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Abstract 

 Project volatility is an essential parameter for real options analysis, and it may also be 

useful for risk analysis. Many volatility estimation procedures only consider the volatility in 

the first year of the project. Others consider that different years may have different values of 

the project volatility. This paper takes into account that volatility may change not only with 

time but also with the state of the project. Two possible definitions for the project volatility are 

considered, the log-variance and the variance of the project value, and two simulation-based 

procedures are proposed for estimating state-dependent volatility: two-level simulation and one 

and a half level simulation. Computational experiments show that both the procedures perform 

better than the method proposed by Copeland and Antikarov, and that the one and a half level 

simulation procedure leads to the most accurate estimations of project volatility. 
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1. Introduction  

Despite having enjoyed some significant success in academe, the adoption of real 

options analysis by firms has been quite slow (e.g., Triantis, 2005, Block, 2007, Baker et al., 

2011). Since real options models have been around for some decades, and they allow 

practitioners to avoid some severe drawbacks of the classical discounted cash flows 

methodologies (see, e.g., Trigeorgis, 1993), such a slow rate of adoption may seem surprising. 

However, it may be explained by the mathematical sophistication that is required to understand 

and use most real options models (Baker et al., 2011). 

Mun (2002, p. 142) points out that it is advantageous to use lattice approaches in 

management discussions, since they are intuitive and easy to understand. Brandão et al. (2005, 

p. 85) point out that binomial decision trees may have even more intuitive appeal. The quality 

of results obtained with lattice or decision tree approaches depends, among other things, on an 

accurate modeling of underlying asset volatility. If there is only one significant source of 

project risk and that source of risk is a traded asset, then such an asset may be used as the single 

underlying asset of the project, and market data may be used for estimating its volatility (e.g., 

Smit, 1997). However, most real life projects have several sources of risk, and some of them 

are not traded. If many risk sources are simultaneously modeled, the problem becomes 

multi-dimensional, and the use of lattices or decision trees may become impractical. Copeland 

and Antikarov (2001) propose using the project without options as the underlying asset of the 

analysis in a lattice-based approach. Such an approach may lead to some sub-optimal decisions 

(if the optimal decisions would depend on the values of all state variables), but it allows the 

problem to remain single-dimensional. This is, therefore, a useful approach, since it provides a 

simple way of incorporating risk and managerial flexibility in the analysis, allowing a more 

accurate valuation than traditional discounted cash flows methodologies. 

Copeland and Antikarov’s (2001) approach requires an estimate of the project volatility, 

as is also the case with other real options models. The authors propose a procedure for 

estimating project volatility based on Monte Carlo simulation. In fact, Monte Carlo simulation 

models have been widely used in project valuation, since they provide an accessible way to 

incorporate the impacts of random events and random variables in project value, as well as 

complex relations between variables that often occur in investment projects. Such issues, which 

might become intractable by other methods, are easily handled by Monte Carlo simulation, and 

transparently translated into statistics concerning the project outcomes, like the project value 

or the volatility. 
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The volatility estimation procedure proposed by Copeland and Antikarov (2001) has 

since been shown to grossly over-estimate the true project volatility (Brandão et al., 2012, 

Godinho, 2006, Smith, 2005). Other authors have also addressed the estimation of project 

volatility, either using Monte Carlo-based procedures (e.g., Brandão et al., 2012, Fleten et al., 

2010, Godinho, 2006, Haahtela, 2011, Herath and Park, 2002, Ruhrmann et al., 2014) or 

performing analytical calculations based on a pre-defined model of the project (e.g., Costa 

Lima and Suslick, 2006a & 2006b, Davis, 1998). Nicholls et al. (2014) compare several 

methods for estimating volatility, emphasizing the difficulty of finding the best estimates.  

Given these difficulties, the authors suggest using the breakeven volatility, the minimum 

volatility that is necessary in order to justify the project, as a guidance for the decisions 

concerning the project.  

Analytical calculation of project volatility provides accurate results, but it is only 

applicable when the project fits the pre-defined underlying model (Godinho, 2006). Many real 

life projects have complex cash flow structures, which are not amenable to the analytical 

calculation of volatility. The analytical estimation of volatility may also be impractical for the 

development of software tools aimed at supporting capital investment decisions. Monte-Carlo 

based procedures, on the other hand, are more flexible, providing ways of estimating volatility 

whenever it is possible to build a Monte Carlo model of the project. 

Most procedures for volatility estimation only consider the first year volatility. 

However, the results obtained by other authors (e.g., Brandão et al., 2012) empirically show 

that volatility changes over time in many cases. So, a complete real options analysis must take 

into account the operational flexibility in the remaining years, and the way it affects the first 

year decisions concerning the project. Davis (1998) estimates the volatility in different years. 

Since the author uses an analytical procedure, it can only be applied to projects fitting his pre-

defined model. Brandão et al. (2012) propose procedures for estimating volatility in any year 

t. The main procedure proposed by the authors assumes that the analyst is able to write 

analytical expressions for the expected value of the cash flows occurring after t, conditioned 

on information available at time t. A second procedure proposed by the authors (Brandão et 

al., 2012, p. 647) relies instead on the ability to identify a set of variables that completely 

determine the project value such that the expected value of each variable at each time point can 

be reasonably estimated using just the previous value of that same variable. Haahtela (2011) 

proposes a procedure for estimating the volatility in different years, based on the residual sum 

of squares of a linear regression. The same author (Haahtela, 2007, 2012) considers the 
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separation between volatility and ambiguity (uncertainty for which no precise data is available) 

in the context or simulation-based estimation methods. 

Volatility may change not only with time but also with the state of the project. In the 

context of option valuation, several authors have considered different models that assume that 

volatility may be state-dependent. Examples of such models are the constant elasticity of 

variance model (see, e.g., Cox and Ross, 1976, and Beckers, 1980; Sbuelz, 2005, considers 

such a model in the context of real options) and models of the AutoRegressive Conditional 

Heteroskedasticity (ARCH) type (see, e.g., Kallsen and Taqqu, 1998). 

This paper recognizes that volatility may change with the state of the project, the state 

of the project being defined as the vector composed by the random variables on which the cash 

flows depend, like demand, prices of market-traded inputs and outputs, stochastic fixed costs, 

etc. This means that, in each year after starting the project, the best estimate of the future project 

volatility depends on time, and also on the remaining underlying stochastic variables. Failing 

to recognize the state dependence of volatility in real options analysis will lead to sub-optimal 

decisions, as well as an inaccurate valuation of the project. 

This paper discusses the estimation of volatility for any given project state, based on 

Monte Carlo models of the project. As far as the author is aware, there are no previous works 

on the estimation of state-dependent project volatility based on a simulation model of the 

project – the others works mentioned before, which consider state dependent volatility, assume 

a specific form for such volatility (constant elasticity of variance, ARCH type, etc.) This work 

analyses how volatility may be estimated by Monte Carlo simulation when no such specific 

form is assumed. 

The main contribution of this paper is to propose two procedures for estimating project 

volatility in a given state. These procedures are based on other methods proposed in the 

literature, sometimes in different contexts. The paper also presents computational tests to 

compare the performance of the proposed procedures in a small number of projects. 

Real options analysis is used as the main motivation for volatility estimation, but it must 

also be stressed that accurate estimation of state-dependent volatility may also be useful for 

several other purposes. For example, accurate volatility estimation may be useful for some 

kinds of risk analysis (e.g., calculation of value-at-risk or conditional value-at-risk), or even 

for defining an appropriate discount rate for projects undertaken by some private companies 

(particularly companies with few owners with undiversified portfolios and restrictions in the 

access to credit markets).  
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The paper is structured as follows. After this introduction, Section 2 defines the 

concepts of volatility that are used in the paper. Section 3 defines some simple projects for 

which it is possible to analytically estimate the volatility. Section 4 presents the procedures that 

can be used to estimate volatility in given project states, as well as some computational tests 

for comparing their performance. Finally, the conclusions are presented in Section 5. The 

Appendixes contains a mathematical result concerning one of the volatility estimation 

procedures and examples of the implementation of the procedures in Microsoft Excel, using 

the @Risk add-in. 

 

2. Concepts of project volatility 

Project volatility is a measure of the uncertainty over expected project returns. 

Volatility is usually defined as the variance, or standard deviation, of the project value (or of 

the logarithm of the project value). In this paper, variance is used as the measure for volatility 

(of course, if the standard deviation is necessary, it is only necessary to calculate the square 

root of the variance). This variance corresponds to changes in the expected project value that 

take place in a given period (usually in a given year). These changes may be due to the impact 

of the events occurring in that period both on that period’s cash flows and on the expected 

value of subsequent cash flows. The problem with some simulation-based volatility estimation 

procedures (e.g., the ones proposed by Copeland and Antikarov, 2001 and Herath and Park, 

2002) is that instead of capturing the impact of the events occurring in that period on the 

expected value of subsequent cash flows, they also incorporate changes in subsequent cash 

flows due to events occurring in posterior periods (see, e.g., Godinho, 2006). For the purpose 

of accurate volatility estimation these latter changes amount to random variability, and should 

not be considered as part of the variance of project value in the considered period.  

Several real options models assume that project value follows a geometric Brownian 

motion, and in this case the variance of the logarithm of project value is a convenient measure 

of volatility. This measure is hereafter termed the log-variance, and it is presented in Subsection 

2.1. 

In spite of being widely used, the log-variance has a very important drawback: it can 

only be used if the project value does not become negative. So, another measure is considered, 

which can be applied to all projects: the simple variance of project value. This measure has not 

been as widely used as the log-variance, but it may be very convenient, for example to 
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approximate the local project behavior by an Arithmetic Brownian Motion (ABM). This 

measure is simply termed variance, and it is discussed in Subsection 2.2. 

 

2.1.  The log-variance 

Let us consider an investment project with a known initial investment outlay F0 and 

future uncertain cash flows 
tF , t = 1,…,N, and a continuously compounded discount rate r. The 

expected value of the project at time t, 
tPV , is defined as the expected value of the cash flows 

that will occur after time t, discounted to time t. The value of the project is conditioned by the 

values, at time t, of the random variables on which the cash flows depend, like demand, prices 

of market-traded inputs and outputs, stochastic fixed costs, etc. The vector with these random 

variables will be termed the state of the project, and denoted by .tψ  The project value may be 

written as:1  

   

1

|
N

r s t

t s t

s t

PV E F e
 

 

  ψ ,        (1) 

where E(·) denotes the expected value. The net value of the project at time t, NPVt, is defined 

as the sum of the project value at time t with the time-t cash flow. By noticing that 

 |t t tF E F ψ , we may write: 

   
|

N
r s t

t t t s t

s t

NPV PV F E F e
 



    ψ       (2) 

Let kt be a random variable that represents the continuously compounded rate of return 

on the project between time t-1 and time t. Then: 

1
tk

t tNPV PV e           (3) 

From expression (3) it follows that: 

   1

1

ln ln lnt
t t t

t

NPV
k NPV PV

PV




 
   

 
      (4) 

In order to measure the uncertainty from time t-1 to time t, it must be acknowledged 

that 
1tψ  will be known at time t-1. Therefore, the relevant variance, which is denoted as 

 1t tLVar ψ , must be conditioned on 
1tψ : 

                                                           
1 In fact, 

tPV  is a function of 
tψ . In order to avoid notational clutter, this dependence is not represented 

explicitly. The same will be done for 
tNPV . 
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      1 1 1var | var ln |t t t t t tLVar k NPV   ψ ψ ψ ,    (5) 

where var(∙) is the variance and the second equality takes into account that 
1tPV 
 is completely 

determined by 
1.tψ  If a single value for the variance of the project value from t-1 to t was to 

be estimated, like it is done by Brandão et al. (2012) or Haahtela (2011), it would just be 

necessary to calculate the expected value of  1t tLVar ψ . This expected volatility is denoted 

as e

tLVar : 

      1 1var ln |e

t t t t tLVar E LVar E NPV  ψ ψ .    (6) 

By applying the law of total variance, it may be seen that if the variance of 
tk  is not 

conditioned on 
1tψ , an upward bound on e

tLVar  will be obtained. 

 It may be questioned whether  1t tLVar ψ  or e

tLVar  should be used when building a 

project value model. Let us consider real options models. A real options model usually intends 

to determine the optimal strategy (or at least a nearly optimal strategy) for managing the project, 

and to calculate the project value in case that strategy is followed. If the state variables can be 

observed, or if there is some observable information that allows conditioning the distribution 

of the state variables, then the use of e

tLVar  will result in a distortion of project behavior (since, 

when time t-1 is reached and state 
1tψ  is observed, the best estimate of its variance is 

 1t tLVar ψ ). To illustrate this, consider the decisions made at time t-1 in a project with an 

abandonment option that allows selling the project for a value 
AbV . Additionally assume that 

in the states 
1tψ  for which 

1t AbPV V  , we have   1

e

t t tLVar LVar ψ . If a project model uses 

e

tLVar  instead of  1t tLVar ψ , the variance of project value considered at time t-1 will be 

larger than the true variance whenever 
1 .t AbPV V   So, if the project reaches time t-1 with 

1 ,t AbPV V   the probability of the project value rising above AbV  again is over-estimated, 

therefore leading to an abandonment threshold that will be smaller than the true optimal 

threshold.  

Therefore, if the variance e

tLVar  is used on a real options model, the maximization of 

the project value will not be achieved. This means that the conditional variance should be used 

in real options models. A similar reasoning will apply to other uses of stochastic project value 

models, and  1t tLVar ψ  will provide a more accurate depiction of project behavior. 
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2.2.  The variance of project value 

The use of log-variance assumes that the project dynamics follows (3), at least 

approximately. This kind of dynamics may be appropriate for assets that are traded in capital 

markets, and whose values will never become negative. However, it will usually be less 

applicable to investment projects, whose value may become negative and may not have a 

lognormal distribution, and therefore it has been criticized by several authors (e.g., Wang and 

Dyer, 2010). When the project value may become negative, the expression (4) for calculating 

kt will not be correctly defined. Other measures of the project rate of return, based on ratios, 

might be used instead (see, e.g, Costa Lima and Suslick, 2006b). However, such measures will 

also become incorrectly defined when there is a strictly positive probability of the project value 

becoming negative.  

In order to avoid such drawbacks associated with measures of the relative change in 

project value, a measure of the absolute change in project value may be used: the unanticipated 

change in project value between time t-1 and time t, that is, the difference between the net value 

at t and the present value at t-1, compounded to t.  Such a measure may be particularly useful 

for some approximations of the dynamics of project value, e.g., when the local dynamics of 

project value is approximated by an Arithmetic Brownian Motion (ABM). Arithmetic 

Brownian motions have, in fact, been used by several authors to model the dynamics of cash 

flows or project values (e.g., Alexander et al., 2012, Bar-Ilan, 2000, Lahmann, 2013, Wolbert-

Haverkamp and Musshoff, 2014).  

The unanticipated change in project value between time t-1 and time t is denoted by 

.t  Assuming that the continuously compounded discount rate is r : 

1

r

t t tNPV PV e             (7) 

For the same reason that was presented in the previous subsection, the variance of 
t  

should be conditioned to 
1tψ . Since 

1tPV 
 is determined by 

1tψ  and 
tr  is known, this variance 

(denoted by  1t tVar ψ )2 may be defined as: 

     1 1 1| |t t t t t tVar var var NPVψ ψ ψ          (8) 

                                                           
2 In order to clarify the context in which the variance is being calculated, var(∙) is used for the variance of a 

random variable and Var(∙) is used specifically for the variance of the value of a project. 
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The expected variance between time t-1 and time t is denoted by 
e

tLVar  and defined as: 

     1 1|e

t t t t tVar E Var E var NPVψ ψ        (9) 

Following the argument presented in the previous subsection,  1t tVar ψ  should be 

preferred to e

tVar  when building project value models. Therefore, this paper will focus on 

estimating  1t tVar ψ . Notice that the proposed procedures may also be easily used to estimate 

e

tVar . 

As explained before, the use of the log-variance assumes that the project dynamics 

follows (3), at least approximately. Such an assumption is more valid for assets traded in capital 

markets than for investment projects, but several authors use it in this latter context. When that 

assumption is valid and the rate of return on the project follows a normal distribution, it is 

possible to use the well-known relationships between the first two moments of a normal and a 

lognormal distribution to establish a relation between  1t tLVar ψ  and  1t tVar ψ  : 

 
 

 
1

1

1

ln 1
|

t t

t t

t t

Var
LVar

E NPV

ψ
ψ

ψ







 
   

 
      (10) 

Expression (10) will be useful for estimation procedures that can handle the variance 

but not the log-variance, as is the case with the one and a half level simulation procedure 

proposed in this paper. 

 

3. Examples 

This section defines two example projects that have been originally considered in other 

papers, to which the volatility estimation procedures will later be applied. The considered 

projects are simple projects, for which it is possible to analytically calculate the volatility. 

Notice that the proposed procedures are particularly useful for complex projects, for which it 

is impracticable to analytically calculate the volatility. However, in order to test the procedures, 

it is convenient to use them in projects for which the volatility can be analytically calculated, 

in order to be able to assess the estimation error. 

For each of the projects, a given year will be used for the purpose of assessing the 

accuracy of the estimation procedures, and the analytical expression for the volatility in that 

year will be determined. Time 0 corresponds to the beginning of the project, so there is no 
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information about the way the project is evolving. Volatility in year 1 is based on the state of 

the project in time 0. Since there is no information about how the project is evolving in time 0, 

year 1 will be of little interest for assessing procedures aiming at estimating state-dependent 

volatility. Volatility in year 2 is conditioned by the state of the project at the end of year 1, so 

there is already information about how the project is evolving, and there are also uncertain cash 

flows remaining in the project. Year 2 will, therefore, provide an interesting assessment of the 

estimation procedures, and it will be used for Project 1. In the case of Project 2, the analytical 

calculation of state-dependent variance in years 2 and 3 is quite cumbersome, so year 4 will be 

used instead.  

 

3.1.  Project 1 

Project 1 is very simple, based on a project originally considered by Godinho (2006), 

and designed in such a way that its log-variance is constant (that is, independent of time and of 

the project state). The project consists of producing 100 units of a market-traded commodity 

that has a current price of $1/unit. The continuously compounded rate of return on the 

commodity is normally distributed with a mean μ = 10%/year and a standard deviation 

σ = 15%/year. The only cost of the project is the initial investment and, since we are only 

interested in estimating volatility, the value of that cost is irrelevant. The 100 units of the 

commodity will only be available three years after starting the project, and the rate of return 

shortfall is null for the commodity (meaning that there are no benefits or costs from physically 

holding the commodity before year 3). The continuously compounded risk-adjusted discount 

rate for the project is the average annual commodity price increase, r = 11.125%. 

The commodity price at year t is denoted by 
tP . The only state variable of this project 

is the commodity price, so  1 1t tP ψ . In the assessment of the volatility estimation 

procedures, the volatility of this project for year 2 is considered, so it is only necessary to 

analyze the volatility of 
2NPV  given the state of the project at the end of year 1. 

For the log-variance, we have: 

    

   

   
  

2 1 2 1

0.11125

3 2 1

0.11125 0.11125

2 1

2 1

2

var ln |

var ln 100 | |

var ln 100 |

var ln |

0.15 0.0225

LVar P NPV P

e E P P P

e P e P

P P













 

     (11) 
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In (11), the first equality comes from (5). The second one comes from the application 

of (2) to calculate 
2NPV . To get the expression in the third line, we replace the conditional 

expectation of 
3P  by its analytical expression. The fourth equality comes from changing the 

logarithm of the product into a sum of logarithms and removing the constant terms thus 

obtained (since they have null variance). Finally, given the geometric Brownian motion defined 

for the price, we know that the conditional distribution of  2ln P  is normal, with standard 

deviation 0.15. 

So, in this project, the log-variance will be constant for all years and for all values of 

the state variable: it is always LVart = 0.0225. As for the variance of the project value, it 

changes from year to year, and it is a function of the state variable 
1.tP

 For t = 2: 

   

  

  
 

 

2 1 2 1

0.11125

3 2 1

0.11125 0.11125

2 1

4

2 1

4 2 0.0225 0.2225

1

var |

var 100 | |

var 100 |

10 var |

10 1

Var P NPV P

e E P P P

e P e P

P P

P e e













 

      (12)

 

The first equality comes from (8). The second one comes from the application of (2) to 

calculate 
2NPV . In the third one, we replace the expectation of 

3P  by its analytical expression. 

The fourth equality comes from the moving the constant to outside the variance expression. 

Finally, given the geometric Brownian motion defined for the price, we know that the 

conditional distribution of 
2P  is lognormal with parameters  10.1 ln P  (geometric mean) and 

0.0225 (geometric variance). So, the variance is  2 0.0225 0.2225

1 1P e e  (see, e.g, Montgomery 

and Runger, 2011, p. 144). 

 

3.2.  Project 2 

Project 2 was originally analyzed by Cobb and Charnes (2004), and also considered by 

Godinho (2006). It is an investment project that produces cash flows for five years. In each 

year t (t = 1,..,5), the relevant sources of uncertainty are the unit contribution margin Xt and the 

annual demand Dt. Data used to define the values of the before-tax cash flows is presented in 

Table 1. In Table 1, N(μ,var) represents the normal distribution with mean μ and variance var, 

and T(a,b,c) represents the triangular distribution with minimum a, mode b, and maximum c.  



13 
 

The discount rate of the project is 12% and the tax rate is 40% (these values are non-

stochastic). The required initial investment is irrelevant for the estimation of project volatility.  

 

Table 1 – Data used for defining the before-tax cash flows of Project 2. 

Year Unit Contribution Margin (Xt) Annual Demand (Dt) Fixed Expenses 

1 X1 ~ N(50, 10) D1 ~ T(95, 100, 105) $4,250 

2 X2 ~ N(60, 15) D2 ~ T(82.5, 100, 117.5) $4,500 

3 X3 ~ N(70, 21) D3 ~ T(70, 100, 130) $4,750 

4 X4 ~ N(80, 28) D4 ~ T(57.5, 100, 142.5) $5,000 

5 X5 ~ N(90, 36) D5 ~ T(45, 100, 155) $5,250 

 

Cobb and Charnes (2004) examine several different scenarios for the correlations 

between the random variables Xt and Dt. This paper considers that there is serial correlation in 

the unit price, and consequently in the unit contribution margin, with a correlation coefficient 

of 0.6 between Xt and Xt+1 (t = 1,...,4). In this paper, we consider the volatility of this project in 

year  4, for the purpose of assessing the volatility estimation procedures. 

For this project, there is a strictly positive (although small) probability of the project 

value becoming negative. In such a case, the log-variance will be improperly defined. 

Therefore, only the variance is considered for the effect of assessing the volatility estimation 

procedures. 

The state variables are denoted by Xt and Dt, so  1 1 1t t tX D  ψ . Since the unit 

contribution margin is auto-correlated, the volatility may be different for different states. In 

fact, we get: 
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   

  

       

 

4 3 3 4 3 3

0.12

4 5 4 4 3 3

0.12

4 4 5 4 5 3 3

0.12

4 4 4 3 3

0.12

4 4 3 3

, var | ,

var | , | ,

var 0.6 5,000 0.6 | 5,250 | ,
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(13) 

The first equality comes from (8). The second one comes from the first equality of (2). 

The third equality is obtained by replacing the 
4F  and 

5F  by the expressions that define them, 

using basic properties of the expected value and taking into account that are 
5X  and 

5D  are 

independent,  
5X  and 

4D  are independent and 
5D  is independent of both 

4X  and 
4.D  The 

fourth equality comes from some basic properties of the variance (scaling and invariance to 

constant location parameters), replacing  5E D  by its value (100) and using the properties of 

the bivariate normal distribution to calculate  5 4|E X X . In the fifth line, the invariance to a 

constant location parameter is used once again, and a rearrangement of the resulting expression 

is performed. Next, we take into account that 
4X  and 

4D  are independent, use the expression 

for the variance of the product of independent random variables, and use the independence of 

4D  from both 
3X  and 

3D , and the independence of 
4X  from 

3D   to simplify the resulting 

expression. In the last line, the expected values and variances are replaced by their values, the 

conditional expected values and conditional variances are calculated by resorting to the 

properties of the bivariate normal distribution, and the expression thus obtained is simplified. 

 

3.3.  Project volatility as a function of the state of the project 

As shown in (11), the second-year variance of the value of Project 1 is a function of 

the state variable, that is, the commodity price. Figure 1 depicts the relation between the 
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commodity price in the beginning of the second year and the second-year variance of the 

project value, calculated using the analytical expression (12). 

Figure 1 shows that the variance of project value may change significantly with the state 

variable. For large values of the state variable, the variance may be more about four times as 

high as for small values of this variable.  

Following the discussion in Subsection 2.1, if a single value is estimated for the 

second-year volatility, this value will be an average of the values plotted in Figure 1, previously 

denoted as 
2

eVar . Since abandonment options are usually valuable for low project values, if the 

average second-year volatility was used to value an abandonment option, the volatility value 

used in the model would be larger than the real volatility in the range of state variable values 

for which this option is valuable. Therefore, the value of the option would be over-estimated. 

On the other hand, since expansion options are usually valuable for high project values, if the 

average second-year volatility was used to value an expansion option, the volatility value used 

in the model would be smaller than the real volatility in the range of state variable values for 

which this option is valuable, therefore under-estimating the value of the option. In both cases, 

the options would be incorrectly valued. 

 

Figure 1: Second-year variance of the value of Project 1, as a function of the state variable (the 

commodity price), for values of the state variable between the 2nd and the 99th percentiles of its 

probability distribution. 

 
 

Figure 2 shows a similar issue with the fourth-year variance of the value of Project 2. 

The figure depicts the variance as a function of a state variable (the unit contribution margin). 

In this case, the variance also changes significantly with the value of the considered state 
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variable – for large values of the unit contribution margin, the variance may be about 35% 

higher than for small values of this variable. This would lead to the problems discussed before 

in the valuation of real options. 

Many real options models use the project value as the single state variable, instead of 

considering the underlying factors that drive project value (the “true” state variables), usually 

assuming that the volatility is constant. Brandão et al. (2012) show that volatility often changes 

over time and the analysis presented in this subsection shows that volatility also changes with 

the state of the project, so using a constant volatility may lead to important errors in real option 

valuation. The immediate conclusion is that it is preferable to define models that use the “true” 

state variables of the project, instead of using the project value as the underlying variable. 

However, this will often lead to very complex models, either difficult or impossible to apply. 

 

Figure 2: Fourth-year variance of the value of Project 2, as a function the unit contribution 

margin, for values of this state variable between the 2nd and the 99th percentiles of its probability 

distribution. 

 
 

An alternative may be to take into account that the “true” state variables that define the 

project volatility also define project value, and this will usually lead to a strong relation between 

project value and project volatility. In both the examples considered in this paper, this relation 

will be direct, in the sense that project value uniquely defines the project volatility. This means 

that it is possible to define charts that are similar to the ones in Figure 1 and 2, with the project 

value on the X-axis, instead of the state variable. In most real examples, such a direct 

relationship will not exist: the same project value may lead to different values of the volatility. 

However, in such cases, there will usually be a significant correlation between project value 
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and volatility: a high project value will usually lead to a higher or lower volatility, according 

to the characteristics of the project. The availability of volatility estimation procedures will 

allow the calculation of an expected volatility as a function of project value, which, although 

being an approximation, should lead to much better results than the use of a constant volatility 

per period3. Therefore, if it is necessary or convenient to use project value instead of the “true” 

state variables in real options models, volatility (or expected volatility) should be modelled as 

a function of the project value, instead of using a constant volatility. 

 

 

4. Estimating project volatility for a given state 

 Some procedures for calculating the project volatility in a given period (t) and for a 

given project state (
1tψ ) will now be presented. If 

1tψ  is the project state at time t-1, it may 

seem that we must "simply" simulate the behavior of the project from t-1 to t, calculate 
tNPV  

and then define the volatility as the variance of the simulated 
tNPV 's (or the variance of the 

logarithm of ,tNPV  if we are interested in the log-variance). The difficulty with this simple 

procedure lies in calculating 
tNPV . By simulating the project behavior from t-1 to t, we will 

have the state of the project at time t, 
tψ . Although 

tNPV  is uniquely determined by 
tψ , there 

is usually no simple way of calculating 
tNPV  given 

tψ . As can be seen in (2), the calculation 

of 
tNPV  requires defining the expected values of all future cash flows as a function of the state 

tψ . In some very simple cases, it may be possible to determine an analytical expression for 

tNPV  as a function of 
tψ  (the main procedure used in Brandão et al., 2012, relies on the ability 

of defining such an analytical expression), but in many real projects that will be impractical. 

Another possible simplifying assumption for estimating 
tNPV  as a function of 

tψ  consists of 

assuming that 
tψ  can be defined as a set of variables such that the expected value of each 

variable at each time point can be reasonably estimated using just the previous value of that 

same variable (as implicit in the second procedure of Brandão et al., 2012). This may also raise 

significant difficulties, since often costs and revenues are subject both to common influencing 

factors and to specific sources of uncertainty, and in such cases reasonable estimations of the 

expected value should incorporate previous values of multiple variables. Therefore, this paper 

                                                           
3 This average volatility per year was denoted before by 

e

tVar  or 
e

tLVar . 
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proposes procedures that do not rely on the ability of being able to define an analytical 

expression for 
tNPV  as a function of 

tψ  or assuming that the uncertainty in 
tNPV  can be 

expressed by independent dynamics of influencing variables. 

The first procedure, termed "two-level simulation", is based on a procedure proposed 

by Godinho (2006) for estimating the first-year volatility, and estimates 
tNPV  by using a new 

simulation. The second procedure is based on results presented by Sun et al. (2011), and it is 

termed "one and a half level simulation". This procedure is also based on a two level simulation, 

but it uses a direct estimator of the volatility, without resorting to the intermediate estimation 

of 
tNPV . This estimator is able to achieve accurate results when the number of iterations of 

the second level simulation is small (thus the term "one and a half level simulation"). One 

drawback of such a procedure is that it is not able to directly estimate the log-variance – just 

the variance. However, as explained in Section 2, if it is assumed that the project value follows 

a lognormal distribution (as it usually is whenever log-variance is used), log-variance can be 

estimated easily by using (10). 

Let us now introduce some notation to be used in the procedures. In both procedures, 

samples of the project cash flows 
1, ,...t tF F

, are generated by simulation, and there are two 

simulations, one of them (the second-level simulation) nested into the other (the first-level 

simulation). Each sample of 
tF  is generated by the first-level simulation and then the samples 

of 
1 2, ,...t tF F 

 are generated by the second-level simulation that takes place within each 

iteration of the first-level simulation. 
1n  and 

2n  are the numbers of iterations in the first- and 

second-level simulations, respectively. Sometimes it is convenient to clarify in which iteration 

of the first- or second-level simulations a given sample of a cash flow is generated. If a sample 

of 
tF  is generated in the i-th iteration of the first-level simulation, the notation ,t iF  is used to 

identify the value of that particular sample. For the samples of cash flows generated by the 

second-level simulation, it may be necessary to identify both the first- and second-level 

iterations in which they are generated. If a sample of  ( 1,..., )t sF s N t    is generated in the 

j-th iteration of the second level simulation that takes place within the i-th iteration of the first-

level simulation, the notation , ,t s i jF   is used to identify its particular value. In order to simplify 

the description of the procedures, the values of the samples of the cash flows will hereafter be 

simply referred to as cash flows generated by the simulations. 
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The expected value of the time-t+s cash flow, for the i-th iteration of the first-level 

simulation, is: 

2

, ,

1

,

2

n

t s i j

j

t s i

F

F
n





 


         (14) 

The cash flow ,t iF , along with the cash flows generated in an iteration of the second 

level simulation, lead to a time-t net present value defined by that specific second level 

simulation. It is denoted by , ,t i jNPV , and it can be calculated as: 

 
, , , , ,

1

N t
r s t

t i j t i t s i j

s

NPV F F e


 





          (15) 

In order to calculate an estimate of the net present value defined by an iteration of the 

first-level simulation, the expected values of the second-level cash flows must be used. Such 

an estimate is denoted by ,t iNPV , and it can be calculated as: 

 

2

, ,

1

, , ,

1 2

n

t i jN t
jr s t

t i t i t s i

s

NPV

NPV F F e
n


 





   


       (16) 

The expected time-t net present value, based on the both levels of the simulation, is 

denoted by tNPV  and calculated as: 

1

,

1

1

n

t i

i
t

NPV

NPV
n




         (17) 

 In the case of the one and a half level simulation procedure, some additional notation 

follows Sun et al. (2011), on whose results this procedure is based. 

 

4.1.  Two-level simulation 

The underlying idea of the two-level simulation procedure is estimating 
tNPV  by 

performing a new simulation. This means that there is a first-level simulation, in which the 

project behavior is simulated from t-1 to t, thus generating the project state at year t, 
tψ . In 

each iteration i of this first-level simulation, a complete second-level simulation is also 

performed. This second-level simulation allows the estimation of the expected value of the 
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cash flows 
1 2, ,...t tF F 

, thus providing an estimate of 
tNPV  for the state 

tψ  defined by the 

first-level iteration. 

This procedure will now be illustrated with a very small example that refers to its 

application to estimate the second-year volatility of Project 1. In order to keep the example 

small, the first-level simulation will only have five iterations, and the second-level simulation 

will have four. The values used in this example are shown in Table 2. 

 

Table 2 – Values used in the example that illustrates two-level simulation.  

First-level 

iteration (𝑖) 
𝑃2,𝑖 

(simulated) 

Second-level 

iteration (𝑗) 

𝑃3,𝑖,𝑗  

(simulated) 

𝐹3,𝑖,𝑗 

(100 ∙ 𝑃3,𝑖,𝑗) 
3,iF  

(average of 𝐹3,𝑖,𝑗) 

2,iNPV  

( -0.11125

2, 3, ei iF F  ) 

1 $1.05 

1 $1.07 $107.00 

$110.00 $98.42 
2 $1.13 $113.00 

3 $1.15 $115.00 

4 $1.05 $105.00 

2 $1.20 

1 $1.30 $130.00 

$126.25 $112.96 
2 $1.25 $125.00 

3 $1.23 $123.00 

4 $1.27 $127.00 

3 $1.14 

1 $1.13 $113.00 

$117.75 $105.35 
2 $1.04 $104.00 

3 $1.16 $116.00 

4 $1.38 $138.00 

4 $1.29 

1 $1.31 $131.00 

$145.75 $130.40 
2 $1.55 $155.00 

3 $1.27 $127.00 

4 $1.70 $170.00 

5 $1.08 

1 $1.19 $119.00 

$117.50 $105.13 
2 $1.19 $119.00 

3 $1.35 $135.00 

4 $0.97 $97.00 

Simulated values (𝑃2,𝑖 and 𝑃3,𝑖,𝑗) are assumed to be generated randomly. 

In this project, the second-year cash flow (𝐹2,𝑖) is always $0, so it is not shown in the table. 

 

As explained, the variance will depend on the values of the state variables at the 

beginning of the period considered for estimating volatility (in this case, at the beginning of 

the second year of the project, which is time point t = 1). The only state variable of Project 1 is 

the price of the commodity, which will be assumed to be $1.10/unit at t = 1 for the purpose of 

this example. 

In each first-level iteration, i, a commodity price is simulated for year 2 (denoted by 

P2,i). We will assume that the year-2 price simulated in the first iteration is $1.05/unit. The 
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second-year cash flow should also be calculated at this stage. This cash flow is always $0 for 

this project (therefore, it is not presented in Table 2). 

Then, in each iteration of the first-level simulation, a complete second-level simulation 

is performed. This second-level simulation generates values for the state variable until the end 

of the project (in this example, just for year 3), and calculates the corresponding cash flows. 

For this example, we will assume that the simulated year-3 prices are $1.07, $1.13, $1.15 and 

$1.05, in the four iterations of the second-level simulation, with corresponding cash flows of 

$107, $113, $115 and $105, respectively. These cash flows are used to estimate the year-2 net 

present value of the project for the first-level iteration (in this case 2,1NPV , since we are in 

iteration i = 1). To accomplish this, the average of the year-3 cash flows is calculated, and this 

average (an estimate of the year-3 expected cash flow) is discounted to year 2 and added to the 

year-2 cash flow (which is always $0 in this example), in order to calculate 2,1NPV .  

A new iteration is now started, and 2,2NPV  is calculated. The process is repeated for 

all iterations of the first-level simulation, as shown in Table 2. For this example, we will assume 

that the values presented in Table 2 would be obtained, the most relevant outputs of the 

simulation being the values of 2,iNPV , in the last column of the table. The project volatility, 

measured as the variance of project value in the second year of the project, is just the variance 

that can be estimated from the values in that column. In this case, we obtain a variance of 

150.88. For the log-variance, it suffices to calculate the logarithms of the values in the last 

column of Table 2, and calculate their variance. In this example, we would obtain an estimate 

of 0.01149. 

The complete procedure is described in Algorithm 1. The main lines of an 

implementation of this procedure using Microsoft Excel and the @Risk add-in can be found in 

Appendix 1. 

 

Algorithm 1 – Two-level simulation procedure 

n1  number of iterations of the first-level simulation 

n2  number of iterations of the second-level simulation 

For i = 1 to n1 

 Simulate the project behavior from t-1 to t  and the year-t cash flow, ,t iF  

 For j = 1 to n2 
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Simulate the project behavior from t until the last period 

Store the generated cash flows , which will be denoted as 1, , 2, ,, ,...t i j t i jF F    

 Next j 

 Calculate the expected value of the cash flows simulated in the second-level 

simulation: 
2 2

1, 1, , 2 2, 2, , 2

1 1

, ,...
n n

t i t i j t i t i j

j j

F F n F F n   

 

    

 Calculate  
, , ,

1

N t
r s t

t i t i t s i

s

NPV F F e


 





    

Next i 

The variance of  , 1, 1,..., ,t iNPV i n  is an estimator for  1t tVar ψ    

(the variance of   , 1ln , 1,..., ,t iNPV i n  is an estimator for   1t tLVar ψ )  

 

Such two-level simulations are used in project risk management models (see, e.g., Lan 

et al., 2007). Godinho (2006) proposes such a procedure for estimating the unconditional 

first-year log-variance.  

One important problem with this procedure is its computational burden. Since each 

iteration of the first-level simulation is followed by a complete simulation of the second level, 

a very large number of iterations of the second level must be performed. Moreover, reducing 

the number of iterations of the second-level simulation may lead to a bias in the results. This 

can be easily seen if the variance measure  1t tVar ψ  is taken into account. In Algorithm 1, 

 1t tVar ψ  is estimated as the variance of  ,t iNPV , for values of ,t iNPV  generated assuming 

that the state of the project at time t-1 is 1tψ  . If the law of total variance is applied to the 

variance of  ,t iNPV : 

       
   

, 1 , ,

1 , , 2

var | var | var |

                            |

t i t t i t t i t

t t t i j t

NPV E NPV E NPV

Var E NPV n

ψ ψ ψ

ψ ψ





 

 
    (18) 

Expression (18) shows that this procedure will provide a biased estimator for 

 1t tVar ψ  when 
2n  is finite and some of the cash flows occurring after time t are stochastic. 

The value  , , |t i j tE NPV ψ  corresponds to random variability that does not translate into 

volatility, since it occurs outside the time window for which volatility is considered. In two-
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level simulation, such variability is mitigated, since it is divided by the number of iterations of 

the second level, 
2n . If 

2n  is large, the bias will become negligible; however, if 
2n  is small, the 

bias may become significant. This means that the second-level simulation should utilize a large 

number of iterations. 

 

4.2.  One and a half level simulation 

One and a half level simulation is a procedure based on the results presented by Sun et 

al. (2011), which uses a two-level simulation with a small number of iterations in the second 

level in order to estimate a variance that is, in fact, equivalent to  1t tVar ψ . There are three 

main differences between this procedure and the two-level simulation procedure presented 

before: 

• Instead of estimating  1t tVar ψ  as the variance of  ,t iNPV , which would lead to a 

biased estimation (as shown before, based on (18)), an ANOVA estimator, 

demonstrated to be unbiased under mild conditions, is used; 

• The number of second-level iterations is not defined as a parameter of the procedure, 

but instead it is calculated in a way that minimizes the variance of the estimator; 

• The results in which this procedure is based do not extend to the estimation of 

log-variance; however, if it is assumed that that the project dynamics approximately 

follows (3) and the continuously compounded rate of return on the project follows a 

normal distribution (as usually happens when the log-variance is of interest), it is 

possible to use (10) in order to estimate  1t tLVar ψ   by resorting to estimates of 

 1t tVar ψ  and  1|t tE NPV ψ   (for the latter estimate, the value tNPV , defined in (17) 

and easily calculated within this procedure, can be used). 

The estimator used for  1t tVar ψ , denoted by  1
ˆ

t tVar ψ  , is calculated as (see Sun et 

al., 2011, eq. 9): 

   
 

 
1 1 22 2

1 , , , ,

1 1 11 1 2 2

1 1
ˆ

1 1

n n n

t t t i t t i j t i

i i j

Var NPV NPV NPV NPV
n n n n

ψ 

  

   
 
   (19) 

In order to determine the optimal number of first- and second-level iterations in one and 

a half level simulation, Sun et al. (2011) assume the existence of a given computational budget 

C, and divide this budget by the two simulation levels in order to minimize the variance of the 
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estimator (in the case considered in this paper, the variance of  1
ˆ

t tVar ψ  ). The authors show 

that there is a finite, constant, asymptotically optimal level of second-level iterations, 
2 **n , 

independent of the budget C.  So, as this computational budget grows to infinity, the policy of 

setting the number of second-level iterations to 
2 **n  is at least as good as any policy of setting 

the second-level size as a function of C. In light of some computational tests, Sun et al. 

recommend the usage of 
2 **n  second-level iterations regardless of the total computational 

budget. This way, the number of first-level iterations is defined by the computational budget 

and by 
2 **n . 

In this paper, the recommendation of Sun et al. (2011) is followed, and an estimator of 

the asymptotically optimal level of second-level iterations, 2 **n , is used. However, it should 

be noticed that the expression used by Sun et al. to calculate 2 **n  is derived assuming that 

the computational cost of generating a first-level scenario (that is, the cost of generating the 

project state 
tψ ) is null. This implies that all the computational cost is due to the second-level 

iterations, allowing the authors to simplify the expressions they use. In the application of one 

and a half level simulation to the estimation of project volatility, the generation of the project 

state 
tψ  corresponds to the calculation of the state variables’ values and of the time-t cash 

flow, and each second-level iteration will correspond to the generation of the state variables’ 

values and of the cash flows from year t+1 until the end of the project. If the project volatility 

is being estimated for a period near the end of the project life, the computational cost of the 

generating 
tψ  will be relevant, in relative terms, so it will not be reasonable to follow the 

assumption of Sun et al.. Therefore, a more general expression for calculating 2 **n  will now 

be obtained. 

Assume that the cost of performing a second-level iteration is used as the unit of 

measurement for the computational cost, and that the cost of generating the project state 
tψ  is 

 . To illustrate the meaning of  , assume that the first-level generation of the project state 

consists on generating a random value and a cash flow, and that in each second-level iteration 

it is necessary to generate three random values and three cash flows. Assuming additionally 

that each cash flow and each random value requires the same computational effort, it can be 

seen that a second-level iteration requires three times the computational effort of generating 

tψ . Since the unit of measure is a second-level iteration, 1/3  . 
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So, if there are 
1n  iterations of the first level and 

2n  iterations of the second level, the 

computational cost is given by: 

 
1 2 1C n n n            (20) 

For a given time-t project state, 
tψ , define   as the difference between the expected 

value of 
tNPV  given then specific state 

tψ  and the expectation of 
tNPV  calculated over all 

possible states 
tψ : 

   1| |t t t tE NPV E NPVψ ψ           (21) 

For a second-level iteration of a first-level iteration that defined the state 
tψ , define   

as the difference between the time-t sum of discounted cash flows  and the expected value of

tNPV  given state  
tψ : 

   |
T

r s t

s t t

s t

F e E NPV ψ
 



          (22) 

According to Sun et al. (2011), eq. 10, for given values of 1n  and 2n , the variance of 

the estimator  1
ˆ

t tVar ψ   can be defined as: 
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(23) 

Similarly to Sun et al. (2011), we aim at finding an asymptotical approximation to the 

minimization of   1
ˆvar t tVar ψ  . Assuming a fixed computational budget C whose relation 

with 1n  and 2n  is defined by (20), the following expression may be equivalently minimized: 

         1 2 1 1 2 1 1
ˆ ˆ, var vart t t th n n C Var n n n Varψ ψ        (24) 

In order to obtain an asymptotical approximation, we make C tend to infinity. For a 

fixed 2n  (whose optimal value we want to find out), this is the same as making 1n  tend to 

infinity. So we define: 
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 (25) 

For the relevant values of 
2n , that is, for 

2 1n  , the minimum of  2h n  will be the root 

of the following equation (see Appendix 2 for the derivation of this result):  
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 (26) 

The left side of (26) is a quartic in  2 1n   and the equation can be solved by several 

different methods (for an example see Borwein and Erdelyi, 1995, p. 4). Notice that, since it 

was not assumed that the computational cost of generating a first-level scenario is negligible, 

we arrived at a more complex expression than the one derived by Sun et al. (2011).  

The number of second-level iterations must be integer, and the root of (26) will usually 

be non-integer. However, defining 
2 **n  as the nearest integer that is greater than one will 

provide a good approximation to the minimization of  2h n . 

An important issue concerns four quantities that are necessary for defining (26) and are 

not known at the outset:  4E  ,  
2

1t tVar ψ  ,  2 2E    and   2

, ,var |t i j tE NPV ψ . In fact, 

one of the quantities we need is the squared value of the quantity that this procedure aims to 

estimate. This paper follows the approach of Sun et al. (2011), and uses a pilot simulation to 

obtain rough estimates of these quantities, which are then entered into (26) in order to define 

the number of iterations that allow an accurate estimate of  1t tVar ψ  . This pilot simulation 

uses a small portion of the computational budget (e.g., 10% of this budget), and it will be a 

two-level simulation with an arbitrarily chosen small second-level size 
2n . The first-level size, 

1n , will be defined by the portion of the computational budget devoted to this pilot simulation 

and by the second-level size 
2n . Sun et al. propose estimators for the above mentioned 

quantities, based on this pilot simulation: 

  
1 2

2
22

2 , , 2 ,
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1ˆ var |
1 1

n n
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E NPV

n n n
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 
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 

      (27) 
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So, after the pilot simulation, (27)-(30) are used to estimate the required quantities, and 

(26) is used to calculate the number of second-level iterations. A two-level simulation is 

performed and (19) is used to estimate  1t tVar ψ  .  

 

This procedure, particularly the pilot simulation component of the procedure, will now 

be illustrated with a very small example, which concerns to the estimation of the second-year 

volatility of Project 1. For the pilot simulation, we assume that both the first-level and the 

second-level simulations have four iterations. The values used for the pilot simulation are 

shown in Table 3. 

 

Table 3 – Values used for the pilot simulation of the example that illustrates one and a half 

level simulation.  

First-level 

iteration (𝑖) 
𝑃2,𝑖 

(simulated) 

Second-level 

iteration (𝑗) 

𝑃3,𝑖,𝑗  

(simulated) 

𝐹3,𝑖,𝑗 

(100 ∙ 𝑃3,𝑖,𝑗) 

2, ,i jNPV  

( -0.11125

2, 3, , ei i jF F  ) 

2,iNPV  

(average of 2, ,i jNPV ) 

1 $1.54 

1 $1.50 $150.00 $134.21 

$152.10 
2 $1.79 $179.00 $160.15 

3 $1.76 $176.00 $157.47 

4 $1.75 $175.00 $156.58 

2 $0.93 

1 $0.92 $92.00 $82.31 

$97.52 
2 $1.13 $113.00 $101.10 

3 $1.02 $102.00 $91.26 

4 $1.29 $129.00 $115.42 

3 $1.22 
1 $1.43 $143.00 $127.94 

$119.67 
2 $1.28 $128.00 $114.52 
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3 $1.52 $152.00 $136.00 

4 $1.12 $112.00 $100.21 

4 $1.29 

1 $1.39 $139.00 $124.37 

$119.44 
2 $1.06 $106.00 $94.84 

3 $1.52 $152.00 $136.00 

4 $1.37 $137.00 $122.58 

Simulated values (𝑃2,𝑖 and 𝑃3,𝑖,𝑗) are assumed to be generated randomly. 

In this project, the second-year cash flow (𝐹2,𝑖) is always $0, so it is not shown in the table. 

 

The pilot simulation starts by generating a value for the state variables at the beginning 

of the second year of the project (t =1). The only state variable of Project 1 is the price of the 

commodity, which will be assumed to be $1.10/unit at t = 1. In each first-level iteration, i, a 

commodity price is simulated for year 2 (denoted by P2,i), and the corresponding second-year 

cash flow is calculated. We will assume that the year-2 price simulated in the first iteration is 

$1.54/unit, and the second-year cash flow is always $0 for this project. 

In each iteration of the first-level simulation, a complete second-level simulation is 

performed. This second-level simulation generates values for the state variable in year 3 and 

calculates the corresponding cash flows. For this example, we will assume that the simulated 

year-3 prices are $1.50, $1.79, $1.76 and $1.75, in the four iterations of the second-level 

simulation, with corresponding cash flows of $150, $179, $176 and $175, respectively. In this 

pilot simulation, it is also necessary to calculate 2,1, jNPV  in all iterations of the second level 

simulation. This corresponds to discounting the year-3 cash flow to the second year, leading to 

the values of $134.21, $160.15, $157.47 and $156.58. 2,1NPV  can now be calculated as the 

average of these for values, leading to 2,1 $152.10NPV  . 

A new iteration is now started, and the values of  2,2, jNPV  and 2,2NPV  are calculated. 

The process is repeated for all iterations of the first-level simulation, as shown in Table 3. After 

the simulation is concluded, 2NPV  can be calculated as the average of the values 2,iNPV . For 

the values in Table 3, we obtain 2 $122.18NPV  . 

The values of 2, ,i jNPV , 2,iNPV  and 2NPV  allow the calculation of 

  2

, ,
ˆ var |t i j tE NPV ψ ,  1

ˆ
t tVar ψ  ,  2 2Ê    and   4Ê  , by using (27)-(30). For the values 

in Table 3, the following values are obtained:   2

, ,
ˆ var | 53,746.00t i j tE NPV ψ  , 
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 1
ˆ 449.61t tVar ψ   ,  2 2ˆ 100,829.05E     and   4ˆ 307,787.80E   . These values are 

substituted into (26) to reach the following equation: 

4 3 2

2 2 2 2105,642 ( 1) 211,285 ( 1) 405,166( 1) 429,968( 1) 214,984 0n n n n             (31) 

It is necessary to find the only root of (31) that is larger than 1. For that we can resort 

to the Microsoft Excel Solver, for example. We reach a root 
2* 2.78n  . We will use the closest 

integer to 
2 *n  , which is 

2 ** 3n  , as the number of second-level iterations for the main 

simulation. The number of first-level iterations can be calculated from the budget defined for 

the simulation, using (20). 

The simulation process in the main simulation is similar to the one in the pilot 

simulation, and it will not be presented in detail. In fact, 2, ,i jNPV , 2,iNPV  and 2NPV  are 

calculated for all first- and second-level iterations of the main simulation, and they are used in 

(19) to estimate the variance of the project value. If the log-variance is necessary, it can be 

estimated by using (10), with 2NPV  as an estimate for  1|t tE NPV ψ  , as long as the project 

dynamics follows (3) and the continuously compounded rate of return on the project follows a 

normal distribution. 

 

The complete procedure is described in Algorithm 2. The main lines of an 

implementation of this procedure using Microsoft Excel and the @Risk add-in can be found in 

Appendix 3. 

 

Algorithm 2 – One and a half level simulation procedure 

C  computational budget for the simulations, in terms of second-level iterations 

  computational cost of generating a project state 
tψ , in terms of second-level 

iterations 

   percentage of the computational budget to be used in the pilot simulation 

2n   number of second-level iterations in the pilot simulation 

Calculate  1 2n C n        

For i = 1 to 
1n  

 Simulate the project behavior from t-1 to t  and the year-t cash flow, ,t iF  
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 For j = 1 to 
2n  

Simulate the project behavior from t until the last period, and calculate the 

respective cash flows, which will be denoted as 1, , 2, ,, ,...t i j t i jF F   

Calculate , ,t i jNPV , according to (15) 

 Next j 

 Use (16) to calculate ,t iNPV  

Next i 

Use (17) to calculate tNPV  

Use (27)-(30) to estimate  4E  ,  1t tVar ψ  ,  2 2E    and   2

, ,var |t i j tE NPV ψ  

Substitute the estimates of  4E  ,  1t tVar ψ  ,  2 2E    and   2

, ,var |t i j tE NPV ψ  

into (26), and calculate the only root of that equation that is larger than 1 (one), 
2 *n  

Let 
2 **n  be the closest integer to 

2 *n  and calculate    1 2** 1 **n C n       

For i = 1 to 
1 **n  

 Simulate the project behavior from t-1 to t and the year-t cash flow, ,t iF  

 For j = 1 to 
2 **n  

Simulate the project behavior from t until the last period, and calculate the 

respective cash flows, which will be denoted as 1, , 2, ,, ,...t i j t i jF F   

Use (15) to calculate , ,t i jNPV  

 Next j 

 Use (16) to calculate ,t iNPV  

Next i 

Use (17) to calculate tNPV  

Use (19) to estimate  1t tVar ψ    

Expression (10) can be used to estimate  1t tLVar ψ  , using tNPV  as an estimate for 

 1|t tE NPV ψ   
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4.3.  Computational tests  

4.3.1. Definition of the tests 

Computational tests were defined for comparing the performance of the procedures 

described in the previous subsections. The procedures were implemented in C computer 

language, using Microsoft Visual Studio. The projects described in Section 3 were used in 

order to compare the procedures for volatility estimation. Since the Copeland and Antikarov 

(2001) procedure has been widely used by different authors, it was also included in the analysis. 

Notice that, as shown before, this procedure is expected to over-estimate volatility.  

The same computational budget for the simulations was allocated to each procedure 

and one thousand (1,000) initial project states were simulated for the moment before the 

beginning of the volatility estimation year (
1tψ 
, with 2t   in the case of Project 1 and 4t   

in the case of Project 2). The volatility was then estimated for each of these states, using the 

defined computational budget and each of the three procedures. The projects were defined in a 

way that it is possible to calculate the theoretically correct value of the volatility (this was done 

in Subsections 3.1 and 3.2), so we are able to compare the estimated volatility with a value that 

we know that is theoretically correct. 

For defining and assigning computational budgets, it was assumed that in each project 

the simulation effort was proportional to the number of cash flows it is necessary to simulate. 

For each procedure, three different computational budgets were considered: 10,000, 100,000 

and 1,000,000 simulated cash flows. In the cases of the two-level and the one and a half level 

simulations, the computational budget is shared by first- and second-level iterations, and in the 

case of the Copeland and Antikarov procedure, it is used by the single level of simulation. For 

the two-level and the one and a half level simulations, a first-level iteration will simulate one 

cash flow (the second-year cash flow, in the case of Project 1, and the fourth-year cash flow, 

for Project 2) and a second-level iteration will also simulate one cash flow (the third and fifth 

year cash flows for projects 1 and 2, respectively). This means that the cost of a first-level 

iteration is equal to the cost of a second-level iteration, consequently 1   for both projects. 

In the case of the one and a half level simulation procedures, the way the computational 

budget is split by the two simulation levels is defined by the method: the number of second-

level iterations is defined by (26), and (20) can then be used to calculate the number of first-

level iterations. However, for the pure two-level simulation procedure, there is no a priori rule 

for the number of iterations in each level. In each application of this procedure, a ratio between 
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the number of first- and second-level iterations is defined, 
1 2n n  . Two values for this ratio 

are considered: 1   and 10  . The former value represents an equal number of first- and 

second-level iterations, while the latter represents an increase in the number of first-level 

iterations at the expense of the number of second-level ones. This latter value, 10   was 

chosen because in preliminary tests it behaved well in the estimation of volatility near the end 

of the project. 

In the one and a half level simulation procedure, 10% of the computational budget is 

allocated to the pilot estimation, similarly to Sun et al. (2011). The number of second-level 

iterations used in this pilot estimation is 15. 

In the case of Project 1, both the log-variance and the variance were estimated. In the 

case of Project 2, only the variance was estimated, since the project value may be negative. 

 

4.3.2. Results and analysis 

Table 4 presents the results of the tests. The accuracy of the estimations is assessed by 

the Mean Absolute Error (MAE) and by the Mean Absolute Percentage Error (MAPE). Notice 

that, in these examples, the magnitude of the volatility is very different for the two concepts of 

volatility (log-variance and variance) and for the two projects. As explained before, the log-

variance is 0.0225 for Project 1 and Figure 1 shows the variance of Project 1 ranging from 

around 200 to around 700, while Figure 2 shows the variance of Project 2 ranging from around 

750,000 to around 1,000,000. So, a 10% error in volatility estimation may correspond to 

absolute errors of different magnitudes for the different projects and different concepts of 

volatility. In order to show values that are easier to read, in Table 4 the mean absolute error 

was multiplied by 1000 in the case of the log-variance of Project 1 and by 0.001 in the case of 

the variance of Project 2. 

 

Table 4 – Estimation of the project volatility using the proposed procedures, for the three 

example projects. 

  Project 1 Project 2 

  Log-variance4 Variance Variance 

                                                           
4 As explained in the text, the log-variance cannot be directly estimated by 1½-level simulation. To estimate it 

with this procedure, it is assumed that the dynamics of the project value follows (3), with the rate of return on 

the project following a normal distribution (this assumption is valid for Project 1). Under this assumption, the 

estimates of the mean and variance of project value are substituted into expression (10) to estimate the log-

variance. 
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Budget Method 
MAE 

(x103) 
MAPE MAE MAPE MAE (x10-3) MAPE 

104 

Copeland & 

Antikarov 
22.50 99.98% 370.61 102.32% 1225.78 142.49% 

2-level (=1) 2.48 11.02% 44.99 12.37% 90.95 10.61% 

2-level 

(=10) 
1.44 6.38% 27.32 7.56% 62.23 7.19% 

1½-level 0.73 3.26% 12.45 3.42% 30.76 3.57% 

105 

Copeland & 

Antikarov 
22.50 100.02% 367.53 102.32% 1230.88 142.26% 

2-level (=1) 1.44 6.38% 25.67 7.15% 49.06 5.70% 

2-level 

(=10) 
0.77 3.44% 14.84 4.11% 29.68 3.44% 

1½-level 0.24 1.06% 3.91 1.10% 8.53 0.99% 

106 

Copeland & 

Antikarov 
22.50 100.01% 371.22 102.28% 1228.38 142.36% 

2-level (=1) 0.78 3.49% 13.91 3.83% 27.45 3.18% 

2-level 

(=10) 
0.42 2.01% 7.73 2.15% 16.59 1.93% 

1½-level 0.08 0.34% 1.29 0.36% 2.58 0.30% 

Budget: computational budget for the simulations; MAE: Mean Absolute Error; MAPE: Mean Absolute 

Percentage Error; 2-level: two-level simulation procedure; 1½ level: one and a half level simulation procedure; ; 

Copeland & Antikarov: procedure proposed by Copeland and Antikarov (2001) ; α: ratio between the number of 

first- and second-level iterations. 

 

Both the two-level and the one and a half level simulation procedures produce different 

estimation errors that depend on the computational budget. As expected, the mean estimation 

error for these methods always decreases when the computational budget increases. The results 

also show clearly that the one and a half level simulation procedure performs much better than 

the two-level simulation. As for the Copeland and Antikarov procedure, it produces much 

higher errors that do not show a clear decrease when the computational budget increases. This 

is due to the fact that the most important component of the estimation errors is the bias induced 

by this procedure, which does not decrease with the computational budget. In fact, the results 

of Godinho (2006) show that this procedure is expected to have an upward bias of 100% when 

estimating the first-year log-variance of a 2-year project with characteristics similar to Project 

1. Since in Project 1 we are also estimating the log-variance of the project in the year before 

the last year of the project, and since the log-variance is constant in this project, the bias will 

be similar in this application of the procedure. In fact, a percentage error of around 100% is 
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always found when this procedure is applied to estimate the second-year log-variance of Project 

1.  

Another interesting result concerns the comparison between the results of the two-level 

simulation procedure for different ratios between the numbers of first- and second-level 

iterations (α). For these projects, a larger number of first-level iterations (α=10) always 

performs better. Remember that in the projects being analysed, the project volatility is 

estimated for the year immediately before the last year of the project. In these cases, the 

volatility of the values obtained in the second-level iterations will be limited, so the bias due to 

this volatility (the bias due to the last term of (18)) will be small and it is better to use a larger 

number of first-level iterations. If volatility was being calculated for previous years, the results 

would likely be quite different, in the sense of a larger α leading to worse results, since the bias 

in volatility estimation would be more significant. 

 

5. Conclusions and future research 

This article addressed the estimation of state-dependent project volatility by employing 

Monte Carlo simulation. Two possible definitions of the concept of project volatility were 

considered and it was shown that volatility may change significantly with the project state, 

which means that expected volatility may also change significantly with project value. It was 

argued that using a single average volatility per period may introduce important biases in the 

valuation of real options. 

Two procedures were proposed for estimating state-dependent volatility: two-level 

simulation and one and a half level simulation. Both procedures produce volatilities that depend 

on the project state, showing their ability to capture the change of volatility with the state of 

the project. Considering two simple projects and defining identical computational budgets for 

the procedures (based on the number of cash flows it is necessary to simulate), the accuracy of 

the estimates was compared for both procedures, and with the Copeland and Antikarov (2001) 

procedure. Both procedures proposed in this paper perform much better than the Copeland and 

Antikarov procedure, and the one and a half level simulation procedure produces better results 

than the two-level simulation procedure. 

The use of real options models has been an important motivation for developing 

procedures for the estimation of project volatility, but this research also has important 

consequences in other contexts related to project risk analysis. If volatility increases when 
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project value decreases, an initial decrease in value will tend to produce higher fluctuations in 

project value, fattening the left tail of the distribution of project value. As a consequence, risk 

measures based on this left tail, like value-at-risk or conditional value-at-risk, will lead to larger 

values. So, in this case, using the average project volatility will lead to the under-estimation of 

such measures. On the contrary, if volatility tends to decrease when project value decreases, 

using an average project volatility instead of state-dependent volatility will lead to over-

estimating such measures.  

Having accurate estimates of project volatility is particularly important for applying the 

lattice-based approach proposed by Copeland and Antikarov (2001). In order to use this 

approach, project volatility must be defined as a function of the project value, and not as a 

function of other state variables. As argued at the end of Subsection 3.3, there will usually be 

a strong relation between project value and project volatility: in the example projects 

considered in this paper, volatility is uniquely defined by the project value and, in both the 

projects, variance increases monotonically with the project value. Even if no such direct 

relationship exists between project value and volatility, defining expected volatility as a 

function of project value, while still being an approximation, is expected to lead to much better 

results than the use of a constant volatility per period.  

A possible approach to define such a relationship between project value and expected 

volatility is to start by considering several samples of the state variables and estimate both the 

project values and the volatilities associated with those samples. The project values and 

volatilities thus estimated may then be used to build a function that maps a project value to an 

expected volatility. Defining the best ways to sample the values of state variables and the best 

ways to build the volatility function are left for future research. 

The Copeland and Antikarov approach assumes that the project value follows a 

geometric Brownian motion with constant log-variance. This assumption is usually too strong, 

and inapplicable to projects whose value may become negative. However, it allows the use of 

recombining lattices. When volatility changes with time and/or project state, lattices no longer 

recombine, so the approach must be modified. Some authors have already proposed some 

enhancements to the Copeland and Antikarov approach that do not rely on recombining lattices 

(e.g., the approaches based on binomial trees proposed by Brandão and Dyer, 2005 and 

Brandão et al., 2005). The availability of methods for estimating time and state-dependent 

project volatility opens the way to the development of new approaches that do not require the 

geometric Brownian motion assumption: for example, approaches that locally approximate the 

behavior of project value by an arithmetic Brownian motion, and then resort to non-
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recombining lattices or binomial trees. The development of such approaches is another 

promising way of future research. 
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Appendix 1 

Main lines of the implementation of two-level simulation in Microsoft Excel 

with the @Risk add-in 

Two-level simulation can be easily implemented in Microsoft Excel, using a simulation 

add-in like @Risk. Figure 3 exemplifies such an implementation, for estimating the variance 

and the log-variance of Project 1. A number of 1,000 first-level iterations and 1,000 second-

level iterations is assumed in this example. 

 

Figure 3: Spreadsheet for estimating the volatility of Project 1 in the second year using two-

level simulation. 

 

Cells C5 to C7 are used to insert the basic input data. At any time, the spreadsheet will 

have a complete iteration of the first-level simulation. In order to achieve this, the second-year 

commodity price (the state variable) is generated in B11 (the formula used is 

C5*EXP(RiskNormal(10%;15%)). Then, the second level simulation is performed in the lines 

18 and below. The number of lines for which the third year commodity price and its 

corresponding cash flow are calculated should match the number defined in C7 (meaning that 

these values should be calculated for lines 18 to 1017). The third year commodity price can be 
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simulated by using the formula $B$11*EXP(RiskNormal(10%;15%), and the corresponding 

cash flow is determined by multiplying this value by 100. 

This second level simulation allows the calculation of the expected year-3 cash flow 

(the average of the values from C18 to C1017, which is calculated in B12) and of the year-2 

net present value for this iteration (the expected year-3 cash flow, discounted to year 2 by using 

the rate inserted in C6). To calculate the log-variance, the logarithm of this net present value 

must also be calculated (it is shown in B14). 

The @Risk function RiskVariance can be then used: the formula RiskVariance(B13) is 

used in E11 to estimate the variance, and RiskVariance(B14) is used in E12 to estimate the log-

variance. Then, the number of first-level iterations (assumed to be 1,000 in this example) must 

be inserted in the “Iterations” field of the @Risk ribbon, and the simulation may be started. 

This spreadsheet is available in an online supplement. 
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Appendix 2 

Mathematical result for 1 ½ level simulation (derivation of (26)) 

Following (25),  2h n  is defined as 

          
224 2 22

2 2 1 , ,

2 2

2
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Calculating the first derivative of  2h n  and rearranging the terms, we obtain 
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 We are interested in the situation 
2 1n  , so the first order condition for an optimum can 

be written as (26).    
24

1t tE Var ψ 
 is the kurtosis of the distribution of 

tNPV , so it must 

be at least 1 (one). This means that    
24

1t tE Var ψ  , with the equality occurring only if 

tNPV  takes just two possible values, with equal probability. Assuming that 

   
24

1t tE Var ψ   it can be seen that the first two coefficients of the polynomial in the 

numerator of  2h n  are positive, and the last two are negative (it is not possible to say whether 

the coefficient of  
2

2 1n   is positive or negative). This means that the coefficients of this 

polynomial will only have one sign change, and the Laplace rule implies that the polynomial 

has at most a root for 
2 1n  .    

24

1t tE Var ψ 
 
also implies that  

2
2lim 0

n
h n


  , and we 

can easily see that  
2

2
1

lim
n

h n


   . Since  2h n  is continuous for 
2 1n  ,  2 0h n   has 

exactly one root, 
2 *n , for 

2 1n  .  2h n  is increasing at 
2*,n  since it crosses the abscissa axis 

from below. Therefore 
2 *n  is a minimum for  2h n . 
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Appendix 3 

Main lines of the implementation of one and a half level simulation in 

Microsoft Excel with the @Risk add-in 

One and a half level simulation can also implemented in Microsoft Excel, using a 

simulation add-in like @Risk. For this method, it is preferable to use two spreadsheets: one for 

the pilot simulation and another one for the main simulation. Figure 4 shows a spreadsheet used 

for the pilot simulation and Figure 5 shows a spreadsheet for the main simulation, both of them 

considering the estimation of the second-year variance and log-variance of Project 1. A 

computational budget of 100,000 is assumed in this example, with 10% of the budget to be 

used in the pilot simulation. A number of 15 second-level iterations is assumed for the pilot 

simulation, meaning that there will be 625 first-level iterations in the pilot simulation. 

 

Figure 4: Spreadsheet for the pilot simulation used for estimating the second-year volatility of 

Project 1 with one and a half level simulation. 
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Cells C4 to C9 are used to insert the basic input data. The second-year commodity price 

(the state variable) for the first-level simulation is generated in C13, and the second-level 

simulation is performed in the lines 33 and below. Since the second-level simulation has 15 

iterations, lines 33 to 47 must be used for this simulation. Apart from generating the year-3 

commodity price and cash flow, the second-level simulation must also calculate 2, ,i jNPV  and  

2

2, , ,i jNPV  which will be necessary for calculating the coefficients of the quartic present in the 

left side of (26).  

This second-level simulation allows the calculation of 2,iNPV  (the average of the values 

from D33 to D47, which is calculated in C15) and of the average of 
2

2, ,i jNPV  (the average of 

the values from E33 to E47, which is calculated in C19). The 2nd, 3rd and 4th powers of 2,iNPV

are calculated in cells C16 to C18. 

Cell C20 contains the squared value within parenthesis on the right side of (27). 

Averaging this summation over the first level iterations (by using the @Risk function 

RiskMean) allows the calculation of   2

, ,
ˆ var |t i j tE NPV ψ , in cell G15. 

Cells C22 to C26 use the RiskMean function calculated over the values of cells C15 to 

C19. This way, C22 contains 2NPV , cells C23 to C25 contain the averages of the 2nd, 3rd and 

4th powers of 2,iNPV  and C26 contains the average, over the first level iterations, of the average 

of 
2

2, ,i jNPV . The values on these cells can be used to calculate  1
ˆ

t tVar ψ  ,  2 2Ê    and 

 4Ê  , in cells G16, G17 and G18, respectively. 

By using the values in cells G15 to G18, the coefficients of the quartic of the left side 

of (26) can be easily calculated, in cells G21 to G25. 

It is now necessary to perform the pilot simulation. This can be done by inserting the 

number of first-level iterations (assumed to be 625 in this example) in the “Iterations” field of 

the @Risk ribbon, and clicking the “Start Simulation” icon. 

The pilot simulation is used to calculate the number of second-level iterations in the 

main simulation, 
2n , but to accomplish that another step is still necessary, after the pilot 

simulation. An arbitrary initial value is inserted in C28 and the quartic is inserted in C29, 

written as a function of the value in C28 and using the coefficients calculated in cells G21 to 
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G25. Then, the Excel solver is used to find the value of 
2 1n   (in cell C28) that makes the 

quartic take the value zero. The rounded value of C28 is then presented in G28 as the number 

of second-level iterations in the main simulation, and (20) is used to calculate the number of 

first-level iterations in G29. 

These numbers of first- and second-level iterations are used in the main simulation. The 

spreadsheet for this main simulation is shown in Figure 5. 

 

Figure 5: Spreadsheet for the main simulation used for estimating the second-year volatility of 

Project 1 with one and a half level simulation. 

 

Cells C4 to C7 are used to insert the basic input data (including the numbers of iterations 

coming from the pilot simulation). The second-year commodity price (the state variable) for 

the first-level simulation is generated in C1, and the second-level simulation is performed in 

the lines 23 and below (lines 23 to 25, since we reached a number of 3 iterations for the second 

level simulation in the pilot simulation). The structure of the second level simulation is identical 

to the one used in the pilot simulation. 

Cells C13 to C15 calculate 2,iNPV , its squared value, and the average of 
2

2, ,i jNPV . 

Cells C17 to C19 average these values over the iterations of the first level, using the RiskMean 
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function. G11 estimates the variance by using (19), resorting to the values in C17 to C19, and 

G12 estimates the log-variance by using (10) and using the value in C17 as an estimate of 

 1|t tE NPV ψ  . 

The number of first-level iterations (assumed to be 22,500 in this example) must be 

inserted in the “Iterations” field of the @Risk ribbon, and the main simulation may be started. 

These spreadsheets are available in an online supplement. 
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