0000)mv(0.0000)ew

This table reports the out-of-sample utility (Û), illiquidity (Î) and certainty equivalent (ĈE), for each portfolio.

In parenthesis are the bootstrap p-values of the difference between the respective performance measure of each

EU/L portfolio and the benchmark portfolios, denoted by the superscripts mv and ew, respectively. These

bootstrap p-values were computed according the classical methodology proposed by Efron and Tibshirani (1994).
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Ŝ =
µ̂

σ̂
. (33)

The out-of-sample net Sharpe ratio6 (this is the out-of-sample Sharpe ratio after transaction

costs), Ŝnet, is given by

Ŝnet =
µ̂tc
σ̂tc

, (34)

where µ̂tc = µ̂− tc is the average of the out-of-sample returns (µ̂) minus the proportional trans-
action costs (tc), and σ̂tc is the standard deviation of the out-of-sample returns after transaction
costs. We set the proportional transaction costs equal to 50 basis points per transaction (as
commonly assumed in the literature). Thus the cost of a trade over all stocks is defined as

tc =

#periods∑
t=1

0.5%

N∑
i=1

(∣∣∣xi,t+1 − xhi,t
∣∣∣) , (35)

where xhi,t and xi,t+1 are the portfolio weights before and after rebalancing at day t+ 1, respec-

tively. Thereby, xhi,t, can be computed as

xhi,t = xi,t−1
1 + ri,t
1 + rp,t

. (36)

Table 5 shows the results for these two additional performance evaluation measures, the
Sharpe ratio (Ŝ) and the net Sharpe ratio (Ŝnet). Regarding the Sharpe ratios, we can observe
that it is for a moderate risk aversion level (γ = 5) that the EU/L portfolios achieve the highest
values. However, for the different risk aversion levels the benchmark portfolios always outperform
the EU/L portfolios. As we noticed for the utility and the certainty equivalent measures, this
is not surprising, since the EU/L portfolios must also take into account liquidity and higher
moments.

When we take into account the transaction costs (by computing the net Sharpe ratio), we
observe that, all the EU/L portfolios are not able to beat the two benchmark portfolios. This was
somehow expected, since the EU/L portfolios present a higher turnover than the benchmarks
(see Table 6). It is well-known in the literature that xmv and xew present a much lower turnover
than other alternative strategies (see, e.g, DeMiguel et al., 2009).

4 Conclusions and Future Research

This paper presents a new methodology for portfolio choice. We suggest that the investor
may built her portfolios according to the utility maximization criteria, but, at the same time,
taking into account a desired level of liquidity. Hence, in this framework, the investor will
make her choices in the expected utility-liquidity space. Assuming that the investor has CRRA
preferences, we have showed how to incorporate parsimoniously the portfolio’s higher moments
(skewness and kurtosis) in the expected utility function. The proposed EU/L model allows
the investor to identify the portfolios which have the maximum expected utility among all that

6When the numerator was negative, the ratio was refined in order to achieve a correct rank of the portfolios.
In this paper we used the methodology proposed by Israelsen (2005).
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Table 5: Out-of-sample Sharpe ratios and net refined Sharpe ratios

Sharpe ratios Net refined Sharpe ratios

Benchmark portfolios

xmv 0.103175 -6.9389E-05
xew 0.105303 -5.1516E-05

EU/L portfolios

γ = 1

xI10 0.086226 -7.8601E-04
(0.2713)mv(0.3219)ew (0.0010)mv(0.0010)ew

xI50 0.085486 -1.1954E-03
(0.2627)mv(0.3189)ew (0.0010)mv(0.0010)ew

xI90 0.086568 -8.0057E-04
(0.2591)mv(0.3291)ew (0.0010)mv(0.0010)ew

γ = 5

xI10 0.095220 -2.8132E-04
(0.2855)mv(0.5435)ew (0.0010)mv(0.0010)ew

xI50 0.095366 -2.8126E-04
(0.3095)mv(0.5525)ew (0.0010)mv(0.0010)ew

xI90 0.095402 -2.8065E-04
(0.2933)mv(0.5559)ew (0.0010)mv(0.0010)ew

γ = 10

xI10 0.092137 -1.6135E-04
(0.2130)mv(0.3673)ew (0.0010)mv(0.0010)ew

xI50 0.094073 -2.5132E-04
(0.2649)mv(0.4453)ew (0.0010)mv(0.0010)ew

xI90 0.092108 -1.6095E-04
(0.2175)mv(0.3703)ew (0.0010)mv(0.0010)ew

This table reports the out-of-sample Sharpe ratio (Ŝ) and net Sharpe ratio, (Ŝnet), for each portfolio. Note that,

for the net Sharpe ratios case, the presented values refer to the refined ratios according to the Israelsen (2005)

methodology. In parenthesis are the bootstrap p-values of the difference between the respective performance

measure of each EU/L portfolio and those of the benchmarks: the mv portfolio and the ew portfolio, in the first

and second parenthesis, respectively. These p-values were computed according the robust methodology, developed

specifically for the Sharpe ratio, of Ledoit and Wolf (2008).
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Table 6: Portfolio turnover

Turnover

Benchmark portfolios

xmv 0.008462
xew 0.006747

EU/L portfolios

γ = 1

xI10 0.072378
xI50 0.111241
xI90 0.073724

γ = 5

xI10 0.029733
xI50 0.029729
xI90 0.029666

γ = 10

xI10 0.017698
xI50 0.027296
xI90 0.017653

This table reports the portfolio turnover for each portfolio. The portfolio turnover is computed according the

following equation: turnover = 1
#periods

∑#periods
t=1

∑N
i=1

(∣∣xi,t+1 − xhi,t
∣∣).
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provide at least a certain expected level of liquidity. The investor can thus directly analyse the
efficient trade-off between expected utility and expected liquidity.

In this paper we also consider high frequency data for the estimation of the inputs for
the optimization model. Firstly, the transaction data was synchronized by the all refresh-time
method, and then we computed the daily higher moments using realized estimators. The daily
liquidity metrics were computed by applying the intraday Amihud illiquidity ratio.

The empirical application, based on fourteen stocks from the CAC 40 Index, showed a
positive relationship between the expected utility and the expected illiquidity.

The analysis of the out-of-sample performance, for different levels of risk aversion, revealed
that the EU/L portfolios are usually competitive with the minimum variance and equally
weighted portfolios. These two benchmarks were always beaten in terms of liquidity, but they
sometimes performed better in terms of utility and certainty equivalent, and they were always
better in terms of Sharp ratio. This shows that, in order to achieve a higher liquidity, the EU/L
portfolios must sometimes sacrifice other performance measures. Finally, the results for the net
Sharpe ratio show that the EU/L portfolios tend to exhibit a higher turnover than the two
benchmark portfolios considered.

The sample used in the paper already comprises a period of sharp decreasing prices (the
dot-com bubble in 2000). As future work, it would be interesting to test the proposed model in
face of more recent “black swan events” (the global financial crisis (2008-2009) and the sovereign
debt crisis in Europe (2011)). Although it is not easy to have access to reliable intraday data,
as future work we would like to test the informational impact of using high frequency data in
comparison with using daily data, especially after these events. We are also interested in refining
the computation of trading costs and to test the model’s robustness to other utility functions.
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