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Abstract

A numerical method for evaluating real time path integrals by analytical continuation of the coordinate space variables
into the complex plane is presented. With this method. a Monte Carlo gaussian sampling function around the classical paths
is obtained. The function to be sampled is smooth near the stationary path and good Monte Carlo convergence is expected.
© 1998 Elsevier Science B.V.

1. Introduction

Path integrals have been successfully applied for the last three decades to scattering theory [1], where the
semiclassical approximation leads to an appealing description of the scattering processes in terms of classical
trajectories. In order to go beyond the semiclassical approach in this formalism, it is necessary to be able to
perform the numerical evaluation of a real time path integral. An efficient method to carry out such a calculation
should profit from the success of the semiclassical approach and build the quantum formalism upon the
semiclassical results. For the method to be useful, it should also allow for the possibility of including an
appreciable number of time slices in the calculation. Unfortunately, although several methods for the numerical
evaluation of real time path integrals have been developed [2-16]. their application to long time propagation is
still problematic due to loss of efficiency of the Monte Carlo sampling of the oscillatory integrand as the
dimensionality of the integral increases [17].

In this Letter, we present a method for the numerical evaluation of a real time path integral which is based on
the analytical continuation of the action integral into the coordinate complex plane. The idea of going into the
coordinate complex plane is not new. It is the basis of the coordinate rotation formalism [11,12] where analytical
continuation is performed in such a way that the imaginary kinetic exponent becomes real and negative, thus
privileging the straight line trajectories. Analytical continuation was also used by Mak and Chandler [9,10], in
the context of the stationary phase Monte Carlo {(SPMC) method developed by Doll et al. [5,6], in order to
obtain contributions from the regions around complex points of stationary phase by crossing them along the path
of steepest descent.

Our method assumes that the stationary points are real and sufficiently far apart {from each other, although it
can easily be extended to accommodate complex stationary points as will be shown in Section 3. The contour of
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integration is then changed so that each stationary point is crossed along the path of steepest descent used in the
semiclassical approximation and we do not need the SPMC method to obtain convergence. The emerging
procedure requires the sampling of the paths around the classical trajectories with a gaussian distribution
function. It is not as general as the previously developed stationary-phase-based methods [4-10], as it demands
the stationary paths to be known and far apart from each other, but the numerical effort that it requires is lighter
and the Monte Carlo convergence expected to be better. Our assumptions may seem too restrictive for bound
state problems, as there will normally be many real classical trajectories connecting two end points in a given
time interval, depending on the number of times the particle bounces off the potential walls. However, for
scattering problems, the classical trajectories will generally be very few [18] and often well apart from cach
other. Even for bound state problems it seems reasonable, on physical grounds, that only the low energy
classical trajectories will contribute to low energy phenomena, and this should restrict the real classical paths to
a manageable number. Complex classical trajectories generally correspond to highly damped phenomena and
should only be used whenever there are no real classical trajectories available.

We note that, contrary to Mak and Chandler [9], we do not need to include a filter function in the integral as
proposed by the SPMC method [5]. As long as the propagator is not too far from the semiclassical limit, the
integration contour that we choose, a) provides the gaussian distribution function and b) automatically
climinates the oscillations of the sampled function in the range of the distribution function. In this way, we
avoid the free parameter € used in the SPMC method that controls the efficiency of the filter and the Monte
Carlo convergence. In our method, Monte Carlo convergence is controlled by the size of the second derivative
of the action as compared to the higher order terms. Consequently, if the semiclassical approximation is
reasonable, the effect of the higher order terms must be small. and the function that is being sampled by Monte
Carlo must be smooth around the stationary paths. This feature of our method will hopefully allow for accurate
long time propagation calculations for “‘sufficiently semiclassical’” problems such as the ones that often arise in
studying scattering processes.

The method is described in Section 2, first in its one dimensional version, and then in the general form, for a
multi-dimensional integral. We present the results from several numerical tests in Section 3 and a discussion of
the method in Section 4.

2. The method

Basically, our method consists in applying the technique used in the calculation of the semiclassical path
integral to the evaluation of the exact expression.
A path integral can be written as a multi-dimensional integral in configuration space [19.20]

i
K=C,\,fdr|"'fdr/ve"p[gs(’w--”rv)}v (n

We start by applying our method to the calculation of a one dimensional integral for the sake of clarity. The
multi-dimensional case will be treated subsequently. In the remainder of this Letter, the 1 /A factor in the
exponent and the constant factor C, will be suppressed.

In one dimension, our problem consists in evaluating the integral

K= f:vdx expliS( v)]. (2)

where S(x) is a real function of the coordinate x. We assume that the function S(x) describes a system for
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which the semiclassical approximation provides a reasonable result. We also assume, for the moment, that there
is only one stationary point x, such that

§(x)=5(x)=0 (3)
and

S:(x,) =5"(x)>0. (4)
Expanding S around the stationary point we obtain

S(x)=8(x) +18(x)(x—x) +5,, (x). (5)
A first estimate for the value of K is provided by the semiclassical approximation, obtained by neglecting
S,.(x),

K=K =explis(x)] [ daexp[if8i()(x—x). (6)

Evaluating this integral, we obtain

o V2

K. = ( - -) expli(S(x,) + 7/4)]. (7)
RHENY

If the semiclassical approximation is reasonable, S,(x,) must be large enough for S,, (x) to be small in the

region which provides most of the contribution to the integral K, near x . Consequently, the part of the

integrand that is left out in the semiclassical calculation should be close to unity around x_, thus exhibiting no

oscillations in that region.

We are now going to apply to the evaluation of the exact integral K, defined in Eq. (2), the same technique
that was used to calculate the semiclassical integral in Eq. (6). Basically, this corresponds to a deformation of
the integration contour in the complex plane in order to turn the purely imaginary quadratic exponent into a
negative real one and thus obtain a gaussian that can be used as a probability distribution function in a Monte
Carlo calculation.

We start by changing variables in Eq. (2)

X—=>y=x—ux, (8)
and analytically continue y into the complex plane. Assuming that S(x) is analytic in the regions A, and A,

shown in Fig. I, we use Cauchy’s theorem to deform the contour of integration and obtain

K= fﬁRd)’ exp[iS(x, + )] +] dyexp[iS(x, +v)] + chxp(iﬂ”) dyexp[iS(x, +v)]
. CLR)

~Rexplim/4)
+/, dvexp[iS(x, +v)] + fxd_v exp[iS(x, +v)]. (9)
ColR) R

Assuming that the contributions from C(R) and C,(R) vanish for large values of R, the integral becomes

_ [Ryexplim/d)

K dyexp[iS(x, +3)]. (10)

= Ryexplim 74}
where R, is some suitable large value of R. We now use expression (5) for S and change variables

y—z=yexp(—im/4), (11)
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Fig. 1. Deformation ol the contour of integration when S50 ) > 0.

to obtain

K =exp[i(S(x,) + Tr/4)][:’ dzexp(—3S(x,) 27 expliSy, (x, + zexp(im/4))]

= K.\ch‘) dzp(z)expliSy, (x, + zexp(im/4))] (12)
R,

where p(z) is given by

Sy(x,) L 5
p(:):(T) exp[ =38 (x) 7] (13)
The integral in Eq. (12) can now be evaluated by the Monte Carlo method
1 Mwe
K=K, 3 expliS,. (x, + 7 explim/4))]. (14)
NMC k=1

where the values of 7, are distributed according to the normalized gaussian probability function p(z).

The function that is being sampled is no longer just a phase, due to the extra 7/4 phase that is being added
to z. It is the exponential of a function of third order in z but, for symmetry reasons, the first term to contribute
to the integral is of fourth order. Therefore, this function must be close to unity near the stationary point and, as
long as S,(x,) is large enough {as we assume it should be for the semiclassical approximation to be reasonable)
the Monte Carlo convergence should be good.

Al this point, we note that the rotation of the integration path by the angle 7/4 has turned the imaginary
quadratic exponent into a negative real term. Had we chosen another rotation angle, the quadratic terms in the
exponent would contain an imaginary part which would cause the Monte Carlo calculation to loose efficiency
for two reasons: the gaussian would be wider and the smoothness of the function that is being sampled around
the stationary point would be somewhat decreased. In some cases, it may be necessary to use a different rotation
angle in order to obtain a negligible contribution from the contours C,(R) and C,(R). This does not cause the
method to break down as the second example in Section 3 illustrates. However, whenevey the angle 7 /4 can be
used, it provides a better convergence.

In this derivation, we have assumed that S,{ x,) is positive. For a negative value of 5,( x ), we can proceed in



442 F.S. dos Aidos / Chemical Physics Letters 285 (1998) 438—448

a similar way, by deforming the contour as shown in Fig. 2. The change of variables y — 7 is now made with a
positive instead of a negative phase and the final result is

K =expli(S(x,) — 77/4)]/_[:' dzexp(—31S,(x )z ) exp[iS,, (x, + zexp(—im/4))]

NM(‘

= KNL 3 expliSo. (x,+z exp(—im/4))]. (15)

MC k=]

where now the semiclassical result is

o 1/2
K.= - exp|i(S(x,) —7/4 16
i) ettt - mra) (16)
and the probability distribution for the Monte Carlo points is given by
RNESTES , :
)= — — 318, (x )22 17
p(2) =525 ] el = s (o] ()

If the function S has several stationary points then, as long as they are well apart from each other, we can
proceed as above and deform the contour according to either Fig. 1 or Fig. 2 around each stationary point,
depending on the sign of §,. All that is required is that the contributions from the contours C(R,) and C,(R,)
bz negligible for each stationary point. The final result will be the sum of the contributions from all stationary
points.

For the multi-dimensional case (N, dimensions) with one stationary path x, for S we obtain, using an
obvious matrix notation,

K= i ---fidxexp[iS(x)]

I

exp[iS(x\_)]fi -~-fjxdxexp[iﬁ(x—x&)T-Sz(x\)~(x—xb‘)+53,’(x))]

=exp[iS(x\)]fiZ e fi{dyexp[i(-i:y7 “Sy(x)-y+ S, (x, +y))]. (1%)

Fig. 2. Deformation of the contour of integration when S,(x ) <0.
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S, is a real symmetric square matrix whose elements are the second derivatives of S(x) with respect to the
variables of integration x, at the stationary path x . It can be diagonalized by an orthogonal transformation O

A=0"-§,.0, (19)
wherz A is the diagonal matrix with the eigenvalues of S.. Then

yT~SQ-y=y7'-O-OT-SZ-O-O"'~y:(0r~y)/l A (07 y). (20)
The change of variables with unit Jacobian

y—y =0"y (21)

in the integral in Eq. (18} decouples the gaussians. The contour of integration can now be deformed for each
variable y;, according to either Fig. 1 or Fig. 2, depending on the sign s, of the corresponding eigenvalue A..
Changing variables once more.
N,
vio g =yexp(—ism/4) = v= ) 0,z explis;m/4).
i=1

we finally obtain for the multi-dimensional case

N,
Ro) Rox, . 5 .
K= K.\cf < dzy p(2) f Sdzy, PN,,( 3&1,)6"1)['5“ («‘}, + Z 0,3 CXP(I‘V/T"/A')”
- Pes )

il - Rl)\‘, /

1 Nuc [ Ny
=K Y exp[i&, X+ 20,7, exp(is,w/‘l))]. (22)

N
Nuc o j=1

where K is the semiclassical result

S, | al
det(v—;) cxp{i(S(xi\) + ) s,7'r/4)] (23)

i=1
and z,, are values of the ith variable distributed according to the normalized gaussian probability function

K.xcz

PSS o
pA =(—) cxp[—;b\,\:,‘], (24

If there are several well separated paths, then. as in the one dimensional case, provided that the contributions
from the contours C,(R,;) and C,,(R,,) are vanishingly small, the final result will be the sum of contributions
like Eq. (22) from all stationary paths.

3. Numerical results

We have tested our method, by calculating the following three one-dimensional integrals for several values of
the parameter «
2 R

mm:f@m+(f+T”

-
-

o

lz(a)=f77vdxexp[i(a.~\i2—'+-‘l‘—0”, (26)

L(a)=Ai(—« :=L ldxex i/a/.\'A;’i . 27
(@) =Ai(-a) = — [ p[ 2” (27)

v
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Fig. 3. Integration contour for the evaluation of /5(a ) for positive values of .

For all these integrals, the semiclassical approximation should lead to good results for large values of the
parameter «, while for small values of’ o it is expected to break down. All calculations were made with 5000
Monte Carlo points, using the Box-Muller method for sampling the gaussians. In all cases we have symmetrized
the sampled function in order to improve convergence:

exp[iSy, (x, + sexp(im/4))| +exp[iS;, (v, - zexp(im/4))]
N
5 .

<

exp[iS; (x otz exp(iﬁ/4))]
(28)

Only the real stationary point x = 0 was used in the evaluation of /(«) and 7,(a). All complex stationary
points were discarded.

When calculating /,{ @). the rotation angle mentioned in Section 2 and represented in Fig. | cannot be larger
than 77/10. otherwise the contributions from the contours C,(R) and C,(R) will not vanish. We have used the
maximum value 7/10. Unlike 7 /4, this rotation angle does not totally convert the pure imaginary quadratic
exponent into a negative real term. There is still an imaginary quadratic component left. This imaginary term
will be added to S, in the exponent of the sampled function, while the negative real quadratic term alone will
make up the gaussian distribution function.

The Airy function, integral 7,(«). was calculated for positive and for negative values of .

For positive values, there are two real stationary points

-

y,=vVa and x = —Va (29)

s

and the integrals along the contours C.. and C,. do not vanish. Therefore, we have used the contour
represented in Fig. 3 taking proper care to truncate the integral around x__ for -> V2 « and the integral
around x , for z < - V2 a. The symmetry properties of the integrand have been used to write the final result
as a Monte Carlo calculation around only one stationary point. In the semiclassical calculation we have also
used the integration contour in Fig. 3. which imposes the above mentioned truncations. The results obtained in
this way are better than the values provided by the standard semiclassical expression for small values of «. For
large values of «, the results are the same.

Fig. 4. Integration contour for the evaluation of /5(cr) for negative values of e,
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Table 1

Results of the evaluation of the integral defined in Ey. (25). For cach value of the constant «. the real values arc shown on the first line and
the imaginary values on the second. Column § shows the semiclassical results (Eq. (7)), column MC the values obtained by the method
described in this Letter (Eq. (14)), column E the exact values. column AS the semiclassical deviation £ — S| and column AMC the
statistical deviation in the Monte Carlo calculation

« S MC 15 AS AMC
10 0.5605 0.5643 0.5645 0.0040 0.0002
0.5605 0.5564 0.5561 0.0044 0.0002
5 0.7927 0.8113 08117 0.0190 0.0006
0.7927 0.7679 0.7663 0.0264 0.001
1 1.7725 1.7149 1.7089 0.0636 0.01
1.7725 1.1049 1.1021 0.6704 0.02
0.5 2.5066 2.0343 2.0024 0.5042 (.03
2.5066 1.0995 1.0845 1.4221] (.03
0.1 5.6050 2.2475 2.2898 3.3152 0.08
5.6050 1.0174 1.0114 1.5936 0.07

For negative values of «. the two stationary points are complex

v, =iyla|l and \‘\,:Ai\/\’a_!. (30)

A semiclassical evaluation is still possible if the contour is deformed according to Fig. 4. It is clear that the
upper stationary point does not contribute to the integral and that the contribution from the lower stationary
point can be evaluated in a similar way to the one described in Section 2. In this case. however. the contour
used in the semiclassical approximation corresponds to a translation instead of a rotation. Changing variables

vz =x+ivlal (31)

wce obtain

- [ :7‘ i 1 Nuc [
I(a) =I(a) [ dzp(o) exp( —i= ) =1 (a)—— ¥ exp| i (32)
- \ 3 Nuc L \
Table 2
Results of the evaluation of the integral defined in Eq. (26). The symbols have the same meaning as in Table |
(¥ S MC I AS AMC
10 (.5605 (1.5507 0.5584 0.0021 (1LO08
0.5605 0.5617 0.5570 0.0035 0.005
5 0.7927 0.8002 0.8104 0.0177 0.01
0.7927 0.8742 (1.566] 0.0734 0.005
| 1.7725 2.0453 2.020] 0.2476 0.03
1.7728 0.7843 0.7994 0.9731 .02
0.5 2.5066 2.1587 2.2086 0.29%80 0.04
2.5066 16126 0.6146 1.8920) 04
0.1 5.6050 2.2783 2.3378 3.2672 0.1

5.6050 0.4228 (13269 5.1781 0.09
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Table 3
Results of the evaluation of the integral defined in Eq. {(27). The symbols have the same meaning as in Table 1. but now all values are real
¥ N MC K AS AMC
10 0.03921 0.04011 0.04024 0.00103 0.00007
5 0.3497 0.3507 (.3508 0.0011 0.00007
| 0.547s 0.5362 0.5356 0.0119 0.001
0.5 0.5051 0.4769 0.4757 0.0294 0.002
0.1 04627 0.3772 0.3808 0.0819 0.003

where the distribution function for the Monte Carlo points z, is

la' , "
p(z)= o= exp(— lal z ) (33)
and
ST % S T ! S e v
L (a)= 277L‘)(p(—%;al )fld:exp(f\/[—c—xlz“)=EWCXp(M?(yl ) (34)

is the semiclassical expression.

The results for the calculations can be found in Tables 1-4, where we show. for the real and the imaginary
parts, the semiclassical results S, the results using the method described in this Letter, MC, and the exact values
£, as well as the semiclassical deviation AS =15 — E| and the statistical error AMC obtained by the Monte
Carlo calculation. Naturally, the Monte Carlo result will depend slightly on the seed of the random number
generator. The same seed was used in all cases. We have also checked, in all cases. that the Monte Carlo results
converge to the exact values as l/\m as Ny increases.

The numerical tests that we chose include a simple illustration of the method with /() (only one real
stationary point and a rotation of 7/4), a case where a rotation angle significantly smaller than 7 /4 is required,
a case with two contributing real stationary points and a case with two complex stationary points where one of
them does not contribute to the integral. We find that discarding the complex stationary points whenever real
stationary points are available seems entirely justified. We also find that the method does not break down if a
rotation angle ditferent from /4 is used, although Monte Carlo convergence is somewhat slower. This may be
necessary for potentials that grow faster than x” at infinity.

The results in Tables I-4 seem to indicate that this method efficiently samples the regions which provide the
main contribution to the integrals. The quantum correction with a modest 5000 points Monte Carlo calculation
generally decreases the semiclassical error. As expected, the statistical error increases as the parameter «
decreases and the semiclassical approximation becomes poorer, although the correction still improves signifi-
cantly the semiclassical result. Caution should be exerted, however, whenever this method 1s used to describe a
system far from the semiclassical regime.

Table 4
Results of the evaluation of the integral defined in Eq. (27) for negative values of «. The symbols have the same meaning as in Table |, bul
now all values are real

o S MC E AS AMC
=10 1.1083x 107 11052 %10 " Fo4sx 10" 0.0035x 107" 0.0003x 10 10
-5 10930 1074 10845 < 107 * 10834 % 10 0.0096 % 107" 0.0006 % 107+
-1 0.1448 0.13359 0.1353 0.0095 0.0004
-05 0.2650 0.2317 0.2317 0.0333 0.001

—.1 0.4912 (.3293 0.3292 0.1620 0.004
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4. Discussion

The method developed in this Letter allows for the Monte Carlo calculation of a real time path integral, by
sampling the paths around the classical trajectories with a gaussian distribution function. The final expression
(Eq. (22)) gives the quantum path integral as the product of the semiclassical result with an integral which can
be evaluated by the Monte Carlo method. Monte Carlo convergence is expected to be good if the semiclassical
approach is reasonable, as the function that is being sampled varies smoothly around the stationary path.

It is instructive, at this point, to note that the SPMC, being a very flexible method, can provide a filter
function which resembles the gaussian distribution function that we obtained (expression (13)). If we take the
probability distribution P(y) in the filter function D(x) to be a gaussian and expand the exponent of the
integrand in Eq. (6) of Ref. [5] around the stationary point, keeping only the quadratic terms, then. a choice of

I =1

e (

T 285,(x)

(9]
N
~—

would produce the appropriate form for D(x). There are two basic differences between our method and this
formulation of the SPMC method: the rotation and the absence of the second order term in our sampled
function. Due to the rotation, we evaluate the sampled function at the complex points v + z expliw/4) while in
the SPMC method the sampled function is evaluated at the real points x_+ . The second order term in the
exponent is, in our method, absent from the sampled function, as it was used to obtain the distribution function.
Therefore, only the non-semiclassical terms have to be sampled, thus exhibiting a non oscillatory behaviour near
the semiclassical regime. In the SPMC method, the whole function S(x) has to be sampled and the presence of
the second order terms will slow down the Monte Carlo convergence.

Our method is more restrictive than the SPMC and other methods that also use the idea of sampling around
the classical trajectories [4-8] in so far as it requires that the stationary paths be previously known and well
apart from each other. Still. it presents several performance advantages. It does not require the use of a Markov
chain, as the gaussian probability distribution can be generated by the Box-Muller method. In this way, it avoids
the evaluation of the correlation times [21] and of the normalization. In the multi-dimensional case, our method
only requires the diagonalization of a matrix per stationary path. After this diagonalization is performed, the
matrix O is built once and for all and used for all Monte Carlo points in Eq. (22). Finally, the function that is
being sampled is non oscillatory in the neighbourhood of the stationarv point (it is of fourth order), where the
Monte Carlo points lie. Therefore Monte Carlo convergence is expected to be good.

In a scattering problem, the classical trajectories are often few and well apart from each other [18]. In view of
its expected good performance, especially for “"near semiclassical’” systems, and of its light computational
demands, this method should provide an appropriate tool to obtain quantum corrections to the semiclassical
results for scattering processes. Work in this direction is now in progress.
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