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Abstract 

An extended version of the non-linear Walecka model, with p mesons and an electromagnetic 
field is used to investigate the possibility of phase transitions in cold nuclear matter (T = 0), giving 
rise to droplet formation. Surface properties of asymmetric nuclear matter as the droplet surface 
energy and its thickness are discussed. The effects of the Coulomb interaction are investigated. 
© 1999 Elsevier Science B.V. 
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1. Introduct ion  

The investigation of asymmetric nuclear matter is of particular interest for problems 

in astrophysics. In fact, neutron-star matter at densities between 0.03 fm -3 and nuclear 

matter density (0.17 fm -3)  consists of neutron-rich nuclei immersed in a gas of neu- 

trons [ 1 ]. The size of the nuclei is determined by the competition between the surface 

energy and the Coulomb interaction. 

Liquid-gas phase transitions and droplet formation in nuclear reactions as well as 

the surface properties of nuclear matter have already been extensively discussed in the 

literature in the context of non-relativistic models, namely within the framework of the 

Hartree-Fock (HF) ,  Thomas-Fermi  (TF) and Extended-Thomas-Fermi approximations 

(ETF) at finite temperature [2-5]  and at zero temperature [6,7]. In particular, in 
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Ref. [5] it is shown that the semi-classical TF approximation scheme is reasonably 
accurate at any temperature. 

Within the framework of relativistic models phase transitions in nuclear matter have 

also been investigated at zero temperature for symmetric semi-infinite nuclear matter [ 8] 
and surface properties of asymmetric semi-infinite nuclear matter in Refs. [7,9] and 

Ref. [ 10] in terms of a semi-classical treatment. The use of thermodynamical concepts in 

the study of possible phase transitions in the above problems is done with the underlying 
assumption that the time required for thermalization and chemical equilibrium is short. 

In a previous work, we have investigated droplet formation in a vapour system at finite 
temperature in the framework of the relativistic Walecka model with non-linear terms 
(NLWM) [ 11 ], which is known to describe adequately the bulk properties of nuclear 

matter. We have included the Coulomb interaction and worked in the Thomas-Fermi 
approximation. We have then realized that a more systematic work was necessary in 

order to estimate the effects of the Coulomb interaction in the production of droplets. 
For this reason, in the present work we study the conditions for droplet formation and 
the influence of the electromagnetic field on its production at zero temperature. We 
determine the conditions for phase coexistence in a multi-component system by building 

the binodal section [12]. These values determine the initial and boundary conditions 

which are used in solving numerically the coupled equations of motion obtained in the 

Thomas-Fermi approximation. 
In Section 2 we obtain the equations of motion in the static case and the thermody- 

namical potential in the framework of the Thomas-Fermi approximation is calculated. 
In Section 3 the two-phase coexistence is discussed and in Section 4 we present the 
numerical results and some conclusions are drawn. 

2. Extended NLWM and the Thomas-Fermi approximation 

In what follows we describe the equation of state of matter within the framework of 

the relativistic non-linear Walecka model [ 13,14] with the inclusion of p mesons and 
the electromagnetic field. The self-interaction terms of the scalar meson were shown to 
be necessary in order to adequately describe nuclear properties [ 13]. Both the p meson 

and photons are incorporated to account, respectively, for the neutron excess in heavy 
nuclei and the electromagnetic interaction between the protons [ 14]. Although we also 
have in mind the description of neutron star crusts, the pionic degrees of freedom are 
not considered because their r61e only becomes important for matter much denser than 
the one investigated in the present work. 

In this model the nucleons are coupled to isoscalar-scalar q~, isoscalar-vector V u, 
isovector-vector b u meson fields and the electromagnetic field Am. The lagrangian 
density reads 
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1 2 2 1 3 1 4 1 v ~ m 2 V , , V  u +.~  ( O,  f b e "  fb - ms d ~ ) - -~. K~b -- ~.  ad~ - .~ g2~,,g2 ~ + 

- ~  ~ , ,  • B~*" + • - ( 1 )  

where 

s2u~ = O~V,, - & ,V  u,  (2) 

B ~ v  = Ogbv - Orbs, - g p ( b l ,  × b~ ) ,  

and 

(3) 

F,,~ = O~,A~ - O,,A~,. (4) 

The model comprises the following parameter set known as NL1 taken from Ref. [ 15] : 

three coupling constants gs, g,, and gp o f  the mesons to the nucleons, the nucleon 

mass M = 938 MeV, the masses of  the mesons ms = 492.25 MeV, my = 795.36 MeV, 

mp = 763 MeV, the electromagnetic coupling constant e = V/4--~-/137, the self-interacting 
coupling constants K / M  = 2g 3 × 2.4578 x 10 -3, ,~ = --6Us 4 x 3.4334 x 10 -3, with C 2 = 

g2iMZ/m2,  i =  s,  v, p ,  given by Cs 2 = 373.176, Cv 2 = 245.458 and C 2 = 149.67. 

From the Euler-Lagrange formalism, we obtain the coupled equations of  motion 

for the scalar, isoscalar-vector, isovector-vector, electromagnetic and nucleon fields, 

respectively given by 

(3  ff - X72 + m ~ ) q b = g s p s  - 2 q52- ~_q~3, (5) 

(02 - V 2 + m Z ) V  u = g v j  ~ (6) 

e . 
(3t 2 - V : ) A "  = ~Je~m (8) 

and 

+ + +e +2 AO]j + / 3 ( M -  gsq~) 0, 

where the scalar density ps and the baryonic current densities are defined as 

p,  = (¢70), 

j " =  (dy""r~) ,  

(9) 
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and b~ = (b °, b). In the static case there are no currents in the nucleus and the spatial 

vector components V, b and A are zero. Therefore, the equations of motion become 

2 2 1 2 LA¢~3 
qb = msd p + -~K<b + qvj. - gsPs, (10) 

V2Vo = mZVo - gyps, (11) 

V2bo = m2pbo - ~ P 3 ,  (12) 

VZA0 = - e p p ,  (13) 

where p8 = pp + Pn and P3 = Pp - -  Pn are the baryonic densities, and pp and Pn are the 
proton and neutron densities. 

The present work is based on the semi-classical Thomas-Fermi approximation. In 

this approach the energy of the nuclear system with particles described by the one-body 
phase-space distribution function f ( r ,  p, t) at position r, instant t with momentum p is 
(only the nuclear matter contribution and interaction terms) 

d3rd3p 
E N = T T r  (2"rr) 3 f ( r , p , t )  h, 

where 

0 V/(p  - Vn) 2 + (M - gsq~) 2 + V,,o 

with 

] ; p o = g v V o + ~ b o + e A o ,  ~no=g~ ,Vo-~bo ,  

Vp = gvV + ~ b  + eA , Vn = gvV - ~ b  , 

is the classical effective one-body Hamiltonian and 3' = 2 refers to the spin multiplicity. 

In the static approximation Vp = Vn = 0. 
The distribution function is given by 

where the distribution functions for protons and neutrons are 

f i = O ( k Z i ( r ) - p 2 ) ,  i = p , n .  

The thermodynamic potential is defined as 

0 = E - Z l z i B i '  (14) 
i=p,n 

where /zi is the chemical potential for particles of type i, and Bp, B.  are, respectively, 
the proton and the neutron number, 
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Bi =/d3rpi(r,t), i =p,n, (15) 

with 

pi=r f d 3 P 3 f i =  Y k3( r )  
6zr--5 ~i • 

From the above expressions we get for (14) 

~ = f d 3 r ( l [ ( v d p ) 2 - ( V V o ) 2 - ( V b o ) 2 - ( V Z o ) 2 ] - V e f )  

with 

1 [m~b2 2 3 2 4 2 2 ]  Vef = --~ 2i- ~.Kfb + ~ . A $  - m~Vo 2 - mpb 0 

i d3p h ~" ' J ~- [.l, pflp + [Lnfl n. (16) 

Minimization of {2 with respect to kvi(r),  i = p, n, gives rise to the following conditions: 

k2p ( t Z p - ~ / k 2 F p + m ' 2 - g v V o - ~ b o - e A o )  =0 

and 

k2n (l~n-- v/k2n-}-M*2-gvVo+-~bo) =0, 

where M* = M - g,~b is the effective nucleon mass. 
We obtain krp = 0 and kF, = 0 or, for kFt, or kFn different from zero, 

V/ gP bo #p = kZp + M .2 + g,,Vo + -~ + eAo, 

/zn = v/k2n + M .2 + &Vo - ~ b o .  

The values of kFp and kF, are obtained inverting these last two equations. 
The fields that minimize /2 satisfy the equations 

OWefcg~ - 1 2 ~l 
m2dp - ~Kq~ - -7. Adp3 + gsPs, 

OVef = rn~Vo - g,,ps, 
aVo 

OVef =m2bo - ~ P 3 ,  
Obo 

av~f 
OAo epp, 

17) 

18) 

19) 

(20) 

(21) 

(22) 
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where 

kFi(r) .s:,z/63... j . 
(2~)  ------g e fi . . . .  2,rr 27/ . Z  pZdp M• 

i=p,n t=p,n 0 

with e = ~/p2 + M,2. 

Comparing Eqs. (10) - (13)  with Eqs. (19) - (22) ,  we see that 

d2~b 2 d~b OVef 
v 2 ~  = ~ + - , ( 23 )  

r dr O~ 

d2Vo 2 dVo OVef 
272Vo = ~ + - (24) 

r dr OVo' 
d2bo 2 dbo 3Vef 

VZbo = ~ q- , (25) 
r dr Obo 

d2Ao 2 dAo OVef 
V 2 A o = ~ +  - - -  (26) 

r dr OAo 

These coupled differential equations are solved numerically and all relevant quantities 
(e.g. effective mass, densities, pressure) that depend on the fields are calculated. The 
discontinuities in the values of kFp (r) and kFn (r) discussed above have to be taken into 
account in the code that solves the differential equations (19-22). 

3. Two-phase coexistence 

In order to obtain the initial and boundary conditions for the program which integrates 
the differential equations (23) - (26)  we determine the conditions under which two 
distinct phases can coexist in infinite matter. In this case the electromagnetic field 
is omitted. In the mean field approximation the meson fields are replaced by their 
expectation values [ 16,17], 

= (~b) = ~0, (27) 

v ° - ( v  °) = Vo, ( 2 8 )  

b ° -- (b °) = bo. (29) 

The substitution of the above expressions in Eqs. (10), (11) and (12) yields 

K 2 ,?t 3 gs 
~o  = - ~-~m? ~o  - g ~ o  + ~ p ~ ,  ( 3 0 )  

m s 

-g ' "  B (31) Vo- m~p , 

gP o 3 bo = 2m---~p'- ' (32) 
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The thermodynamic quantities of interest are given in terms of the above meson fields. 

They are the energy density: 

g= 
m2 

Z 2~ 2 . 
t=p,n 

the pressure 

p =  Y ~ / p4dp 

6¢r 2 X/p2 + M .2 
= , p n  

and the proton fraction 

yp = PJ_L. 
P8 

2 2 
ms ,4,2 K 3 "~ 4 mP,, 2 + T v ' o  + + ~-~bo,  2 ~'0 g~b0 

(33) 

m 2 2 2 m~4, 2 A 4 m-, b2 '~ 3 
f i + v 2  E2° + 2 o -  2 v ' o - g q ~ o - ~ - ~ b  o, (34) 

(35) 

We have made use of the geometrical construction [12] to obtain the chemical 

potentials in the two coexisting phases for each pressure of interest. In a binary system 

Oypje>~O and \Oypje<~O, (36) 

known as diffusive stability, which reflects the fact that in a stable system energy is 

required to increase the proton concentration while the pressure is kept constant. In 
order to obtain the binodal section which contains points under the same pressure for 
different proton fractions, we have used the conditions above and simultaneously solved 
the following equations: 

and 

P = P(vp, vn, M*), 

' M*'), P=P(@,v, , ,  

' M*' ) ,  tzi ( vp, v,,, M* ) = tzi ( Up, v,, 

2 K 2 A 
msOS°+-~fbo + g dP3o=g'Ps(Vp 'v ' 'M*) 

i=p,n  

(37) 

(38) 

(39) 

(40) 

2 I _Kg l2  A . t3  l l . I  
msq~o + 2w0 + g~b 0 =gsp.~.(t.'p,v,,M ), (41) 

where vi = ].zi - -  "~iO, i = p, n. 
The binodal section is plotted in Fig. 1. For certain values of proton and neutron 

chemical potentials, the system may be at the same pressure with different densities and 
proton concentrations, which allows for the possibility of phase transitions. For the sake 
of completeness, we also show in Table 1 some of the points taken from the binodal 
section. The results we have chosen as input to the code which solves the differential 
equations (23 ) - (26 )  are displayed in the last three columns of this table. 
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Fig. 1. Binodal section for T = 0. 

Table 1 
Results obtained from the binodal section. The fields are given in units of nucleon mass. In each row the 
upper (lower) numbers represent the liquid (gas) phase 

Yp "P /~p /Zn pB ~b0 × 10 -1 Vo0 × 10 -1 b0 × 10 -2 
(MeV/fm 3) (MeV) (MeV) (fm -3)  

0.199 0.308 883.871 949.450 0.095 0.271 0.163 -0.399 
0.0 0.050 0.151 0.086 -0.350 
0.251 0.193 887.228 946.911 0.105 0.298 0.180 -0.366 
0.0 0.043 0.131 0.074 -0.299 
0.288 0.110 890.273 944.809 0.113 0.319 0.194 -0.335 
0.0 0.036 0.110 0.061 -0.248 
0.327 0.020 894.349 942.151 0.122 0.342 0.209 -0.294 
0.0 0.022 0.071 0.038 -0.156 
0.344 0.0015 896.330 940.954 0.126 0.353 0.217 -0.274 
0.0 0.012 0.039 0.020 -0.083 
0.373 3 × 10 -5 900.026 938.592 0.134 0.373 0.230 -0.237 
0.0 0.0002 0.0008 0.0004 -0.002 

4. Numerical results and conclusions 

To verify whether the formation of droplets is possible in a finite system, one has to 
solve numerically the set of coupled equations (23-26) .  For this purpose, the boundary 
conditions have to be set within the droplet. We have run a code, written with the help 
of the Gears stiff integration method, which uses as input the size of the mesh, Rmesh, 

boundary conditions and initial conditions. The size of the mesh determines the size of 
the droplet. The chemical potentials are output of the program, obtained in accordance 
with the size of the mesh. In general, the smaller the size of the mesh, the larger the 
neutron chemical potential. Nevertheless, if we fix the chemical potential according to 
the values given in Table 1 and do not consider the electromagnetic field, the liquid 
and gas fields and densities obtained from the binodal section are exactly reproduced 
respectively at r = 0 and at r > Rmesh, if the size of the mesh is sufficiently large (at 
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Table 2 
Output results given by the solution of the coupled differential equations without the inclusion of the Coulomb 
field. Index i refers to r = 0. 

Yp ( i) ttp Izn ~r t Rmesh Rp 0 pn ( i) Y 
(MeV) (MeV) (MeV fm -2)  (fm) (fm) (fm) (fm) (fm -3)  

0 0.215 885.15 949.28 0.051 6.24 11 .55  6.81 0.58 0.098 0.378 
1 0.251 890.58 946.26 0.093 4.26 7.35 4.41 0.62 0.098 0.341 
2 0.292 896.13 943.40 0.154 3.65 5.88 3.63 0.63 0.101 0.320 
3 0.333 902.74 940.54 0.226 3.18 4.83 3.03 0.60 0.101 0.303 
4 0.364 906.22 938.82 0.307 3.05 4.62 2.97 0.58 0.107 0.307 
5 0.429 915.46 934.61 0.564 2.77 4.20 2.82 0.46 0.120 0.333 
6 0.462 920.59 931.81 0.781 2.52 4.20 2.89 0.25 0.131 0.400 
7 0.497 927.05 927.95 0.998 2.44 4.20 2.95 0.017 0.140 0.493 
8 0.500 927.58 927.58 1.004 2.36 4.20 2.95 0.0 0.140 0.5 

Table 3 
Output results given by the solution of the coupled differential equations with the inclusion of the electro- 
magnetic field. Notice that the last two lines are the results for the same Yp(r = 0) for different Rmesh, as 
discussed in the text 

Yp (i) /zp /zn o" t Rmesh Rp 0 PB (i) Y 
(MeV) (MeV) (MeV fm -2)  (fln) (fm) (fm) (fm) (fm -3)  

I 0.212 891.06 946.65 0.056 4.94 8.82 5.04 0.54 0.088 0.338 
2 0.264 896.58 943.79 0.111 3.65 5.88 3.52 0.62 0.091 0.305 
3 0.317 903.10 940.86 0.191 3.19 4.83 2.99 0.60 0.095 0.294 
4 0.351 906.58 939.16 0.271 3.05 4.62 2.94 0.58 0.101 0.299 
5 0.420 915.84 934.97 0.523 2.77 4.20 2.80 0.46 0.115 0.326 
6 0.453 921.00 932.22 0.732 2.52 4.20 2.88 0.26 0.126 0.390 
7 0.489 927.52 928.45 0.950 2.44 4.20 2.94 0.01 0.135 0.485 
8 0.492 928.06 928.09 0.950 2.36 4.20 2.94 - 3  x 10 -3 0.136 0.493 
8a 0.491 927.65 927.69 0.990 2.47 4.41 3.12 -4 .2  X 10 -3 0.140 0.492 

leas t  12.60 f m  for  Yp = 0 .344,  for  ins tance ,  and  larger  for  smal le r  p ro ton  f r ac t ions ) .  

However ,  the  a im of  this  work  is to inves t iga te  the effects  o f  the  C o u l o m b  in te rac t ion  

and  we m u s t  ca lcu la te  h o w  the  c h e m i c a l  po ten t ia l s  are a l te red  w h e n  this  in te rac t ion  is 

inc luded .  The re fo re ,  the  c h e m i c a l  po ten t i a l s  mus t  be  d e t e r m i n e d  by  the p r o g r a m  and  in 

Tab les  2 and  3 they are g iven  for  the  smal les t  size o f  the mesh ,  for  d rop le t s  wi th  at 

leas t  two p r o t o n s  and  a rad ius  o f  4 .2  fm,  for  wh ich  there  is c o n v e r g e n c e  respec t ive ly  

w i t h o u t  the  inc lus ion  o f  the  C o u l o m b  field and  wi th  it, so tha t  we have  a c o h e r e n t  

c o m p a r i s o n  me thod .  We m u s t  e m p h a s i z e  tha t  the  smal les t  m e s h  size we have  c o n s i d e r e d  

was 4 .2  fm,  wh ich ,  a c c o r d i n g  to the  ini t ia l  cond i t ions ,  co r r e sponds  to a d rop le t  wi th  

at  leas t  14 par t ic les .  U s i n g  T h o m a s - F e r m i  a p p r o x i m a t i o n  to desc r ibe  smal l e r  drople ts ,  

even  t h o u g h  they can  ex is t  as so lu t ions  o f  the d i f fe ren t ia l  equa t ions ,  is ques t ionab le .  

In ou r  code ,  the  b o u n d a r y  c o n d i t i o n s  are g iven  by  

d V ° ( r  = 0)  = d b ° ( r  d A ° ( r  = 0)  = 0  
= = o )  = -aT-r 
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and for r = Rmesh, 

d-~-+ m s +  ~h= m s +  ~bg, 

where ~bg is the value we expect for the gas field, obtained from the binodal section 

(given also in Table 1), and similar equations for Vo and bo. For Ao we have 

dAo Ao 
- - +  - -  - 0 ,  
dr Rmesh 

or, considering the electron screening, Ao is zero at the last point of  the mesh, 

Ao ( Rmesh ) = 0. 

Both boundary conditions give similar results for the physical properties we have calcu- 

lated. 
As initial guesses for the meson fields we have used Fermi like functions. The values 

for r = 0 were obtained from the binodal section. An initial guess for the electromagnetic 

field is the field of  a homogeneous spherical distribution of  protons. We suppose that the 

droplets are formed in an electrically neutral environment, as we find in neutron stars. 

We assume that the droplet is small enough for the electrons to spill out from it almost 

completely, e.g. the electrons accumulate around the droplets giving rise to a shielding 

effect. We have checked that the surface properties of  the droplets do not depend on the 

radius of  the electron distribution. 
The radius Rmesh fixes the neutron and proton chemical potentials and, therefore, the 

number of  neutrons and protons. We have considered that convergence has been achieved 

when the fields and the baryonic density do not vary more than 10 -3 per cent from one 

run to the following one. 

Some quantities of  interest to study the surface properties are the two squared-off 

radii R,, and Rp in the spherical geometry, defined as 

R' 

l [pn,iR3 n + p m f ( R  ' 3 -  R3n)], (42) p, , (r)r2dr  = -~ 

0 

and 

R ! 

/ 3 31 pp(r ) r2dr  = ~ Pp,iRp + pp . f (R  13 - Rp) , (43) 

0 

where pi refers to the liquid density, p f  to the gas density, R ~ is larger than the size 
of  the mesh and corresponds to the value of  r where I f ( r )  - fg[ < 10-8 with f 
being either a meson field or the baryonic density at r and fg the corresponding gas 
value. Another important quantity is the thickness of  the region at the surface with extra 

neutrons known as neutron skin. The neutron skin thickness is given by [ 10] 
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0 = Rn - Rp. ( 4 4 )  

These quantities are computed for the droplet solutions we obtain and given in Tables 2 
and 3 without and with the Coulomb interaction respectively. 

The droplet surface energy and thickness are obtained from the energy of a system 
with a fixed number of particles B = Bp q- Bn, in which a droplet of arbitrary size grows 
in the background of the vapour phase. The energy reads 

E = / 4 7 r r 2 d r  [~ //(d~b'~2-\\drj 

q-lzpBp -+- tznB,, 

(dVo~2 (dbo~2 (dAo~ 2) 
--&r J \ dr J \ -~r,]  - Vef] 

(45) 

where V e f  is given in Eq. (16). If the Coulomb field is neglected, E can be rewritten 
in the small surface thickness approximation as [ 18] 

E = f 4 7 r r 2 d r [ ( d q ~  2 (dV0"~ 2 (db0"~ 2 ] 
[k. drJ  - \ d r J  - \-&-rJ - C  +#pBp+tz,,B,,, (46) 

where C is a constant. For droplets with radius R and volume V, 

E( R) = 47rR2o - - CV + ~pOp q- IznBn. (47) 

The surface energy per unit area of these droplets in the small surface thickness approx- 
imation is then 

o.= f d r  [(d4~'~z (dVo '~  2 
0 k \ d r J  - \-&-rJ - (d~°r) " (48) 

When the Coulomb field is included, the small surface thickness approximation is 
not valid. However, as the electromagnetic interaction should not contribute to surface 
properties directly, we have considered the same definition for the surface energy and 
defined the Coulomb energy as 

[  dZ0 2 ] 
Ec= /4~'r2dr - l  \--d-~-r ) q-eppAo . (49) 

In order to check the validity of Eq. (48) for symmetric and almost symmetric matter, 
we have also parametrized the total energy of the droplet, excluding the Coulomb energy 
given in Eq. (49), in terms of the volume and surface energies as 

E = -aA + b4cr(ro)2A 2/3, (50) 

where A = Bp + N, with N = B. - Bg and Bg is the number of neutrons in the gas, 
ro = RA -1/3 and R is the radius of the droplet given by 

3 3 
R3 = R ,  (p,,,i - Pn,f ) q- Rp (Pp,i - Pp,f ) 

(Pn,i - Pn,f q- Pp,i - Pp,f ) 
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The bulk contribution for the binding energy is given by - a  and the surface energy 

by b. For Yp(i) = 0.497 (Table 2, without the Coulomb field) we have obtained 

r0 = 1.12 fm, a = 16.45 MeV, and b = 1.20 M e V / f m  2. The same procedure was 

followed for Yp(i) = 0.489 (Table 3, with the Coulomb field) and the parameters are 

a = 16.14 MeV, and b = 1.18 M e V / f m  2 for r0 = 1.16 fro. In both cases, the numbers 

obtained from the parametrization are very close to the ones found by our code, which 

leads us to the conclusion that the definition for the surface energy given in Eq. (48) ,  

albeit approximate,  is a good one. 

The surface thickness t is defined as the width of  the region where the density drops 

from 0.9p80 to 0.1ps0, where PBO is the baryonic density at r = 0, after subtracting the 

background gas density. According to Ref. [ 13], for T = 0, o- should be of the order of  

1.25 MeV fm -2  and t of  the order of  2.2 fm. These values are related with saturation 

properties within the droplet. We obtain larger droplets than the ones shown in Tables 

2 and 3 if  larger sizes of  the mesh are considered. The surface energy increases with 

the size of  the droplet  until a saturation value is reached. For symmetric matter with 

the Coulomb field switched off, we have obtained for the saturation value of  the surface 

energy o- = 1.22 M e V / f m  2 for a droplet with radius 7.35 fm or larger. With the inclusion 

of  the Coulomb field, we have obtained o- = 1.21 M e V / f m  2 for a droplet with radius 

8.40 fm or larger. If  we keep increasing the mesh, the above values do not vary more 

than one per cent. 

At  this point some comments are in order. We have chosen to compare data corre- 

sponding to the same value of  the boundary conditions for a fixed size of  the mesh. 

For initial proton fractions smaller than 0.2 we do not get droplet  solutions (with 

Coulomb field included or not) .  For Yp(i) = 0.21 the surface energy is already very 

small, 0.05 M e V / f m  2 (see Tables 2 and 3).  Smaller initial proton fraction implies even 

smaller surface energy. In principle we obtain a solution as far as o- is still positive. For 

Yp ( i)  = 0.2 we get a solution with o" = 0.033 M e V / f m  2. Before drawing our conclusions, 

we would like to emphasize that in our calculations, the proton and neutron numbers are 

never fixed. They are output of  the results obtained for the fields and densities, which 

are solutions of  the differential equations. 

In Tables 2 and 3 we display the results found for the proton fractions at r = 0 

(Yp(i ) ) ,  the chemical potentials, the surface energy, its thickness, the smallest size of  

the mesh for which convergence is achieved, Rp, the neutron skin thickness, the central 

density and the proton fraction within the droplet defined as 

Y -  Bp 
Bp + N "  

The boundary conditions in entry i, i = 1 . . . . .  8 of  both tables are the same. Notice that 

there is a small discrepancy between the proton and neutron chemical potentials given 

in Table 1 and the ones displayed in Tables 2 and 3 for the reasons explained in the 

beginning of  this section. The difference between the values fo r / zp  and/xn in Tables 2 

and 3 are due to the inclusion of the Coulomb interaction. 

In the cases we have considered, the vapour phase has a zero proton fraction but a 
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Fig. 2. gs~b, gt, Vo and eAo x 10 (in this order, from top to bottom) are shown in terms of r. The fields are 
given in nucleon mass units and are obtained for symmetric nuclear matter. The solid lines are the results 
obtained without the Coulomb interaction and Rmesh = 4.2 fm. The dashed lines are the results obtained with 
the Coulomb interaction for Rmesh = 4.2 fin and the dotted lines for Rmesh = 4.4 fro. The Coulomb field is 
plotted in a different scale! (see last two lines of Table 3). 

non-zero neutron density except for symmetric nuclear matter, when the gas density is 

zero. This fact is interpreted as a droplet  with a given proton concentration (the phase 

of  higher densi ty)  in equilibrium with a gas of  drip neutrons. We have also verified that 

the larger the proton fraction, the smaller the size of the mesh for which convergence 

is first achieved. This may be due to the decrease of  neutron-proton asymmetry and 

therefore, the increase of  the droplet  binding. 

From Tables 2 and 3, one can check that the surface energy o- increases with the 

initial proton fraction and its thickness t decreases. In fact, the larger the proton fraction 

the less important  is the contribution from the b0 field in the o" calculation as can be 

seen from (48) .  

In the same tables the squared-off proton radius and the neutron skin thickness are 

also shown. The proton radius decreases with the increase of the proton fraction at r = 0 

for a fixed size of  the mesh. This behaviour could be a consequence of the increase 

of  the droplet  binding. In order to understand better the behaviour of  the neutron skin 

thickness O, we have included in Tables 2 and 3 the proton fraction within the droplet, 

Y. One can observe that O decreases with the increase of  Y for a fixed size of  the mesh, 

so that droplets with a smaller percentage of  protons inside present thicker neutron skins. 

The best way to understand the behaviour of  the fields and baryonic densities is by 

plotting them. As an example,  in Fig. 2 we plot the fields which are solutions of  the 

coupled equations for symmetric nuclear matter, given in the last line of Table 2 and 

last two lines of  Table 3. The curves show the results obtained without and with the 

Coulomb interaction for two distinct cases. In the first case, the calculation with and 

without the Coulomb was done for the same mesh size, e.g. 4.2 fm. This is the standard 

procedure adopted for all other proton fractions, except when the code with the Coulomb 

interaction does not converge and a larger size of  the mesh has to be used. In the second 
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Fig. 3. The density profiles for the baryons ps(r )  (top two curves, with - dashed line - and with no 
Coulomb field - full l ine) ,  the neutrons pn(r) and the protons pp(r) (last three curves)  in fm - 3  are 
plotted for symmetric  nuclear matter. The solid curves are the densities obtained without the inclusion of  
the electromagnetic field. Notice that, in this case, pp and Pn coincide. The dot-dashed line and the dotted 
line represent respectively pp and Pn with the Coulomb interaction. The size of  the mesh is 4.2 fm in both 
calculations. 
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Fig. 4. The same as in Fig. 3, but the Coulomb interaction is taken into account in a different manner, since 
the size of  the mesh in both calculations is slightly different (please, refer to Table 3).  

case, we have increased slightly the size of the mesh so that the baryonic density at 
r = 0 coincides in both cases. The results are displayed in the last line of Table 3. This 
procedure allows for the interpretation of the effect of the Coulomb field in a system 
with the same central density, as will be discussed below. The baryonic density plotted 
in Fig. 3 for the first case mentioned above and Fig. 4 for the second one represents a 
droplet of the liquid phase (small r) in the background of the vapour phase (large r). 

In Fig. 5 we plot the fields for asymmetric nuclear matter corresponding the entry 3 
in Tables 2 and 3 (Yp ..~ 0.3) and in Fig. 6 the corresponding density profiles. 

Figs. 3 and 6 show the behaviour of the total baryonic density. One can see that it 
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Fig. 5. gs~b, guVo, gpbo x ( - 2 )  and eAo × 10 (in this order, from top to bottom) are shown in terms of r. 
The fields are given in nucleon mass units and correspond to entry 3 in Tables 2 and 3 (Yp ~ 0.3). The solid 
lines are the results obtained without the Coulomb interaction. The dashed lines are the results obtained with 
the Coulomb interaction for the same size of the mesh as the previous result. 
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Fig. 6. From top to bottom the density profiles for the baryons p n (r ) ,  the neutrons pn(r) and the protons 
pp(r) in fm - 3  are plotted for Yp ~ 0.3. The solid and dashed lines correspond respectively to the results 
without and with the Coulomb field. In this case, pp and pn do not coincide. 

falls from the initial liquid density to the vapour density, which is zero for symmetric 

nuclear matter and different from zero in the other cases. 
Concerning the importance of the Coulomb interaction and its consequences in the 

droplet formation, one can see, from Figs. 3 and 6, that the proton and neutron densities 
are indeed modified by the electromagnetic field, as pointed out in [2].  For the same 
value of Yp at r = 0 and the same size of the mesh, an effect of the electromagnetic field, 
in the present calculation, is to decrease the number of particles in the droplet, since the 
central density becomes smaller. The protons and neutrons are pushed to the surface, 
which is confirmed in Fig. 4. The size of the droplet with the Coulomb field switched 
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on has to be increased with respect to the size of the droplet with no Coulomb field, in 
order to have the same baryonic density at r = 0. Comparing the last two columns of 

Tables 2 and 3 it is seen that the Coulomb field decreases the central density and the 
fraction of protons in the droplet, for the same boundary conditions, e.g. the same meson 

fields in the vapour phase. Another effect already referred to is the fact that droplets 
with a central Yp < 0.2 are not stable. From Tables 2 and 3 we also conclude that 

surface properties such as ~r, t and O are not modified or only slightly modified by the 

presence of the electromagnetic field. In summary, the Coulomb field affects mainly the 

bulk properties of the droplets, reducing the binding energy and obliging the particles 

to be further apart. 
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