
Globally Convergent Evolution Strategies

Y. Diouane∗ S. Gratton† L. N. Vicente‡

July 9, 2014

Abstract

In this paper we show how to modify a large class of evolution strategies (ES’s) for
unconstrained optimization to rigorously achieve a form of global convergence, meaning
convergence to stationary points independently of the starting point. The type of ES under
consideration recombines the parent points by means of a weighted sum, around which the
offspring points are computed by random generation. One relevant instance of such an ES
is CMA-ES (covariance matrix adaptation ES).

The modifications consist essentially of the reduction of the size of the steps whenever a
sufficient decrease condition on the function values is not verified. When such a condition is
satisfied, the step size can be reset to the step size maintained by the ES’s themselves, as long
as this latter one is sufficiently large. We suggest a number of ways of imposing sufficient
decrease for which global convergence holds under reasonable assumptions (in particular
density of certain limit directions in the unit sphere).

Given a limited budget of function evaluations, our numerical experiments have shown
that the modified CMA-ES is capable of further progress in function values. Moreover, we
have observed that such an improvement in efficiency comes without weakening significantly
the performance of the underlying method in the presence of several local minimizers.

Keywords: Evolution strategy, global convergence, sufficient decrease, covariance matrix
adaptation (CMA).

1 Introduction

In recent years, there has been significant and growing interest in derivative-free optimization
as represented by talks and publications in mainstream optimization conferences and journals;
see [9]. Optimization without derivatives is also the target area of a variety of widely used tech-
niques based on phenomena from nature. Evolutionary algorithms, a popular family of nature-
inspired methods, generate iterates through processes modeled on biological evolution, such as

∗CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France (diouane@cerfacs.fr). Support
for this author has been provided by Depth Imaging and High Performance Computing TOTAL Exploration &
Production, Avenue Larribau, 64018 Pau, France (PI Dr. Henri Calandra).

†ENSEEIHT, INPT, rue Charles Camichel, B.P. 7122 31071, Toulouse Cedex 7, France
(serge.gratton@enseeiht.fr).

‡CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (lnv@mat.uc.pt).
Support for this author was provided by FCT under grant PTDC/MAT/098214/2008 and by the Réseau
Thématique de Recherche Avancée, Fondation de Coopération Sciences et Technologies pour l’Aéronautique et
l’Espace, under the grant ADTAO.

1

recombination, mutation, and selection. Within evolutionary algorithms, evolution strategies
(ES’s) define search paradigms that specify how each ‘generation’ leads to the next and seem
particularly tailored to optimization with continuous variables; see [6, 17]. Despite addressing
the same problem domain, derivative-free optimization and evolution strategies have historically
had little connection, in part because of major differences in terminology and notation. The goal
of this paper is to help bridge this gap by describing how ideas from derivative-free methods for
unconstrained continuous optimization can improve the efficiency and rigorousness of a widely
used evolution strategy.

ES’s were originally developed in [27] for the unconstrained optimization of a function,
minx∈Rn f(x), and have been extensively investigated and tested (see, e.g., [6, 17] and the ref-
erences therein). In the large class of ES’s denoted by the notation (µ, λ)–ES, where µ > 1 and
λ are integers such that µ ≤ λ, a certain number λ of points are randomly generated in each
iteration, among which µ of them are selected as the best in terms of the objective function f .

Our discussion concentrates on the evolution strategy family denoted in the ES literature
by (µ/µW , λ)–ES, where the subscript ‘W’ signals the use of ‘recombination’ via weights, as
described next. Broadly speaking, at iteration k a candidate minimizer xk is used to produce
a generation of λ ‘offspring’, each consisting of xk plus a scalar multiple of a random direction;
the best µ of these are retained as ‘parents’ for the next generation (‘selection’), and xk+1 is
taken as a weighted combination (‘recombination’) of these parents. One relevant instance of
such an ES is covariance matrix adaptation ES (CMA-ES) [21].

Derivative-free optimization [9] is a field of nonlinear optimization where methods that do not
use derivatives have been developed and rigorously analyzed. There are essentially two classes
of algorithms, namely model-based and direct-search methods. However, both are rigorous in
the sense of being globally convergent (as it is known in the field of nonlinear optimization).

By global convergence we mean some form of convergence to some form of
first-order stationarity, independent of the starting point.

(1)

Model-based and direct-search methods achieve global convergence based on the principle of
rejecting steps that are too large and do not provide a certain decrease in the objective function
value, retracting the search to a smaller region where the quality of the model or of the sampling
eventually allows some progress.

To the best of our knowledge, there are no global convergence results (in the sense of (1))
for ES’s, and in particular for (µ/µW , λ)–ES; see [5, 15, 22, 23] for asymptotic results about a
(1, λ)–ES, where a single parent is considered and thus ‘recombination’ is not allowed. The goal
of this paper is to add the desirable property of global convergence to ES’s by systematically
controlling the scalar step size taken in defining each generation of offspring so that a certain
decrease is ensured on the objective function.

The technique that we use to globalize such ES’s resembles what is done in direct search. In
particular, given the type of random sampling used in these ES’s, our work is inspired by direct-
search methods for nonsmooth functions, where one must use a set of directions asymptotically
dense in the unit sphere [4, 29] (more rigorously, a set of directions for which certain limit
directions are dense in the unit sphere). Note that random sampling in these ES’s would have
to be discrete rather than continuous to allow an integer lattice underlying structure for the
iterates (like in MADS [4]). We will thus use a sufficient decrease condition (as opposed to
just a simple decrease) to accept new iterates and ensure global convergence. Our approach is
similar to direct-search methods based on positive spanning sets for smooth objective functions,

2

like frame-based methods [10] or generating set searches [24], or based on asymptotically dense
sets for the nonsmooth case [29]. By a sufficient decrease we mean a decrease of the type
f(xk+1) ≤ f(xk)−ρ(σk), where σk stands for the step-size parameter and ρ(·) is called a forcing
function [24] obeying, in particular ρ(σ)/σ → 0 when σ → 0.

One way of imposing sufficient decrease in the type of ES’s under consideration is to apply
it directly to the sequence of weighted means. However, ES’s are population-based algorithms
where a sample set of offspring is generated at every iteration. Other forms of imposing this type
of decrease which are also globally convergent involve the maximum value of the best offspring.
In fact, requiring a sufficient decrease on the sequence of maximum best offspring values renders
a globally convergent algorithm. Furthermore, requiring this maximum value to sufficiently
decrease the weighted mean leads also to global convergence.

The paper is organized as follows. We first describe in Section 2 the class of evolution
strategies (ES’s) to be considered. Then, in Section 3, we show how to modify such algorithms
to enable them for global convergence. Section 4 is devoted to the analysis of global convergence
of the modified versions of the ES’s. Our numerical experiments comparing the different modified
versions of CMA-ES [20, 21] are described in Section 5. Finally, in Section 6, we draw some
conclusions and describe future work.

2 A Class of Evolution Strategies

As we said in the introduction, we focus on the subclass of (µ, λ)–ES denoted by (µ/µW , λ)–ES
where, at the k-th iteration, the new offspring y1k+1, . . . , y

λ
k+1 are generated around a weighted

mean xk of the previous parents ỹ1k, . . . , ỹ
µ
k . The generation process of the new offspring points

is done by yik+1 = xk + σES
k dik, i = 1, . . . , λ, where dik is drawn from a certain distribution Ck

and σES
k is a chosen step size. The weights used to compute the means belong to the simplex

set S = {(ω1, . . . , ωµ) ∈ Rµ :
∑µ

i=1w
i = 1, wi ≥ 0, i = 1, . . . , µ}, and their values reflect

the contribution of each of the previous parents in the weighted mean xk. The algorithmic
description of such a class of ES’s is given below.

Algorithm 2.1 A Class of Evolution Strategies

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Choose an initial x0, an
initial step length σES

0 > 0, an initial distribution C0, and initial weights (ω1
0, . . . , ω

µ
0) ∈ S.

Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ
k+1} such that

yik+1 = xk + σES
k dik,

where dik is drawn from the distribution Ck, i = 1, . . . , λ.

2. Parent Selection: Evaluate f(yik+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1k+1, . . . , ỹ
λ
k+1} by increasing order: f(ỹ1k+1) ≤ · · · ≤ f(ỹλk+1).

3

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1}, and compute

their weighted mean

xk+1 =

µ∑
i=1

ωi
kỹ

i
k+1.

3. Updates: Update the step length σES
k+1, the distribution Ck+1, and the weights (ω1

k+1, . . . ,
ωµ
k+1) ∈ S. Increment k and return to Step 1.

The specific forms of the updates of the ES step length σES
k+1 and of the ES distribution Ck+1

are not relevant for the modified globally convergent ES versions to be introduced and analyzed
in the next two sections. A particular form of these updates (known as CMA-ES) will be used
in the numerical experiments.

3 A Class of Globally Convergent ES’s

The main question we address in this paper is how to change Algorithm 2.1, in a minimal way,
so that it enjoys some form of convergence properties, while preserving as much as possible the
original design and goals. We will target at global convergence in the sense of (1), in other
words we would like to prove some limit form of stationarity for any output sequence of iterates
generated by the algorithm (i.e., for any realization of the algorithm), and we would like to do
this independently of the starting point.

The modifications to the algorithm will be essentially two, and they have been widely used
in the field of nonlinear optimization, with and without derivatives. First we need to control the
size of the steps taken, and thus we will update separately a step-size parameter σk, letting it
take the value of σES

k whenever possible. Controlling the step size is essential as we know that
steps used in nonlinear optimization may be too large away from stationarity — an example is
Newton’s method without a line search, which may take arbitrarily large steps if not started
sufficiently close to a problem solution. Secondly we need to impose some form of sufficient
decrease on the objective function values to be able to declare an iteration successful and thus
avoid a step-size reduction. These two techniques, step-size update and imposition of sufficient
decrease on the objective function values, are thus closely related since an iteration is declared
unsuccessful and the step size reduced when the sufficient decrease condition is not satisfied.
Moreover, this condition involves a function ρ(σk) of the step size σk, where ρ(·) is a forcing
function [24], i.e., a positive, nondecreasing function defined in R+ such that ρ(t)/t → 0 when
t ↓ 0 (one can think for instance of ρ(t) = t2).

Since Algorithm 2.1 evaluates the objective function at the offspring sample points but then
computes new points around a weighted sum of the parents selected, it is not clear how one
can impose sufficient decrease. In fact, there are several ways of proceeding. A first possibility
(denoted by mean/mean) is to require the weighted mean to sufficiently decrease the objective
function, see the inequality (3) below, which obviously requires an extra function evaluation per
iteration.

A second possibility to impose sufficient decrease (referred to as max/max), based entirely on
the objective function values already computed for the parent samples, is to require the maximum
of these values to be sufficiently decreased, see the inequality (4). Another possibility is to
combine these two approaches, asking the new maximum value to reduce sufficiently the value
of the previous mean or, vice-versa, requiring the value of the new mean to reduce sufficiently

4

the previous maximum. The difficulty in proving global convergence in the latter possibility
made us consider only the first one, called max/mean, see the inequality (5).

Version mean/mean is clear in the sense that it imposes the sufficient decrease condition
directly on the function values computed at the sequence of minimizer candidates, the weighted
sums. It is also around these weighted sums that new points are randomly generated. Versions
max/max and mean/max, however, operate based or partially based on the function values at
the parents samples (on the maximum of those). Thus, in these two versions, one needs to
impose a condition of the form (2) below to balance the function values at the parents samples
and the function value at the weighted sum. (A certificate of convexity of the objective function
would make condition (2) true for any weights in S, but neither such a certificate is realistic
when optimizing without derivatives nor would perhaps the type of techniques explored in this
paper be the most appropriate under such a scenario.)

The modified form of the ES’s of Algorithm 3.1 is described below. Note that one also
imposes bounds on all directions dik used by the algorithm. This modification is, however, very
mild since the lower bound dmin can be chosen very close to zero and the upper bound dmax set
to a very large number. Moreover, one can think of working always with normalized directions
which removes the need to impose such bounds.

Algorithm 3.1 A Class of Globally Convergent ES’s

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial x0, evaluate
f(x0) in versions mean/mean and max/mean, and set xµ0 = x0 for max/max. Choose initial
step lengths σ0, σ

ES
0 > 0, an initial distribution C0, and initial weights (ω1

0, . . . , ω
µ
0) ∈ S.

Choose constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select
a forcing function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ
k+1} such that

yik+1 = xk + σkd
i
k,

where dik is drawn from the distribution Ck and obeys dmin ≤ ∥dik∥ ≤ dmax, i = 1, . . . , λ.

2. Parent Selection: Evaluate f(yik+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1k+1, . . . , ỹ
λ
k+1} by increasing order: f(ỹ1k+1) ≤ · · · ≤ f(ỹλk+1).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1}, and compute

their weighted mean

xtrialk+1 =

µ∑
i=1

ωi
kỹ

i
k+1.

Evaluate f(xtrialk+1). In versions max/max and max/mean, update the weights, if necessary,
such that (ω1

k, . . . , ω
µ
k) ∈ S and

f(xtrialk+1) = f

(
µ∑

i=1

ωi
kỹ

i
k+1

)
≤

µ∑
i=1

ωi
kf(ỹ

i
k+1). (2)

5

3. Imposing Sufficient Decrease:

If (version mean/mean)
f(xtrialk+1) ≤ f(xk)− ρ(σk), (3)

or (version max/max)
f(ỹµk+1) ≤ f(xµk)− ρ(σk), (4)

or (version max/mean)
f(ỹµk+1) ≤ f(xk)− ρ(σk), (5)

then consider the iteration successful, set xk+1 = xtrialk+1 , and σk+1 ≥ σk (for example

σk+1 = max{σk, σES
k }).

Set xµk+1 = ỹµk+1 in version max/max.

Otherwise, consider the iteration unsuccessful, set xk+1 = xk (and xµk+1 = xµk for max/max)
and σk+1 = β̄kσk, with β̄k ∈ (β1, β2).

4. ES Updates: Update the ES step length σES
k+1, the distribution Ck, and the weights (ω1

k+1,
. . . , ωµ

k+1) ∈ S. Increment k and return to Step 1.

One can see that the imposition of (2) may cost additional function evaluations per iteration.
Several iterative schemes (with finite successful termination) can be envisioned to update the
weights within Step 2 so that (2) is eventually satisfied. The guarantee of a finite successful
termination for such schemes comes from the fact that ω1

k = 1, and ωi
k = 0, i = 2, . . . , µ, trivially

satisfies (2).
The class (µ/µW , λ)–ES (Algorithm 2.1) is non-elitist since the next parents are selected

only from the current offspring rather than from the combined set of the current parents and
offspring all together. The former case would lead to an elitist type of ES since the parents
would always be the best points computed so far. However, the modifications that we introduce
in Algorithm 3.1 to promote global convergence do lead to some elitism (in the sense that, for
instance, in the mean/mean version, we always keep the best mean so far computed).

4 Convergence

Under appropriate assumptions we will now prove global convergence (1) of the modified versions
of the considered class of ES’s. The objective function f will be assumed bounded from below
in Rn and Lipschitz continuous near appropriate limit points.

As we have seen before, an iteration is considered successful only if it produces a point
that has sufficiently decreased some value of f . Insisting on a sufficient decrease will guarantee
that a subsequence of step sizes will converge to zero. In fact, since ρ(σk) is a monotonically
nondecreasing function of the step size σk, we will see that such a step size cannot be bounded
away from zero since otherwise some value of f would tend to −∞. Imposing sufficient decrease
will make it harder to have a successful step and therefore will generate more unsuccessful
steps. We start thus by showing that there is a subsequence of iterations for which the step-size
parameter σk tends to zero.

Lemma 4.1 Consider a sequence of iterations generated by Algorithm 3.1 without any stopping
criterion. Let f be bounded below. Then lim infk→+∞ σk = 0.

6

Proof. Suppose that there exists a σ > 0 such that σk > σ for all k. If there is an infinite
number of successful iterations, this contradicts the fact that f is bounded below.

In fact, since ρ is a nondecreasing, positive function, one has ρ(σk) ≥ ρ(σ) > 0. Let
us consider the three versions separately. In the version mean/mean, we obtain f(xk+1) ≤
f(xk)− ρ(σ) for all k, which obviously contradicts the boundedness below of f . In the version
max/max, we obtain f(xµk+1) ≤ f(xµk) − ρ(σ) for all k, which also trivially contradicts the
boundedness below of f . For the max/mean version, one has

f(ỹik+1) ≤ f(xµk+1) ≤ f(xk)− ρ(σk), i = 1, . . . , µ.

Thus, multiplying these inequalities by the weights ωi
k, i = 1, . . . , µ, and adding them up, lead

us to
µ∑

i=1

ωi
kf(ỹ

i
k+1) ≤ f(xk)− ρ(σk),

and from condition (2) imposed on the weights in Step 2 of Algorithm 3.1, we obtain f(xk+1) ≤
f(xk)− ρ(σk), and the contradiction is also easily reached.

The proof is thus completed if there is an infinite number of successful iterations. However, if
no more successful iterations occur after a certain order, then this also leads to a contradiction.
The conclusion is that one must have a subsequence of iterations driving σk to zero.

From the fact that σk is only reduced in unsuccessful iterations and by a factor not approach-
ing zero, one can then conclude the following.

Lemma 4.2 Consider a sequence of iterations generated by Algorithm 3.1 without any stopping
criterion. Let f be bounded below.

There exists a subsequence K of unsuccessful iterates for which limk∈K σk = 0.
If the sequence {xk} is bounded, then there exists an x∗ and a subsequence K of unsuccessful

iterates for which limk∈K σk = 0 and limk∈K xk = x∗.

Proof. From Lemma 4.1, there must exist an infinite subsequence K of unsuccessful iterates
for which σk+1 goes to zero. In a such case we have σk = (1/β̄k)σk+1, β̄k ∈ (β1, β2), and β1 > 0,
and thus σk → 0, for k ∈ K, too.

The second part of the lemma is also easily proved by extracting a convergent subsequence
of the subsequence K of the first part for which xk converges to x∗.

The above lemma ensures under mild conditions the existence of convergent subsequences
of unsuccessful iterations for which the step size tends to zero. Such type of subsequences have
been called refining [3]. It has also been suggested in [3] to extract global convergence (1) purely
from refining subsequences.

We assume that the function f is Lipschitz continuous near the limit point x∗ of a refining
subsequence, so that the Clarke generalized derivative [8]

f◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

exists for all d ∈ Rn. The point x∗ is then Clarke stationary if f◦(x∗; d) ≥ 0, ∀d ∈ Rn.
Global convergence of our various modified ES versions is then proved as suggested in [4], by

first establishing that the Clarke derivative is nonnegative along certain limit directions (called

7

refining directions in [4]) and then by imposing that such directions are dense in the unit sphere.
Our overall approach follows what was done in [29] for direct search where such type of analysis
was first combined with the use of a forcing function (simplifying considerably the generation of
directions which is then free of enforcing sampling points in integer lattices as in [4]).

Our first global convergence result concerns only the mean/mean version.

Theorem 4.1 Consider the version mean/mean and let ak =
∑µ

i=1 ω
i
kd

i
k. Assume that the

directions dik’s and the weights ωi
k’s are such that ∥ak∥ is bounded away from zero when σk → 0.

Let x∗ be the limit point of a convergent subsequence of unsuccessful iterates {xk}K for which
limk∈K σk = 0. Assume that f is Lipschitz continuous near x∗ with constant ν > 0.

If d is a limit point of {ak/∥ak∥}K , then f◦(x∗; d) ≥ 0.
If the set of limit points {ak/∥ak∥}K is dense in the unit sphere, then x∗ is a Clarke stationary

point.

Proof. Let d be a limit point of {ak/∥ak∥}K . Then it must exist a subsequence K ′ of K
such that ak/∥ak∥ → d on K ′. On the other hand, we have for all k that

xtrialk+1 =

µ∑
i=1

ωi
kỹ

i
k+1 = xk + σk

µ∑
i=1

ωi
kd

i
k = xk + σkak,

and, for k ∈ K,
f(xk + σkak) > f(xk)− ρ(σk).

Also, since the directions dik and the weights are bounded above for all k and i, ak is bounded
above for all k, and so σk∥ak∥ tends to zero when σk does.

Thus, from the definition of the Clarke generalized derivative,

f◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

≥ lim sup
k∈K′

f(xk + σk∥ak∥(ak/∥ak∥))− f(xk)

σk∥ak∥
− rk,

where, from the Lipschitz continuity of f near x∗,

rk =
f(xk + σkak)− f(xk + σk∥ak∥d)

σk∥ak∥
≤ ν

∥∥∥∥ ak
∥ak∥

− d

∥∥∥∥
tends to zero on K ′. Finally, since ∥ak∥ is bounded away from zero in K ′,

f◦(x∗; d) ≥ lim sup
k∈K′

f(xk + σkak)− f(xk) + ρ(σk)

σk∥ak∥
− ρ(σk)

σk∥ak∥
− rk

= lim sup
k∈K′

f(xk + σkak)− f(xk) + ρ(σk)

σk∥ak∥
≥ 0.

Since the Clarke generalized derivative f◦(x∗; ·) is continuous in its second argument [8], it is
then evident that if the set of limit points {ak/∥ak∥}K is dense in the unit sphere, f◦(x∗; d) ≥ 0
for all d ∈ Rn.

8

When f is strictly differentiable at x∗ (in the sense of Clarke [8], meaning that there exists
∇f(x∗) such that f◦(x∗; d) = ⟨∇f(x∗), d⟩ for all d) we immediately conclude that ∇f(x∗) = 0.

Let us now discuss the assumptions of Theorem 4.1. First, we should point out that the
assumption regarding the directions ak, in particular their density in the unit sphere, applies
to a given refining subsequence K and not to the whole sequence of iterates. However, such
a strengthening of the requirements on the density of the directions seems necessary for these
type of directional methods (see [4, 29]).

Then, the question that arises concerns the density in general of the ak’s in the unit sphere.
For the purpose of this discussion, and to keep things simple, let us assume that the weights are
fixed for all k (which is a valid choice for Theorem 4.1). Let us assume also that dik’s are drawn
from a multivariate normal distribution with mean 0 and covariance matrix C. The direction
ak =

∑µ
i=1 ω

idik is then a realization of a random vector A following a multivariate normal
distribution with mean 0 and covariance matrix

∑µ
i=1(ω

i)2C. Then, for any y ∈ Rn such that
∥y∥ = 1 and for any δ ∈ (0, 1), there exists a positive constant η such that

P (cos(A/∥A∥, y) ≥ 1− δ) ≥ η

since the calculation of this probability results from integrating the Gaussian density function
over a set {y ∈ Rn : cos(A/∥A∥, y) ≥ 1 − δ} of nonzero Lebesgue measure. This property
guarantees us the density of the ak’s in the unit sphere (with probability one).

Finally, under the random generation framework of the previous paragraph one can also see
that we could fix an ϵ > 0 (preferably small) at the initialization of the algorithm and then
re-sample the dik’s again whenever ∥ak∥ < ϵ. The density of the ak’s in the unit sphere (with
probability one) would then result from the fact that, for the same reasons, for any y ∈ Rn such
that ∥y∥ = 1 and for any δ ∈ (0, 1), there would still exist a positive constant η such that

P (cos(A/∥A∥, y) ≥ 1− δ, ∥A∥ ≥ ϵ) ≥ η.

Now, we prove global convergence for the two other versions (max/max and max/mean).

Theorem 4.2 Consider the versions max/max and max/mean. Let x∗ be the limit point of a
convergent subsequence of unsuccessful iterates {xk}K for which limk∈K σk = 0. Assume that f
is Lipschitz continuous near x∗ with constant ν > 0.

If d is a limit point of {dikk /∥dikk ∥}K , where ik ∈ argmax1≤i≤µ f(y
i
k+1), then f◦(x∗; d) ≥ 0.

If, for each i ∈ {1, . . . , µ}, the set of limit points {dik/∥dik∥}K is dense in the unit sphere,
then x∗ is a Clarke stationary point.

Proof. The proof follows along the same lines as the proof of the mean/mean version. In
the max/max case, one has for k ∈ K,

f(ỹµk+1) > f(xµk)− ρ(σk),

which implies for a certain ik that

f(yikk+1) = f(ỹµk+1) > f(xµk)− ρ(σk).

Now, notice that xµk+1 = xµk = · · · = xµk−pk
, where k − pk − 1 is the index of the last successful

iteration before k. Thus,

f(yikk+1) > f(xµk−pk
)− ρ(σk) ≥ f(ỹik−pk

)− ρ(σk), i = 1, . . . , µ.

9

Multiplying these inequalities by the weights ωi
k−pk−1, i = 1, . . . , µ, and adding them up implies

f(yikk+1) >

µ∑
i=1

ωi
k−pk−1f(ỹ

i
k−pk

)− ρ(σk),

Condition (2) imposed on the weights in Step 2 of Algorithm 3.1 with k replaced by k − pk − 1
implies

f(yikk+1) > f

(
µ∑

i=1

ωi
k−pk−1ỹ

i
k−pk

)
− ρ(σk).

Since
∑µ

i=1 ω
i
k−pk−1ỹ

i
k−pk

= xtrialk−pk
= xk−pk = xk (because k−pk−1 is successful and k−pk, . . . , k

are unsuccessful) and yikk+1 = xk + σkd
ik
k , we arrive at

f(xk + σkd
ik
k) > f(xk)− ρ(σk). (6)

(If there is no successful iteration before the k-th one, then, since x0 = xµ0 , we will directly
obtain (6).)

Note that in the max/mean version we arrive directly at f(xk + σkd
ik
k) > f(xk)− ρ(σk).

From this point, and for both cases (max/max and max/mean), the proof is nearly identical
to the proof of Theorem 4.1 (in particular note that dikk is forced to be bounded away from zero
by Algorithm 3.1).

Again, when f is strictly differentiable at x∗, we conclude that ∇f(x∗) = 0. In Theorem 4.2
one also has the same issue regarding the density of the directions on the unit sphere being
assumed for a given refining subsequence K rather then for the whole sequence of iterates.

5 Numerical Results

We conduct a number of numerical experiments to measure the effect of our modifications into
ES’s. We are mainly interested in observing the changes that occur in ES’s in terms of an efficient
and robust search of stationarity. We choose CMA-ES [20, 21] as our evolutionary strategy, on
top of which we test our globally convergent modifications. CMA-ES appeared well ranked in a
comparative study published in [28], among the tested stochastic solvers. In addition, we then
add a comparison with a direct-search method (MADS, mesh adaptive direct search [4]).

5.1 CMA-ES

In CMA-ES [20] the distributions Ck are multivariate normal distributions. The weights are kept
constant and besides belonging to the simplex S they also satisfy ω1 ≥ · · · ≥ ωµ > 0. Briefly
speaking and using the notation of our paper, CMA-ES updates the covariance matrix of Ck as
follows:

CCMA-ES
k+1 = (1− c1 − cµ)C

CMA-ES
k + c1(p

c
k+1)(p

c
k+1)

⊤ + cµ

µ∑
i=1

ωi (d
i
k)(d

i
k)

⊤,

where c1, cµ are positive constants depending on n, and pck+1 ∈ Rn is the current state of the
so-called evolution path, updated iteratively as

pck+1 = (1− cC)p
c
k + hσ[cC(2− cC)µf]

1
2 (xk+1 − xk)/σ

CMA-ES
k ,

10

where pc0 = 0 and cC is a positive constant depending on n (see [16] for the choice of the scaling
factor hσ). One can see that CCMA-ES

k+1 is updated by a sum of rank-one matrices. One of the
rank-one terms involves the mean difference (from current to past iteration) and the remaining
ones the directions generated at the current iteration. The step length of CMA-ES is defined as
follows:

σCMA-ES
k+1 = σCMA-ES

k exp

(
cσ
dσ

(∥pσk+1∥
E∥N (0, I)∥

− 1

))
,

where E∥N (0, I)∥ =
√
2Γ(n+1

2)/Γ(n2) is the expectation of the ℓ2 norm of an N(0, I) distributed
random vector, cσ, dσ are positive constants, and pσk+1 ∈ Rn is the current state of the so-called
conjugate evolution path (see [20]).

5.2 Algorithmic Choices for the Modified CMA-ES Versions

In this subsection, we list the parameters and updates chosen in Algorithm 3.1. The values of
λ and µ and of the initial weights are the same as in the CMA-ES implementation in [16]:

λ = 4 + floor(3 log(n)),

µ = floor(λ/2),

ωi
0 = ai/(a1 + · · ·+ aµ), with ai = log(λ/2 + 1/2)− log(i), i = 1, . . . , µ,

where floor(·) rounds to the nearest integer no larger than the number given. The values for c1,
cµ, cC , cσ, and dσ are chosen also as in the CMA-ES implementation (see [16]) as

c1 = 2/((n+ 1.3)2 + µf),

cµ = min{1− c1, 2(µf − 2 + 1/µf)/((n+ 2)2 + µf)},
cC = (4 + µf/n)/(n+ 4 + 2µf/n),

cσ = (µf + 2)/(n+ µf + 5),

dσ = 1 + 2max{0, [(µf − 1)/(n+ 1)]
1
2 − 1}+ cσ, with

µf = (ω1
0 + · · ·+ ωµ

0)
2/((ω1

0)
2 + · · ·+ (ωµ

0)
2).

The initial step length parameters are set to σ0 = σCMA-ES
0 = 1. The forcing function selected

is ρ(σ) = 10−4σ2.
To reduce the step length in unsuccessful iterations we use σk+1 = 0.5σk which corresponds

to setting β1 = β2 = 0.5. In successful iterations, we use σk+1 = max{σk, σCMA-ES
k }, in an

attempt to reset the step length to the ES one whenever possible.
The directions dik, i = 1, . . . , λ, are drawn from the multivariate normal distribution Ck

updated by CMA-ES, scaled if necessary to obey the safeguards dmin ≤ ∥dik∥ ≤ dmax, with
dmin = 10−10, dmax = 1010. In our experiments, we have never seen a run where there was a
need to impose these safeguards.

Updating the weights in Step 2 of Algorithm 3.1 to enforce (2) was not included in the runs
reported in this paper. On the one hand, we wanted the least amount of changes in CMA-ES.
On the other hand, such an update of the weights in Step 2 did not seem to have a real impact
on the results for versions max/max and mean/max, perhaps due to the convexity near the
solutions present in many of the problems.

11

5.3 Test Set

Our test set P is the one suggested in [26] and comprises 22 nonlinear vector functions from the
CUTEr collection [14]. The problems in P are defined by a vector (kp, np,mp, sp) of integers. The
integer kp is a reference number for the underlying CUTEr vector function, np is the number of
variables, mp is the number of components F1, . . . , Fmp of the corresponding vector function F .
The integer sp ∈ {0, 1} defines the starting point via x0 = 10spxs, where xs is the standard
CUTEr starting point for the corresponding function. According to [26], the use of sp = 1 is
helpful for testing solvers from a more remote starting point since the standard starting point
tends to be close to a solution for many of the problems. The test set P is formed by 53 different
problems for which np and mp satisfy

2 ≤ np ≤ 12, 2 ≤ mp ≤ 65, p = 1, . . . , 53.

Table 1 contains the distribution of np across the problems. For other details see [26].

np 2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

Table 1: The distribution of np in the test set.

The test problems have been considered in four different types, each having 53 instances:
smooth (least squares problems obtained from applying the ℓ2 norm to the vector functions);
nonstochastic noisy (obtained by adding oscillatory noise to the smooth ones); piecewise smooth
(as in the smooth case but using the ℓ1 norm instead); stochastic noisy (obtained by adding
random noise to the smooth ones).

5.4 Results using Data and Performance Profiles

To compare our modified CMA-ES versions among each other and against the pure one, we
chose to work with two types of profiles, data and performance profiles.

5.4.1 Data Profiles

Data profiles [26] were designed for derivative-free optimization and show how well a solver
performs, given some computational budget, when asked to reach a specific reduction in the
objective function value, measured by

f(x0)− f(x) ≥ (1− α)[f(x0)− fL],

where α ∈ (0, 1) is the level of accuracy, x0 is the initial iterate, and fL is the best objective
value found by all solvers tested for a specific problem within a given maximal computational
budget. In derivative-free optimization, such budgets are typically measured in terms of the
number of objective function evaluations.

Data profiles plot the percentage of problems solved by the solvers under consideration for
different values of the computational budget. These budgets are expressed in terms of the
number of points (n+ 1) required to form a simplex set, allowing the combination of problems
of different dimensions in the same profile. Note that a different function of n could be chosen,

12

but n + 1 is natural in derivative-free optimization (since it is the minimum number of points
required to form a positive basis, a simplex gradient, or a model with first-order accuracy).

In our experiments we use a maximal computational budget of 50n function evaluations, as
we are primarily interested in the behavior of the algorithms for problems where the evaluation of
the objective function is expensive. As for the levels of accuracy, we chose two values, α = 10−3

and α = 10−7. Since the best objective value fL is chosen as the best value found by all solvers
considered, but under a relatively low maximal computational budget, it makes some sense to
consider a high accuracy level (like 10−7 or less).

5.4.2 Performance Profiles

Given a set of problems P (of cardinality |P|) and a set of solvers S, the performance profile [12]
ρs(τ) of a solver s is defined as the fraction of problems where the performance ratio rp,s is at
most τ

ρs(τ) =
1

|P|
size{p ∈ P : rp,s ≤ τ}.

The performance ratio rp,s is in turn defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s > 0 measures the performance of the solver s when solving problem p (seen here as
a cost, like number of function evaluations). Better performance of the solver s, relatively to
the other solvers on the set of problems, is indicated by higher values of ρs(τ). In particular,
efficiency is measured by ρs(1) (the fraction of problems for which solver s performs the best)
and robustness is measured by ρs(τ) for τ sufficiently large (the fraction of problems solved
by s). Following the suggestion in [12] for a better visualization, we will plot the performance
profiles in a log2-scale (for which τ = 1 will correspond to τ = 0).

It was suggested in [13] to use the same (scale invariant) convergence test for all solvers
compared using performance profiles. The convergence test used in our experiments is

f(x)− f∗ ≤ α(|f∗|+ 1),

where α is an accuracy level and f∗ is an approximation for the optimal value of the problem
being tested. The convention rp,s = +∞ is used when the solver s fails to satisfy the convergence
test on problem p. We compute f∗ as the best objective function value found by the four CMA-
ES solvers (our three modified versions and the pure one) using an extremely large computational
budget (a number of function evaluations equal to 500000). Thus, in this case, and as opposed
to the data profiles case, it makes more sense not to select the accuracy level too small, and our
tests were performed with α = 10−2, 10−4. The performance profiles were then computed for a
maximum of 1500 function evaluations.

5.4.3 The Results

First we have compared the three modified versions of CMA-ES (mean/mean, max/max, and
max/mean) among each other. Our experiments have shown that the mean/mean version
emerges as the best one. We report here only the results for the class of smooth problems

13

of Section 5.3 (see Figure 1 for the corresponding two data profiles and Figure 2 for the cor-
responding two performance profiles), since the results for the other three classes of problems
of Section 5.3 follow a similar trend. Note that from the performance profiles of Figure 2 it
also becomes clear that the version max/mean performs poorly, an effect we have observed in
particular for unimodal functions.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for smooth problems, α=0.001

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

mean/mean
max/mean
max/max

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for smooth problems, α=1e−07

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

mean/mean
max/mean
max/max

(b) Accuracy level of 10−7.

Figure 1: Data profiles computed for the set of smooth problems, considering the two levels of
accuracy, 10−3 and 10−7 (for the three modified versions).

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for smooth problems, α=0.01

mean/mean
max/mean
max/max

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for smooth problems, α=0.0001

mean/mean
max/mean
max/max

(b) Accuracy level of 10−4.

Figure 2: Performance profiles computed for the set of smooth problems with a logarithmic
scale, considering the two levels of accuracy, 10−2 and 10−4 (for the three modified versions).

Next, we compare the pure and the mean/mean CMA-ES versions with MADS (mesh adap-
tive direct search) for which we use the implementation given in the NOMAD package [1, 2, 25],
version 3.6.1 (C++ version linked to Matlab via a mex interface), where we enable the option
DISABLE MODELS, meaning that no modeling is used in MADS, both in the search step and in
the construction of directions (and their order of usage) in the poll step.

14

Figures 3–6 report the data profiles obtained by the mean/mean and pure versions and by
MADS, for the four types of problems, considering the two different levels of accuracy, α = 10−3

and α = 10−7 (Figure 3: smooth problems; Figure 4: nonstochastic noisy problems; Figure 5:
piecewise smooth problems; Figure 6: stochastic noisy problems).

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for smooth problems, α=0.001

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for smooth problems, α=1e−07

Units of budget
P

er
ce

nt
ag

e
of

 p
ro

bl
em

s
so

lv
ed

cma−es
mean/mean
mads

(b) Accuracy level of 10−7.

Figure 3: Data profiles computed for the set of smooth problems, considering the two levels of
accuracy, 10−3 and 10−7.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for nonstochastic noisy problems, α=0.001

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for nonstochastic noisy problems, α=1e−07

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(b) Accuracy level of 10−7.

Figure 4: Data profiles computed for the set of nonstochastic noisy problems, considering the
two levels of accuracy, 10−3 and 10−7.

Figures 7–10 report performance profiles obtained by the mean/mean and pure versions
and by MADS, for the four types of problems, considering the two different levels of accuracy,
α = 10−2 and α = 10−4 (Figure 7: smooth problems; Figure 8: nonstochastic noisy problems;
Figure 9: piecewise smooth problems; Figure 10: stochastic noisy problems).

MADS exhibits a slightly better performance than the mean/mean version in the data profiles
(which test smaller budgets). However, when the budget is larger, as it is the case in the

15

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for piecewise smooth problems, α=0.001

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for piecewise smooth problems, α=1e−07

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(b) Accuracy level of 10−7.

Figure 5: Data profiles computed for the set of piecewise smooth problems, considering the two
levels of accuracy, 10−3 and 10−7.

performance profiles, the mean/mean version performs roughly the same as MADS in efficiency
but better in robustness. The advantage of the mean/mean version over the pure one is clear,
either in the data or in the performance profiles, with the exception of the piecewise problems
where the pure version overcomes in terms of robustness both the mean/mean version and MADS
(see the corresponding performance profiles).

5.5 Some Global Optimization Experiments

In this section we assess the impact of our modifications on the ability of CMA-ES to identify
the global minimum on problems with a high number of different local minimizers.

We recall that the mean/mean version exhibited the best performance among the three
modified versions of CMA-ES on the test set mentioned in Section 5.3. Therefore, in this
section we will report a comparison of CMA-ES only against this version.

The test set is composed of the 19 highly multi-modal problems used in [19, 18], where the
last 9 are noisy (see Tables 2–3). We select dimensions n = 10, 20, and, for each dimension,
population sizes of λ = 2n, 10n. For each case and using a large maximal computational budget,
we run our mean/mean CMA-ES version and pure CMA-ES, from 20 different starting points
randomly chosen using the Matlab function randn. We then compute the median of all the 20
‘optimal’ values found for each algorithm as well as the median of the respective number of
function evaluations taken.

Problem Number 1 2 3 4 5 6 7 8 9 10
Problem index in [19] f15 f16 f17 f18 f19 f20 f21 f22 f23 f24

Table 2: Noiseless problems.

Each run terminates when the function value falls below a certain fitness value, chosen as
f∗ + 10−7, where f∗ is the optimal value of the corresponding problem, or when the number
of function evaluations reaches 250000. To avoid division by large numbers we also stop a run

16

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for stochastic noisy problems, α=0.001

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles for stochastic noisy problems, α=1e−07

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

cma−es
mean/mean
mads

(b) Accuracy level of 10−7.

Figure 6: Data profiles computed for the set of stochastic noisy problems, considering the two
levels of accuracy, 10−3 and 10−7.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for smooth problems, α=0.01

cma−es
mean/mean
mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for smooth problems, α=0.0001

cma−es
mean/mean
mads

(b) Accuracy level of 10−4.

Figure 7: Performance profiles computed for the set of smooth problems with a logarithmic
scale, considering the two levels of accuracy, 10−2 and 10−4.

once σk becomes smaller than 10−10. It must be made clear that this last criterion makes our
versions (in particular the mean/mean one) more parsimonious in terms of function evaluations
but it may also possibly restrict the search of the global minimum. Note also that the budget
is therefore large and the tolerances small since we are interested in observing the asymptotic
ability to determine a global minimum (such choices are not likely to be affordable in practical
application problems where the objective function is expensive to evaluate).

Figures 11(a), 12(a), 13(a), and 14(a) show the median best objective value obtained by
the mean/mean and the pure CMA-ES versions, as well as the global optimal value, for all
problem dimensions and population sizes and using a log10-scale. Figures 11(b), 12(b), 13(b),
and 14(b) plot the corresponding median number of objective function evaluations taken. One
can see that the pure version of CMA-ES behaves slightly better, when accurately searching

17

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for nonstochastic noisy problems, α=0.01

cma−es
mean/mean
mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for nonstochastic noisy problems, α=0.0001

cma−es
mean/mean
mads

(b) Accuracy level of 10−4.

Figure 8: Performance profiles computed for the set of nonstochastic noisy problems with a
logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for piecewise smooth problems, α=0.01

cma−es
mean/mean
mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for piecewise smooth problems, α=0.0001

cma−es
mean/mean
mads

(b) Accuracy level of 10−4.

Figure 9: Performance profiles computed for the set of piecewise smooth problems with a loga-
rithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

for a global minimizer, in particular if a larger population size is given. The two approaches,
however, exhibit difficulties in identifying a global minimizer in most of the problems within the
given budget. The difficulty of this test set in terms of global optimization calls perhaps for
additional algorithmic features such as a multistart technique.

6 Conclusions and Future Work

We have shown that it is possible to modify ES’s so that they converge to stationary points
without any assumption on the starting mean. The modified versions of the ES’s promote
smaller steps when the larger steps are uphill and thus lead to an improvement in the efficiency
of the algorithms in the search of a stationary point. The so-called mean/mean version, where

18

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for stochastic noisy problems, α=0.01

cma−es
mean/mean
mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log2 scaled performance profiles for stochastic noisy problems, α=0.0001

cma−es
mean/mean
mads

(b) Accuracy level of 10−4.

Figure 10: Performance profiles computed for the set of stochastic noisy problems with a loga-
rithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

Problem Number 11 12 13 14 15 16 17 18 19
Problem index in [18] f122 f123 f124 f125 f126 f127 f128 f129 f130

Table 3: Noisy problems.

the step is reduced whenever the objective value of the weighted mean of the best trial offspring
does not sufficiently reduce the objective value at the current weighted mean, has emerged as the
best modified version in our numerical experiments. Apparently, the promotion of such smaller
steps has not changed too much the search for the global minimizer in problems with several
local minimizers.

Our approach applies to all ES’s of the type considered in this paper (see Section 2) although
we only used CMA-ES in our numerical tests. A number of issues regarding the interplay of
our modifications in ES’s (essentially the step-size update based on different sufficient decrease
conditions) and the CMA scheme to update the covariance matrix and corresponding step size
must be better understood and investigated. In addition, we have not explored to our benefit any
hidden ability of the CMA scheme to approximate or predict first or second order information
(which might be used in the sufficient decrease conditions or to guide the offspring generation).

It is possible to significantly improve the numerical performance of ES’s by incorporating a
search step at the beginning of each iteration (as in the search-poll framework of direct search [7]).
In such a step, one can, for instance, build a quadratic model using all or some of the points
where the objective function has been previously evaluated and then minimize such a model in
a certain region (see [11]). The application of such search steps to ES’s as well as the extension
to the constrained setting will be addressed in a forthcoming paper.

Acknowledgments

We would like to thank three anonymous referees, the associate editor, and the co-editor (Sven
Leyffer) for their comments which improved the presentation of the paper.

19

0 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

3

4

lo
g 10

(f
m

in
 −

f op
t)

Problem number

cma−es
mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
um

be
r

of
 fu

nc
tio

n
 e

va
lu

at
io

ns

Problem number

cma−es
mean/mean

(b) Number of function evaluations taken (me-
dian).

Figure 11: Results for the mean/mean version and CMA-ES on a set of multi-modal functions
of dimension 10 (using λ = 20).

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

lo
g 10

(f
m

in
 −

f op
t)

Problem number

cma−es
mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
um

be
r

of
 fu

nc
tio

n
 e

va
lu

at
io

ns

Problem number

cma−es
mean/mean

(b) Number of function evaluations taken (me-
dian).

Figure 12: Results for the mean/mean version and CMA-ES on a set of multi-modal functions
of dimension 20 (using λ = 40).

References

[1] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis, Jr., S. Le Digabel, and C. Tribes. The NOMAD
project. Software available at http://www.gerad.ca/nomad.

[2] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report G-2009-37, Les
cahiers du GERAD, 2009.

[3] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim., 13:889–903,
2002.

[4] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

20

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

lo
g 10

(f
m

in
 −

f op
t)

Problem number

cma−es
mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
um

be
r

of
 fu

nc
tio

n
 e

va
lu

at
io

ns

Problem number

cma−es
mean/mean

(b) Number of function evaluations taken (me-
dian).

Figure 13: Results for the mean/mean version and CMA-ES on a set of multi-modal functions
of dimension 10 (using λ = 100).

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

lo
g 10

(f
m

in
 −

f op
t)

Problem number

cma−es
mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
um

be
r

of
 fu

nc
tio

n
 e

va
lu

at
io

ns

Problem number

cma−es
mean/mean

(b) Number of function evaluations taken (me-
dian).

Figure 14: Results for the mean/mean version and CMA-ES on a set of multi-modal functions
of dimension 20 (using λ = 200).

[5] A. Auger. Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov
chains. Theoret. Comput. Sci., 334:35–69, 2005.

[6] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive introduction. Natural
Computing, 1:3–52, 2002.

[7] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset. A rigorous
framework for optimization of expensive functions by surrogates. Structural and Multidisciplinary
Optimization, 17:1–13, 1998.

[8] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983. Reissued
by SIAM, Philadelphia, 1990.

21

[9] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[10] I. D. Coope and C. J. Price. Frame based methods for unconstrained optimization. J. Optim. Theory
Appl., 107:261–274, 2000.

[11] A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum Frobenius norm models in
direct search. Comput. Optim. Appl., 46:265–278, 2010.

[12] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math.
Program., 91:201–213, 2002.

[13] E. D. Dolan, J. J. Moré, and T. S. Munson. Optimality measures for performance profiles. SIAM
J. Optim., 16:891–909, 2006.

[14] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr, a Constrained and Unconstrained Testing
Environment, revisited. ACM Trans. Math. Software, 29:373–394, 2003.

[15] G. W. Greenwood and Q. J. Zhu. Convergence in evolutionary programs with self-adaptation.
Evolutionary Computation, 9:57–147, 2001.

[16] N. Hansen. The CMA Evolution Strategy: A Tutorial. June 28, 2011.

[17] N. Hansen, D. V. Arnold, and A. Auger. Evolution strategies. In J. Kacprzyk and W. Pedrycz,
editors, Handbook of Computational Intelligence. Springer, Berlin, 2014, to appear.

[18] N. Hansen, S. Fincky, R. Rosz, and A. Auger. Real-parameter black-box optimization benchmarking
2010: Noisy functions definitions. Technical report, March 22, 2010.

[19] N. Hansen, S. Fincky, R. Rosz, and A. Auger. Real-parameter black-box optimization benchmarking
2010: Noiseless functions definitions. Technical report, September 28, 2010.

[20] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution strate-
gies: The covariance matrix adaptation. In Proceedings of the 1996 IEEE International Conference
on Evolutionary Computation, pages 312–317, 1996.

[21] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbitrary normal mutation dis-
tributions in evolution strategies: The generating set adaptation. In L. Eshelman, editor, Proceedings
of the Sixth International Conference on Genetic Algorithms, Pittsburgh, pages 57–64, 1995.

[22] J. Jägersküpper. How the (1+1)-ES using isotropic mutations minimizes positive definite quadratic
forms. Theoret. Comput. Sci., 361:38–56, 2006.

[23] J. Jägersküpper. Probabilistic runtime analysis of (1+1)-ES using isotropic mutations. In Proceedings
of the 8th annual conference on Genetic and evolutionary computation, GECCO ’06, pages 461–468,
New York, NY, USA, 2006. ACM.

[24] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[25] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM
Trans. Math. Software, 37:1–15, 2011.

[26] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J. Optim.,
20:172–191, 2009.

[27] I. Rechenberg. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologis-
chen Evolution. Frommann-Holzboog, 1973.

[28] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: A review of algorithms and comparison
of software implementations. J. Global Optim., 56:1247–1293, 2013.

[29] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions. Math.
Program., 133:299–325, 2012.

22

