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Abstract

We use proper-time regularizations to define the one-loop fermion determinant in the form suggested by Gasser and
Leutwyler some years ago. We show how to obtain the polynomial by which this definition of ln det D needs to be modified
in order to arrive at the fermion determinant whose modulus is invariant under chiral transformations. As an example it is
shown how the fundamental symmetries associated with the NJL model are preserved in a consistent way. q 2000 Elsevier
Science B.V. All rights reserved.

1. Introduction

In the path-integral formulation of quantum the-
ory the effective action involves, after integration
over the fermionic fields, the functional determinant
of the differential Dirac operator D in the presence
of external sources. The central object in the calcula-
tion of the effective action is always the quantity
ln det D. We start with the definition

`1 dT 22 yT Dln det Dsy r T , L Tr eŽ . Ž .H
2 T0

y d4 xP Õ ,a,s ,p , 1Ž . Ž .H
which allows the Schwinger proper-time method to
be applied to fermions, involving the square of the
operator D. Here D'g D has been introduced in5
w x1 , D is the Dirac operator in the presence of

Ž . Ž . Ž .external vector Õ , axial-vector a , scalar sm m

Ž .and pseudoscalar p sources. This definition of
ln det D allows to treat the real and imaginary parts
of ln det D on equal footing, as opposite to the D†D

Ž .definition. The polynomial P Õ,a,s ,p , which de-
pends only on the external fields, is fixed by requir-
ing the modulus of the fermion determinant to be
invariant under chiral transformations. It has been
worked out in the context of a renormalizable theory
w x1 . The present work represents an extension of the

w xresults of 1 to the case of non-renormalizable mod-
els and in particular to incorporate explicitly the
process of dynamical chiral symmetry breaking of

Ž . w xthe Nambu–Jona-Lasinio NJL model 2 . As an
alternative method one can use the integral represen-
tation of the complex power for the pseudo differen-

w xtial operator 3 . In the latter case an unambiguous
definition of the determinant of the Dirac operator is
obtained. The determinant is shown to be vector
gauge invariant and to yield the correct axial and
scale anomalies.
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We consider a class of regularization schemes
Ž .proper-time regularizations which can be incorpo-

Ž 2 .rated in this expression through the kernel r T , L .
These regularizations allow to shift in loop momenta.
A typical example is the proper-time cutoff where

t Ž 2 .the kernel r T , L is equal to

1
t 2r T , L sQ Ty . 2Ž . Ž .2ž /L

Another choice for the kernel can be the covariant
w xPauli-Villars cutoff 4

c
r T , L2 s1y 1qTL2 eyTL2

, 3Ž . Ž . Ž .

which leads to the well-known effective potential of
w x 1the NJL model 2 . The result is

m2 N GL2
c

V m s 1yŽ . 2ž /2G 4p

2N Lc 4q m ln 1q2 2ž /8p m

2m
4yL ln 1q . 4Ž .2ž /L

Ž . Ž .Both of the kernels 2 and 3 have been used in
w x w xmany papers, for example, see papers 6,7 and 8

correspondingly. A wide set of possibilities for the
Ž 2 .kernel r T , L have been considered in the papers

w x9,10 .
Ž . Ž .The counterterms P Õ,a,s ,p in formula 1 can

be fixed from the transformation properties of
ln det D. We consider here the case of chiral gauge

Ž . Ž . Ž .theories with the SU 2 =SU 2 =U 1 chiralL R V

symmetry. Explicitly, let D be equal to

Dsg m iE qÕ qa g ysq ig p , 5Ž .Ž .m m m 5 5

where Õ sÕ it , a sai t , psp at , sss at , tm m i m m i a a a
Ž . w xs 1,t , t ,t s2 ie t , is1,2,3. The corre-i i j i jk k

1 w xSee, for instance, 5 and references in it.

sponding chiral transformations of the external fields
are given by

w xd Õ sE aq i a ,Õ q i b ,a , 6Ž .m m m m

w xd a sE bq i a ,a q i b ,Õ , 7Ž .m m m m

w x � 4dss i a ,s y b ,p , 8Ž .
w x � 4dps i a ,p q b ,s . 9Ž .

Here asa t is the infinitesimal transformationi i

generated by the vector currents and bsb t is ai i

chiral transformation. The transformation law of
w xln det D in this case is known explicitly 11 :

iNc 4d ln det Ds d xTr bV , 10Ž . Ž .H f24pŽ .
where

4 2 i
abmn � 4Vs´ Õ Õ q = a = a q Õ ,a aab mn a b m n a b m n3 3

8i 4
q a Õ a q a a a a . 11Ž .m a b n a b m n3 3

The field strength tensor Õ associated with Õ ismn m

defined as

w xÕ sE Õ yE Õ y i Õ ,Õ 12Ž .mn m n n m m n

and = a stands form n

w x= a sE a y i Õ ,a . 13Ž .m n m n m n

Our aim now is to calculate the polynomial
Ž .P Õ,a,s ,p in the framework of a nonrenormaliz-

Ž .able approach. Let us note that P Õ,a,s ,p is unique
up to a chirally invariant polynomial. One can al-
ways choose P in such a manner that the determi-
nant is not modified if the external fields a and pm

w xare switched off. In paper 1 it has been shown how
to do this for renormalizable theories. There are two
essential differences in our case. The first one is that
we have to use a regularization with finite cutoff L.

w xThe z-function technique used in 1 is not good for
that because it does not lead to the correct descrip-
tion of the spontaneous chiral symmetry breaking
phenomena. The second one is also related to the
cutoff dependence of the result. As we shall show,

Ž .the polynomial P Õ,a,s ,p gets now systematically
contributions from the terms which would vanish in
the limit L™`. This fact renders its evaluation
rather technical.
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2. Counterterms and symmetry

To illustrate our consideration we shall discuss
Ž . Ž .the NJL model with the SU 2 =SU 2 chiralL R

symmetry. We use the model version with only the
scalar-scalar and pseudoscalar-pseudoscalar type of
four quark interactions. Integrating out the quark
fields one obtains the action of the model in terms of
scalar s=1 and pseudoscalar psp t i collectivei

mesonic degrees of freedom

2 2sqm qpŽ .
4S syiln det Dy d x . 14Ž .Hcoll 2G

The Dirac operator D is given by

Ds ig mE ymysq ig p , 15Ž .m 5

where m denotes the constituent quark mass gener-
ated in the process of spontaneous chiral symmetry
breaking. Now in order to be able to derive the

Ž .polynomial P s ,p , it is crucial to perform the
symmetry transformations in the broken phase. In the
phase with broken chiral symmetry the transforma-

Ž . Ž .tions 8 and 9 become

� 4dssy b ,p , 16Ž .

w x � 4dps i a ,p q b ,sqm 17Ž .

for the considered isospin content of scalar and
pseudoscalar. Note that if one would first derive
Ž .P s ,p in the symmetric phase and then perform

Ž .the shift s™ sqm , it would be necessary to
calculate all orders of the proper-time expansion. All
of them would contribute as a factor with a certain
power m to a fixed order in the fields. Therefore by
constructing the symmetry transformations in the

Ž . Ž .broken phase 16 , 17 , one achieves a resummation
of an infinite number of terms of the symmetric
phase.

Under global chiral transformations the change in
the Dirac operator Dsg D is given by5

w xidDs D ,a q D ,bg . 18Ž .� 45

Ž .Therefore, to get the related polynomial P s ,p for
this case one has to integrate the equality

d ln det Ds0, 19Ž .

Ž .where ln det D is defined according to Eq. 1 . The
Ž .variation of P s ,p has to cancel the symmetry

breaking part coming from the proper-time integral.
In this way one gets

`yi
dP s ,p s R tr bg a , 20Ž . Ž . Ž .Ý n 5 nq128p ns0

where tr represents trace in internal space. In the
case under consideration it includes summations over
flavour, colour and Lorentz indexes: trs tr tr tr .f c L

Ž .One can see that P s ,p is not invariant under
chiral transformations, picking up the contribution
which is linear in b. The functions R represent then

integrals which appear in the result of the asymptotic
expansion of the heat kernel

` 22 ny1 yT mR sy r T , L d T eŽ .Hn
0

` 2ny2 2 yT m 2s dTT m Ty ny1 e r T , L .Ž . Ž .H
0

21Ž .
These integrals yield the following expression for Rn

n!L4
cR s . 22Ž .n nq12 2L qmŽ .

Ž .This result corresponds to the kernel 3 . For the case
Ž 2 . Ž .of r T , L being equal to 2 one gets

m2
1ynt 2R s L exp y . 23Ž . Ž .n 2ž /L

In renormalizable theory the terms R with nG2n

vanish in the limit L™`. The same is also true if
one applies the z-function regularization. This prop-
erty of renormalizable models extremely simplifies
the problem. In non-renormalizable models all of Rn

terms contribute to the result.
Ž .The coefficients a 'a x, x are the coincidencen n

w xlimit of the Seeley – DeWitt coefficients 9 . For our
illustration we shall need the first four of them

1 1 12 2a s1, a syQ, a s Q q Q q F ,0 1 2 mm2 6 12

1 1 13 2a sy Q y Q,Q qQ y Q� 4Ž .3 mm m mmnn6 12 60

1 1 2q F ,Q y 2 F ,Q qF QF� 4Ž .ma ;a m mn mn60 60

1 1y F F y F Fma ;a mb ;b ma ;b ma ;b45 180

1 1 3y F ,F q F . 24� 4 Ž .mn mn ;a a60 30
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Some comments are in order here. First, we deal in
this case with the linear realization of chiral symme-

2try. It means that we have for D the following
representation

2 m 2D s= = qm qQ, 25Ž .m

where

= sE qA , A sg g p , 26Ž .m m m m m 5

Qs s 2 q2ms q ig mE sŽ . m

y2 mqs ig pq3p 2 . 27Ž . Ž .5

Ž .Second, we wrote the coefficients 24 directly in
Minkowski space. In this way one should understand
summations over repeated Lorentz indexes to be
implicit. We have used the following designations

2w xF s = ,= sg g E pyg g E pq g ,g p ,mn m n n 5 m m 5 n n m

28Ž .

F 2 sF F mn , F 3 sF Fns F , 29Ž .mn mn sm

Q s = ,Q , F s = ,F . 30Ž .m m mn ;n n mn

Ž .One has to calculate traces tr bg a and inte-5 n
Ž .grate Eq. 20 . The first three non-zero contributions

are given by

2tr bg a s4 iN dp , 31Ž . Ž .5 1 c

tr bg aŽ .5 2

21 22 2 2 4s4 iN d E p y2msp ys p y p ,Ž .c m6 3

32Ž .
2 21 12 2tr bg a s4 iN d E p y p E sŽ . Ž .Ž .5 3 c m m60 2

221 72 2y p E p y E pŽ . Ž .m m5 60

1 12 6y sqm E sE p q pŽ . m m3 10

1 2 2 2q s q2ms 3p s q2msŽ . Ž .6

2 14 2 4q2p y E p y m pŽ .m 3

22 2 2 4y2msp ys p y p . 33Ž .3

ŽLet us note that the last four terms from a see Eq.3
Ž .. Ž .24 do not contribute to tr bg a .5 3

Ž .On the other side, the first term in formula 1
contributes to the Lagrangian of collective fields as

`1
Ž1.LL sy J tr a , 34Ž . Ž .Ýcoll n nq1232p ns0

where

` dT 2yT m 2J s e r T , L , ns0,1,2, . . . .Ž .Hn 2ynT0

35Ž .

Ž .We have from 34

NcŽ1. 2 2LL s s q2msq3p JŽ .½coll 022pŽ .
2 21q E s q E pŽ . Ž .m m2

22 2 2 2q4m p y s q2msqp J q . . . .Ž . 51

36Ž .

Using the identity

m2 J q 2yn J sR , ns1,2,3, . . . 37Ž . Ž .n ny1 ny1

one can see, for instance, how symmetry breaking
terms proportional to p 2 are compensated in this

Ž .expression by the contribution from 31 . A fully
chiral symmetric Lagrangian is therefore obtained at
each order of the proper time expansion.

3. Conclusions

We used the one-loop fermion determinant in the
form suggested by Gasser and Leutwyler some years

w xago 1 to extend it to be applicable to non-renormal-
izable models. In this way the real and imaginary
parts of ln det D can be calculated with the same
input. One obtains the correct description of the
chiral anomaly when regularization is switched off.
However it is necessary to correct the real part of

Ž .ln det D by the polynomial P Õ,a,s ,p to get the
chiral invariant result for this case. We have shown
how to get the chiral symmetry restoring polynomial
Ž .P Õ,a,s ,p . The simplest way to do this is to

calculate in the phase with broken chiral symmetry,
rewriting the symmetry transformations especially
for this case. The result is an extension of the form
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w xpresented in the paper 1 , to incorporate explicitly
the process of dynamical chiral symmetry breaking
of the NJL model.

For simplicity we have considered the NJL model
without vector and axial-vector degrees of freedom.
However, the result can be easily extended to the
more general case.
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