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Abstract

A coupled non-Fickian model of a cardiovascular drug delivery system using a biodegrad-

able drug eluting stent is proposed. The numerical results are obtained using an IMEX finite

element method. The influence of vessel stiffness in the transport of drug eluted from the stent

is analyzed. The results presented in this paper suggest new perspectives to adapt the drug

delivery profile to the needs of the patient.
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1 Introduction

A stent is a device with the form of a mesh tube which is inserted into a natural body passage to

expand its walls and to provide mechanical support for the wounded tissues. Even if stents are

widely used in many medical specialities, its most common use is in vascular surgery to reduce

stenosis, that is the narrowing of the arteries.

A Drug Eluting Stent (DES) is a stent that releases anti-proliferative drug into the arterial wall

with a programmed pharmacokinetics. It consists of a metallic stent strut coated with a polymeric

layer, that encapsulates a therapeutic drug, that will act to reduce smooth muscle cell growth and

to prevent an inflammatory response which are the predominant causes of neointima proliferation

and in-stent restenosis. Biodegradable polymers like polylactic acid (PLA) have become the ma-

terials of choice to coat stents while encapsulating the drug ([34]).

The vessel walls of the cardiovascular system are known to display a complex mechanical response

under physiological conditions. Arterial stiffness is considered as an excellent indicator of cardio-

vascular morbidity and mortality in a large percentage of the population as referenced in [16].

The coronary artery is a complex structure mainly composed of three concentric layers: intima,
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Figure 1: Detail of the stented artery (http://www.zmescience.com/research/bioreabsorbable-
stents-to-revolutionize-heart-surgeries).

media and adventitia. It mainly consists of elastin, which is responsible for the vessel elasticity,

combined with collagen. Elastin and collagen are responsible for the viscoelastic properties of the

vessel. These properties have been clearly demonstrated by laboratorial experiments like creep and

relaxation tests [11, 24, 37].

Due to the involvement of so many factors, prediction of drug release appears to be an important

issue and mathematical models constitute key tools to design appropriate drug delivery systems.

During the last years, a number of studies have proposed mathematical models for coupled drug de-

livery in the cardiovascular tissues. We refer without being exhaustive to [2, 4, 14, 19, 22−29, 40, 41]

as well as the comprehensive and the most recent review paper [20]. Most of these studies address

the release of drug and its numerical behavior while the viscoelasticity of the vessel wall and the

behaviour of the biodegradable materials are disregarded.

In this paper, we propose a non-Fickian coupled model for predicting the biodegradation of PLA

as a drug carrier in the coated stent and the simultaneous release of the drug from the coating into

the vessel wall. The effect of viscoelasticity of the vessel wall in the drug release is investigated

using Maxwell-Wiechert model ([5]) and Fung’s model ([11]).

To reduce the computational time, we perform the analysis of reaction-diffusion-convection of drug

from stent coating into the arterial wall on a portion of the coronary artery. The influence of the

geometry of the stent strut on drug release is considered negligible. Since the role of the therapeu-

tic agent is to heal the artery after the implantation of DES, most of the computational studies in

our work have focused on the transport of the drug into the arterial wall. In particular, we study

the influence of the stiffness of the arterial wall on the drug release profile.

We assume that the arterial walls, as well as the stent coating, behave as a porous media with

respect to the filtration of plasma and the transfer of molecules. So drug transfer in the arterial

wall and in the stent coating is not only affected by diffusion but also depends on the advection

induced by plasma filtration activated by physiological transmural pressure gradients. The Peclet

number in our model is around 1. Consequently both diffusion and convection terms must be taken

into account in the transport process.

At low strains (physiological pressures), the media, the thickest tissue layer constituting the arte-

rial wall, mainly determines its mechanical properties. Due to the high content of smooth muscle

cells, compared to other layers, it is the media that is responsible for the viscoelastic behavior of

the arterial wall ([37]). As reported in [21], the inclusion of adventitia has a negligible effect on

cellular drug concentration in the media. So we simplify the complex multilayered structure of
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the arterial wall considering only the interaction of the stent with media. Consequently, the non-

Fickian reaction-diffusion-convection model is represented by a system of multidimensional partial

differential equations defined in the media tissue and the coating of the stent. These equations

describe the filtration of plasma, the diffusion, transport, and chemical reactions of PLA inside the

stent coating as well as inside the arterial wall ([41]).

The outline of the paper is as follows: Section 2 is devoted to the description of the model and its

initial, boundary and interface conditions. In Section 3 we briefly explain the mass behaviour of the

materials following a phenomenological approach. Numerical simulations as well as a sensitivity

analysis of the viscoelastic parameters are discussed in Section 4. In Section 5 some conclusions

are presented. Mathematical results concerning the stability of the continuous and discrete models

as well as the validation of the numerical model are presented in annexes A to C.

2 Description of the model

We present in Section 2 a coupled model that describes the kinetics of the drug in the polymeric

coating of the stent S and the vessel wall V. For a sake of clarity the equations that govern the

transport of drug in the stent and the vessel wall are exhibited separately in subsections 2.1 and

2.2 respectively. The meaning and units of all variables are presented in Table 1.

2.1 Mathematical modeling in the stent coating

Let us consider a two dimensional domain obtained as a section of a three dimensional vessel ge-

ometry. Assuming the symmetry of the geometry we obtain a reduction of computational cost, by

considering only a part of the section. The observation of OCT (Optical Coherence Tomography)

images of diseased vessels of cardiovascular patients shows that the cross section of the lumen is

not, in many cases, a perfect circle. In this sense the symmetry of the geometry is an academic

assumption that will be improved in future studies. We introduce the two dimensional domain

S ⊂ IR2 which stands for the polymeric coating of the stent and V ⊂ IR2 that represents the arte-

rial wall. A schematic representation of the two dimensional domain used in this paper is shown

in Figure 2.

When a DES is implanted in a vessel, the coated stent will be gradually covered by the neo-

intima. The degree of embedding of the stent depends on the type of plaque in the arterial wall.

When the plaque is lipidic, the stent is almost instantaneously embedded; in the case of a calcified

plaque the complete embedding can occur after several months or even never occur ([14]). Between

these two cases the depth of the embedding is defined by the proliferation rate of the neo-intima

smooth muscle cells. For a sake of simplicity, we consider that the drug eluting stent is already

inside of the arterial wall. This is a simplification with respect to the complex dynamics of tissue

healing and regrowth that takes place after the implantation. However, since we are interested

in a comparative study between different configurations of the physical parameters characteriz-

ing the stent as well as the viscoelastic properties of the arterial wall, the evolution of the wall

around the stent can be initially neglected ([14, 41]). In future studies this aspect will be addressed.
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Figure 2: Drug eluting stent inside the vessel wall.

Three main phenomena explain the kinetics of the drug and the biodegradable polymer in the

stent: chemical reactions, convection and diffusion.

Chemical reactions

Mathematical modeling of drug delivery, from a biodegradable coating into the arterial wall, is

relatively complex when compared with modeling of drug release from a non-degradable polymer.

In the case of a biodegradable coating, in addition to the physical mass transport process, the

model has to account for the chemical processes involved in the biodegradation.

There are different approaches to describe reaction terms. Soares et al. ([36]) have proposed a

multi-scale description of degradation and erosion combining the molecular description of scission

with Fick’s law of diffusion. In [30], a description of degradation reactions was coupled with drug

transport and restenosis. The influence of the surrounding environment in the device (as pH value

and cellular tissue reactions) in the degradation models was mentioned in [33]. In the present work

we use the chemical reactions proposed in [29].

In the stent coating two reactions are responsible for the degradation of PLA into lactic acid and

oligomers. In the first reaction, the hydrolysis of PLA occurs resulting in molecules with smaller

molecular weights: oligomers (with molecular weight MW such that 2 × 104g/mol ≤ MW ≤

1.2× 105g/mol), lactic acid (with molecular weight satisfying MW ≤ 2× 104g/mol). It is assumed

that all these oligomers have similar diffusivities. The second reaction is the hydrolysis of the

oligomers resulting in lactic acid. The lactic acid generated by this reaction has a catalytic effect

on further degradation of the PLA. The rates of catalysis are represented in (3) by α and β.

Let C1,S and C2,S be the concentrations of plasma and PLA in the stent respectively. We note that

by concentration of plasma we mean the concentration of water in the plasma. The concentration

of oligomers in the stent is denoted by C3,S while C4,S and C5,S denote the concentrations of lactic

acid and drug in the stent respectively.
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Figure 3: Schematic representation of the mathematical model for predicting degradation of PLA
and drug release ([29]).

The previously mentioned reactions are represented schematically by

C1,S + C2,S
κ1,S

−−−−→ C3,S + C4,S , C1,S + C3,S
κ2,S

−−−−→ C4,S , (1)

where κ1,S and κ2,S denote the reaction rates of the hydrolysis of PLA and oligomers in the stent

(see Figure 3).

To simplify the definition of the reaction terms that affect the behaviour of each concentration in

the stent, we introduce the notation CS =
(

Cm,S

)

m=1,...,5
.

The evolution in time and space of the concentrations depends on the type of chemical reaction

involved: production or consumption. Let Fm,S(CS), m = 1, . . . , 5, represent the reaction terms

to be considered in the evolution of the concentration in the stent. We adopt in what follows the

reaction terms for the stent coating introduced in [29] and used in [9] which are defined by

Fm,S(CS) =















































−
∑

i=1,2

Fi,S(CS), m=1,

−F1,S(CS), m=2,
∑

i=1,2

(−1)i−1Fi,S(CS), m=3,

∑

i=1,2

Fi,S(CS), m=4,

0, m=5.

(2)

In (2)

F1,S(CS) = κ1,SC1,SC2,S

(

1 + αC4,S

)

,

F2,S(CS) = κ2,SC1,SC3,S

(

1 + βC4,S

)

,
(3)

where α, β stand for positive dimensional constants that quantify the extent of the auto-catalytic

effect of lactic acid. This means that the lactic acid produced by reactions (1) acts as a catalyzer

in the PLA degradation. The negative signs in (2) indicate the consumption of molecules while

the positive signs indicate the production of molecules. For example, the reaction term for plasma
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(m = 1) in (2) indicates that the fluid is consumed causing the degradation of PLA and the

subsequent hydrolysis of oligomers.

The effect of the extracellular enzymes in the degradation process is neglected in this model. As

mentioned in [31], the degradation rates measured "in vitro" are essentially the same as that

measured "in vivo". So the major route of degradation for PLA is most likely via non-enzymatic

hydrolysis. It is also assumed that drug do not react with PLA and its reaction products.

Convection

The transport of PLA, oligomers, lactic acid and drug in the stent coating occurs by diffusion

and convection. The convection is caused by a pressure gradient in the fluid. Let pS represent

the pressure in the stent while uS stands for the corresponding velocity. We also assume that the

plasma is incompressible, which mathematically implies that the divergence of its velocity is zero,

∇.uS = 0. The behaviour of the plasma is described by Darcy’s law. As the metallic part of the

stent is impermeable we consider no flux of plasma across Γstrut which represents the interface

between the stent coating and the metallic part of the stent (Figure 2). The velocity and the

pressure in the stent coating satisfy then the following equations:















uS = − kS

µS
∇pS in S,

∇.uS = 0 in S,

uS .ηS = 0 on Γstrut,

(4)

where ηS represents the exterior unit normal.

The permeability kS depends on the properties of the medium and also on the concentrations of

PLA, oligomers, lactic acid and drug in the stent coating. To simplify the model we assume that

kS is constant. The viscosity µS depends on the chemical compounds present in the stent coating.

To simplify, we also assume in what follows that the viscosity is constant.

The complete model in the stent coating

The reaction-convection-diffusion processes that take place in the stent coating are described by

the following system of equations

∂Cm,S

∂t
= ∇.

(

Dm,S∇Cm,S − uSCm,S

)

+ Fm,S(CS) in S × (0, T ], m = 1, . . . , 5. (5)

The diffusivities of the fluid, the oligomers, the lactic acid and the drug will vary during the

degradation process [33]. We assume that the diffusion coefficient of each specie in the stent

increases exponentially with the degradation of the PLA. In [29, 33] the expression

Dm,S = D0
m,Se

θm,S

C0
2,S

−C2,S

C0
2,S , m = 1, . . . , 5, (6)

was proposed where D0
m,S is the diffusion coefficient of the corresponding specie in the unhydrolyzed

PLA, C0
2,S is the concentration of the unhydrolyzed polymer at t = 0 and θm,S , m = 1, . . . , 5, are

some adimensional constants.
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At the initial time, we assume that the PLA and the drug are uniformly distributed. We also

assume that at the initial time no degradation has occurred and consequently that there are

neither oligomers nor lactic acid in the coating. The initial conditions in the coating are then given

by

{

Cm,S(0) = 0, m = 1, 3, 4,

Cm,S(0) = 1, m = 2, 5.
(7)

Here and in what follows we denote by v(t) a function that depends on x, y and t, that is for each

t, v(t) : Ω̄ −→ IR, where Ω̄ represents S̄ or V̄ .

As the metallic stent strut is impermeable to the drug and PLA degradation products that diffuse

in coating stent, no mass flux passes through the boundary surface Γstrut. So

Jm,S .ηS = 0, m = 1, . . . , 5, (8)

where Jm,S is the mass flux in the stent coating defined by

Jm,S = −Dm,S∇Cm,S + uSCm,S , m = 1, . . . , 5. (9)

The other boundary condition in Γcoat will be presented in Section 2.2.

2.2 Mathematical modeling of the arterial wall

Chemical reactions

Let C1,V be the concentration of plasma in the vessel wall. The concentrations of oligomers and

lactic acid in the vessel wall are denoted by C3,V and C4,V respectively. By C5,V we represent the

concentration of drug in the vessel wall. As the PLA can not diffuse into the arterial wall ([29]),

the only reaction in the arterial wall is the hydrolysis of the oligomers resulting in lactic acid which

is represented schematically by

C1,V + C3,V
κ1,V

−−−−→ C4,V , (10)

where κ1,V denotes the reaction rate of the hydrolysis of oligomers in the arterial wall.

To simplify the presentation of the reaction terms that affect the behaviour of each concentration,

we introduce CV =
(

Cm,V

)

m=1,...,5,
m 6=2

.

Considering reaction (10), Fm,V (CV ), m = 1, . . . , 5, m 6= 2, are the reaction terms in the arterial

wall, defined by

Fm,V (CV ) =























−F1,V (CV ), m=1,

−F1,V (CV ), m=3,

F1,V (CV ), m=4,

0, m=5,

(11)

7



where

F1,V (CV ) = κ1,V C1,V C3,V

(

1 + γC4,V

)

, (12)

and γ is a positive dimensional constant.

Convection

The transport of oligomers, lactic acid and drug in the vessel wall, occurs by diffusion and convec-

tion. The convection is caused by a pressure gradient in the fluid. Let pV and uV represent the

pressure and velocity in the vessel wall respectively. We also assume that the plasma is incom-

pressible (∇.uV = 0) and that its behaviour is described by Darcy’s law.

To prescribe suitable boundary conditions in the arterial wall, we require that uV .ηV = 0 on Γwall

for symmetry, where ηV represents the exterior unit normal. Moreover, we observe that the filtra-

tion of the plasma inside the arterial wall is driven by a decreasing pressure gradient from the inner

layer of the artery (Γlumen) to the outer layer of the artery (Γadv). By consequence we require that

pV = plumen on Γlumen and pV = padv on Γadv. We notice that plumen is assumed to be uniform and

independent of space and time variables on Γlumen. The velocity and the pressure in the arterial

wall satisfy then the following equations



































uV = − kV

µV
∇pV in V,

∇.uV = 0 in V,

pV = plumen on Γlumen,

pV = padv on Γadv,

uV .ηV = 0 on Γwall,

(13)

where the boundaries Γlumen, Γwall and Γadv are defined in Figure 2.

To simplify the model, we assume that the permeability kV and the viscosity µV are constants.

Viscoelastic effects

Viscoelastic models have been widely used to characterize mechanistic properties of the vascular

tissues due to its ability to tailor both the viscoelastic relaxation function and the nonlinear elastic

stress-strain relation. Numerous viscoelastic models, derived under different experimental condi-

tions, have been proposed in the literature [12, 22− 24, 34, 35]. In what follows, we present a linear

model (Maxwell-Wiechert model, [5]). The multiple relaxation times used in this model are well

adapted to predict viscoelastic behaviour in living tissues ([24]). We postpone for a later section

some considerations on the use of a nonlinear model (Fung’s model, [11]).

In the Maxwell-Wiechert model, the relation between the stress and the strain is given by the

following convolution integral

σV (t) = −

(

krεV (t) +

∫ t

0

K(t− s)
dεV
ds

(s)ds

)

+ σS(t), (14)
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where σV represents the normal stress which is assumed to be the most relevant component of the

stress in the arterial wall, εV is the effective strain in the arterial wall caused by accumulation of

drug molecules, κr is the Young’s modulus of the spring arm and the convolution memory kernel

K is defined by K(t− s) =
n
∑

i=1

κie
− t−s

τi , where τi =
ηi

κi
, i = 1, . . . , n.

In (14), σS(t) is the stress resulting from the deformation of the vessel caused by the stent. The

constants κi, i = 1, . . . , n, represent the Young’s modulus of the Maxwell arms while ηi, i =

1, . . . , n, are their viscosities. This means that for t = 0 the Young’s modulus is κr +
n
∑

i=1

κi while

for t → ∞ its value is κr. We assume that σS(t) does not depend on x and y. This assumption is

realistic for a homogeneous vessel wall and a circular cross section.

It should be noted that the negative sign in (14) indicates that σ and ε are of opposite sign. This

represents the fact that the vessel wall acts like a barrier to the entry of the drug ([8]).

In [7] the authors established a non-linear relation between the strain ǫ and a concentration C, i.e.

ǫ = C
ρ−C

where ρ stands for the density. To simplify the model we consider a linear approximation

εV (t) = αmCm,V (t) + ǫS(t), m = 1, . . . , 5, m 6= 2. With this assumption and integrating (14) by

parts we have

σm,V (t) = −αm

(

(κr +

n
∑

i=1

κi)Cm,V (t)−

n
∑

i=1

κi

τi

∫ t

0

e
− t−s

τi Cm,V (s)ds

)

+ σS(t), (15)

for m = 1, . . . , 5, m 6= 2.

Particular attention will be devoted to the case n = 1 that is a mechanical analog composed by

an elastic arm and a Maxwell arm. If we consider K(t − s) =
(

τσ
τ1

− 1
)

κre
− t−s

τ1 for τ1 = η1

κ1
and

τσ = η1
κ1+κr

κ1κr
, we obtain the so called 3−parameter solid model which can also be deduced from

the following differential formulation

σV + τ1
∂σV

∂t
= −κr

(

εV + τσ
∂εV
∂t

)

. (16)

Equation (16) defines one of the simplest linear viscoelastic models that simultaneously captures

the effects of creep and stress relaxation.

Equation (16) leads to the following formulation

σm,V (t) = −αm

(

κr

τσ
τ1

Cm,V (t)−
κ1

τ1

∫

t

0

e
− t−s

τ1 Cm,V (s)ds

)

+ σS(t), (17)

for m = 1, . . . , 5, m 6= 2.

2.3 The complete model in the arterial wall

The transport process that occurs in the vessel wall is due to convective transport, non-Fickian

diffusion driven by the stress and reactions. It is described by the following set of equations

∂Cm,V

∂t
= ∇.

(

D̄m,V ∇Cm,V − uV Cm,V

)

+∇.
(

Dσ∇σm,V

)

+ Fm,V (CV ) in V × (0, T ], m = 1, . . . , 5, m 6= 2, (18)
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where the stress σm,V , m = 1, . . . , 5, m 6= 2, is given by (15). In (18), Dσ represents the "weight"

of the non-Fickian diffusion and its physical meaning can be found in [7]. The idea is that the stress

response to the strain represents an opposition to the motion of molecules, with concentrations

Cm,V , m = 1, . . . , 5, m 6= 2. Assuming that convective field with speed νV is induced by the

stress, we write

−Dσ∇σV = νV CV , (19)

where CV represents the total concentration of species. Identifying the stress with a pressure, we

have from Darcy’s law

νV = −
κV

µV

∇σV , (20)

where κV is the permeability and µV is the viscosity of the fluid. From (19) and (20) we have

Dσ =
κV

µV

CV . (21)

In our model, Dσ is assumed constant.

In what follows, particular attention will be paid to system (18) when the viscoelastic behaviour

of the vessel wall is described by the 3−parameter solid model (17). In this case system (18) takes

the form

∂Cm,V

∂t
= ∇.

(

Dm,V ∇Cm,V − uV Cm,V

)

+ Fm,V (CV ) +

∫ t

0

e
− t−s

τ1 ∇.
(

Dm,σ∇Cm,V (s)
)

ds, (22)

in V × (0, T ], m = 1, . . . , 5, m 6= 2, where

Dm,V = D̄m,V − αm(κr + κ1)Dσ (23)

and Dm,σ = αm
κ1

τ1
Dσ for m = 1, . . . , 5, m 6= 2. We observe that when we replace the stress given

by (17) in equation (18), the stress σS(t), due to the deformation caused by the stent, disappears

as its space derivatives are null.

To ensure the positivity of the Fickian diffusion coefficient Dm,V , we impose

Dσ <
D̄m,V

αm(κr + κ1)
. (24)

This assumption guarantees that Fickian diffusion dominates the viscoelastic opposition, which is

a physical condition for the effective penetration of drug in the vessel wall.

We note that the binding of drug molecules to specific sites in the vessel wall has not been considered

in the present work. We refer to papers [4, 10, 15, 21] and [39] where different models account for

the influence of binding in drug distribution.

The initial concentrations in the vessel wall are

{

C1,V (0) = 1,

Cm,V (0) = 0, m = 3, 4, 5.
(25)
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We represent by Jm,V the mass flux in the vessel wall defined by

Jm,V = −Dm,V∇Cm,V + uV Cm,V −Dm,σ

∫ t

0

e
− t−s

τ1 ∇Cm,V (s)ds in V × IR+,m=1,...,5,
m 6=2 . (26)

Symmetry on Γwall implies a non-flux condition,

Jm,V .ηV = 0, m = 1, . . . , 5, m 6= 2. (27)

We also assume that adventitia is impermeable to all species present in the arterial wall. So the

boundary condition (27) also holds for Γadv. Since the drug, the oligomers and the lactic acid go

directly from the arterial wall to the blood and are transported very fast away from the region of

interest, we consider Jm,V .ηV = −γm,V Cm,V , m = 3, 4, 5, for the lumen boundary Γlumen, with

an high transference rate γm,V . As the plasma penetrates from the blood artery into the arterial

wall, we may consider a natural boundary condition J1,V .ηV = γ1,V (1 − C1,V ) for the plasma.

2.4 Interface coating-vessel wall boundary conditions

To couple convection terms (4) and (13), on the interface boundary Γcoat, the following matching

conditions are applied

{

pS = pV on Γcoat,

uS .ηS = −uV .ηV on Γcoat.
(28)

The interface conditions for concentration on the interface boundary Γcoat are described by

{

Cm,S = Cm,V ,

Jm,S.ηS = −Jm,V .ηV ,
(29)

for m = 1, . . . , 5, m 6= 2. The first condition in (29) represents the continuity of the concentration

while the second condition is the continuity of local fluxes. We recall that the subscript m = 2

refers to PLA. In equation (29), the interface conditions do not apply to PLA. In fact PLA has

a large molecular weight (MW ≥ 1.2× 105g/mol) compared to the other molecules present in the

process and consequently it will not cross Γcoat (see [29]). As a result, Γcoat is impermeable to

PLA and we have J2,S .ηS = 0.

A more realistic interface condition considers that the coated stent, loaded with the drug, is covered

by a second thin layer, called topcoat. This layer acts like a membrane between S and V to slow

down the release rate from the stent into the arterial wall. The corresponding equations describe

the flux of a chemical species across a membrane with respect to its concentration on both sides

of the membrane. We postpone its mathematical description to a later section.
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2.5 The coupled reaction-diffusion-convection system

In summary, the coupled system of reaction-diffusion-convection equations in the coating stent and

the wall reads as follows:



















∂Cm,S

∂t
= ∇.

(

Dm,S∇Cm,S − uSCm,S

)

+ Fm,S(CS) in S × IR+, m = 1, . . . , 5,
∂Cm,V

∂t
= ∇.

(

Dm,V ∇Cm,V − uV Cm,V

)

+ Fm,V (CV )

+

∫ t

0

e
− t−s

τ1 ∇.
(

Dm,σ∇Cm,V (s)
)

ds in V × IR+, m = 1, . . . , 5, m 6= 2,

(30)

where uS and uV are solutions of (4) and (13) respectively. The initial conditions in the stent

coating and arterial wall are defined by (7) and (25) respectively and the boundary and interface

conditions are summarized by























































Jm,S .ηS = 0 on Γstrut, m = 1, . . . , 5,

J2,S .ηS = 0 on Γcoat,

Cm,S = Cm,V on Γcoat, m = 1, . . . , 5, m 6= 2,

Jm,S .ηS = −Jm,V .ηV on Γcoat, m = 1, . . . , 5, m 6= 2,

J1,V .ηV = γ1,V (1−C1,V ) on Γlumen,

Jm,V .ηV = −γm,V Cm,V on Γlumen, m = 3, 4, 5,

Jm,V .ηV = 0 on Γwall ∪ Γadv,m = 1, . . . , 5, m 6= 2.

(31)

3 Some analytical results

In what follows we analyse the behaviour of the total mass of species M(t) in the model. We define

M(t) =

∫

S

CSdS +

∫

V

CV dV, (32)

where

∫

S

CSdS =

5
∑

m=1

∫

S

Cm,SdS and

∫

V

CV dV =

5
∑

m=1
m 6=2

∫

V

Cm,V dV .

Using (30), we obtain

M′(t) =
5

∑

m=1

∫

S

∇.
(

Dm,S∇Cm,S − uSCm,S

)

dS +
5

∑

m=1

∫

S

Fm,S(CS)dS

+

5
∑

m=1
m 6=2

∫

V

∇.
(

Dm,V ∇Cm,V − uV Cm,V

)

dV +

5
∑

m=1
m 6=2

∫

V

Fm,V (CV )dV

+

5
∑

m=1
m 6=2

∫

V

∫ t

0

e−
t−s
τ1 ∇.

(

Dm,σ∇Cm,V (s)
)

dsdV.
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Integrating over space and applying external boundary conditions, we have

M′(t) =

5
∑

m=1
m 6=2

∫

Γcoat

Jm,S .ηSds+

5
∑

m=1
m 6=2

∫

Γcoat

Jm,V .ηV ds+

∫

S

5
∑

m=1

Fm,S(CS)dS +

∫

V

5
∑

m=1
m 6=2

Fm,V (CV )dV

+γ1,V

∫

Γlumen

(1− C1,V )ds−

5
∑

m=3

γm,V

∫

Γlumen

Cm,V ds.

Let

∆MΓlumen
(t) =

5
∑

m=1
m 6=2

γm,V

∫

Γlumen

Cm,V (t)ds,

∆MH(t) =

∫

S

κ2,SC1,S(t)C3,S(t)(1 + βC4,S(t))dS +

∫

V

κ1,V C1,V (t)C3,V (t)
(

1 + γC4,V (t))dV.

(33)

We note that ∆MΓlumen
(t) represents the mass per unit time of molecules (except PLA) that enters

in Γlumen at the instant t while ∆MH(t) stands for the total mass of hydrolyzed oligomers that

enter per unit time in the stent and the vessel wall at the same instant.

Using interface condition on Γcoat we easily establish

M(t) = M(0) + γ1,V

∣

∣

∣

∣

Γlumen

∣

∣

∣

∣

t−

∫ t

0

∆MH(µ)dµ−

∫ t

0

∆MΓlumen
(µ) dµ.

This last equation means that the total mass in the system at a certain time t, t ∈ [0, T ], is given

by the difference between the initial mass added with the mass of plasma that enters in the system

until time t and the cumulative masses of molecules in Γlumen, the stent and the vessel wall.

A stability analysis of the model is presented in Annex A.

4 Numerical results

We define a variational formulation of the complete model (25)− (31). Based on this formulation

a P1 finite element method is proposed (eq. (57) in Annex B).

All experiments have been carried out with the open source PDE solver freeFEM++ considering

the triangulation plotted in Figure 4, with 14741 elements (7623 vertices) for the vessel wall and 393

elements (264 vertices) for each stent. The time integration of equation (57) has been performed

using an implicit-explicit backward formula in the time grid

{

tn;n = 0, 1, . . . , N

}

, t0 = 0, tN = T

and with time step size ∆t = 10−3.

An implicit-explicit (IMEX) method is defined by integrating (57) with an implicit Euler method

where the diffusion and the convective terms are considered implicitly with explicit diffusion coef-

ficients. In the discretization of the reaction terms, we adopt an IMEX approach which converts

each nonlinear reaction into a linear one at each time level: for example, in the equation of the

transport of plasma in the coating at time level tn+1, we use the value of C1,S,h (the discrete ap-

proximation of C1,S) at time level tn+1 while we use concentrations Cm,S,h,m = 2, . . . , 5, at time

level tn.

To compute the finite element solutions we need to evaluate some convolution integrals. To avoid
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the use of quadrature rules, we generate and implicitly solve a set of ordinary differential equations

whose solutions are those integrals.

Figure 4: Triangulations in the stent and in the arterial wall.

The interested reader is referred to annexes A and B for mathematical details.

We define the mass in the coated stent and in the arterial wall respectively by

Mm,S,h(tn) =

∫

Sh

Cm,S,h(tn)dS, m = 1, . . . , 5,

Mm,V,h(tn) =

∫

Vh

Cm,V,h(tn)dV, m = 1, . . . , 5, m 6= 2,
(34)

where Mm,j,h(tn), j = S, V, are the numerical approximations for masses at time level tn.

There is a large degree of variability in most parameters exhibited in the literature, due to the

particular approach used in their estimation (as for example in vivo vs. in vitro, human vs. animal).

In this paper we have extracted the values of the parameters from [28, 29], and [41]. Their physical

meaning and values have been displayed in Table 1. The thickness of media (2 × 10−2cm) and

stent coating (5× 10−4cm) have been extracted from [28, 41].
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Parameter/Variable Definition Value
Stent coating

D0
1,S diffusion coefficient of plasma 10−8cm2/s

D0
2,S diffusion coefficient of PLA 10−15cm2/s

D0
3,S diffusion coefficient of oligomers 10−10cm2/s

D0
4,S diffusion coefficient of lactic acid 2× 10−10cm2/s

D0
5,S diffusion coefficient of drug 10−8cm2/s

κ1,S rate of first reaction 10−6cm2/g.s
κ2,S rate of second reaction 10−7cm2/g.s
kS permeability of fluid 2× 10−14cm2

µS viscosity of fluid 7.2× 10−2g/cm.s
α dimensional parameter 1s/cm2

β dimensional parameter 10s/cm2

Arterial wall
D̄1,V diffusion coefficient of plasma 10−8cm2/s
D̄3,V diffusion coefficient of oligomers 10−10cm2/s
D̄4,V diffusion coefficient of lactic acid 2× 10−10cm2/s
D̄5,V diffusion coefficient of drug 10−10cm2/s
Dσ viscoelastic diffusion coefficient 5× 10−8g/(cmsPa)
τ1 relaxation time 0.5s
κr Young modulus 1.2MPa
κ1 Young modulus of the arm 1MPa
κ1,V rate of first reaction 10−6cm2/g.s
kV permeability of fluid 10−15cm2

µV viscosity of fluid 5× 10−2g/cm.s
γ dimensional parameter 10s/cm2

plumen pressure on lumen 102mmHg
padv pressure on adventitia 0mmHg

Table 1: Values for the parameters and variables in the stent coating and in the arterial wall.

We note that the arterial wall is anisotropic and consequently diffusion has different values in

circumferential and axial directions. To simplify our model we use a mean value for the diffusion

coefficient. A more realistic description will be used in a future work.

The values used in this study correspond to the drug paclitaxel applied in Taxus paclitaxel eluting

stent from Boston Scientific, Natick, MA, USA. It is a hydrophobic therapeutic agent to control

migration of smooth muscle cells from endothelium caused by in-stent restenosis. Other types

of drug such as sirolimus, also known as rapamycin, (D5,S = 1 × 10−9, [18]) or heparin (D5,S =

7.7× 10−8, [41]) are used in some commercial DES.
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(a) Velocity field

(b) Pressure distribution

Figure 5: Velocity field and pressure distribution in the coupled system.

We impose a pressure difference between the inner surface (Γlumen) and the outer surface (Γadv)

of the arterial wall. A velocity field in the coupled stent-wall system is caused by this pressure

jump (Figure 5 (a)). The average magnitude of the velocity in the stented arterial wall observed

is 10−6cm/s which agrees with the value presented in [41].

The pressure drop given by system (40) is shown in Figure 5. While pressure on the interface

boundary Γcoat is around 76.88 mmHg, it is observed that the average pressure in the arterial wall

and in the stent are 35.93 mmHg and 75.34 mmHg respectively.

The release of the drug from the stent into the vessel wall is illustrated in Figure 6. As time evolves

the mass of the drug increases in the arterial wall.
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(a) 1 month

(b) 3 months

Figure 6: Evolution of concentration in the stent and in the vessel wall.

The behavior of the mass of drug, the mass of PLA and the amount of fluid in the biodegradable

stent is shown in Figure 7. The drug presents a steep initial gradient and gradually vanishes after
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three months. The penetration of the fluid in the stent presents a steep initial slope and after

around 20 days achieves a steady state. We can also observe in Figure 7 that as PLA degrades,

the release rate of drug decreases.
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Figure 7: Mass behaviour of fluid, PLA and drug in the stent during 90 days.
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Figure 8: Mass of drug released from a biodegradable stent versus the mass released from a non-
biodegradable stent.

The release of drug from a biodegradable stent and a non-biodegradable stent are compared in

Figure 8. We observe that due to the degradation of the polymer, the drug release from a biodegrad-

able stent is faster than the drug release from a non-biodegradable stent. The drug release rate

directly depends on the reaction rate κ1,S .

The influence of the stiffness of the vessel wall in the diffusion process of the drug is shown in

Figure 9. A healthy coronary artery with Young’s modulus κr = 1.2 MPa (see [13]) is compared

with a highly diseased coronary artery with Young’s modulus κr = 4.1 MPa (see [25]).
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As κr increases due to age or atherosclerosis, the vessel wall is less elastic, that is more stiff,

and less drug penetrates the coronary wall for short times. This is an interesting result from the

medical viewpoint, because cardiovascular morbidity is related with arterial stiffness [16]. The

dependence of the drug concentration on the vessel stiffness suggests that DES can be tailored

according to the severity of the arterial disease. In our numerical experiments the drug reduction

of mass in the initial days of the process could be compensated by adding 2 percent drug to the

initial concentration.
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Figure 9: Effect of κr on the mass of drug that enters in the vessel wall in short and long times.

The long term influence of stiffness of the coronary wall in the transport of the drug is shown in

Figure 9 (b). In the beginning of the treatment, a diseased coronary wall receives less drug due to

its large κr when we compare with a healthy coronary wall. A crossing occurs after the initial times

around day 15. This finding is justified by the fact that the stiffness of the vessel wall imposes
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a resistance to the penetration of the drug in the beginning of the process and leads to a drug

accumulation in the long time.
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Figure 10: The effect of the viscoelastic diffusion coefficient Dσ on the drug release in the arterial
wall.

The effect of viscoelastic diffusion coefficient Dσ on the drug release is shown in Figure 10. When

Dσ increases, we can expect less accumulation of drug in the vessel wall in the beginning of the

process. This fact is just due to an increasing of the resistance of the vessel wall to the drug

penetration. We note that for Dσ = 0 we obtain a pure Fickian model. The values for Dσ in

Figure 10, satisfy relation (24).

When an additional thin layer named topcoat is applied to the PLA matrix instead of the interface

conditions (29) we consider the following interface conditions

{

Jm,S.ηS = Pc(Cm,S − Cm,V ),

Jm,S.ηS = −Jm,V .ηV ,
(35)

for m = 1, . . . , 5, m 6= 2, where Pc is the permeability of the interface layer Γcoat. The first

condition in (35) is the second Kedem-Katchalsky equation (see [28] and the references therein).

We remark that the topcoat is used to slow down the release rate of the drug.
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Figure 11: The effect of topcoat on the drug release in the vessel wall.

Figure 11 presents the effect of permeability of the interface layer Γcoat on the drug release when

a topcoat is applied to the PLA. The accumulation of drug will decrease when a topcoat with

smaller permeability is applied to the coated stent. This means that the release of drug from the

stent into a vessel wall can be controlled by applying topcoats with different permeabilities.

An alternative model to Maxwell-Wiechert model

Fung’s quasilinear viscoelastic model ([11]) is commonly used to describe the viscoelastic properties

of the living tissues. Several authors consider that Fung’s quasilinear viscoleastic model is a simple

method to incorporate nonlinearity and viscoelasticity and is a good model for living tissues with

moderate deformation ([1, 11, 24, 38]).

The aim of this subsection is to show that the effect of the rheological properties of the vessel wall,

on drug permeation, are described analogously by Maxwell-Wiechert model and Fung’s model.

In the framework of Fung’s model, the relation between stress and strain is given by the following

convolution integral

σV (t) = −

∫ t

0

K̃(t− s)
dσe(εV )

ds
(s)ds, (36)

where

K̃(t− s) =

1 + c

∫ τ2

τ1

1
τ
e−

t−s
τ dτ

1 + c ln( τ2
τ1
)

, (37)

and

σe(εV (t)) = λ1

(

eλ2εV (t) − 1
)

≃ λ1λ2εV (t). (38)
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Figure 12: Effect of parameter κ̃r on the drug release in the vessel wall (Fung’s model) in short
and long times.

In (37), c > 0 represents the influence of viscous effects, τ1 and τ2 represent the short-term and

long-term time constants respectively. In (38), σe(εV ) represents the instantaneous nonlinear

elastic strain, λ1 > 0 is the elastic stress constant (MPa) and λ2 is a non-dimensional parameter

representing the nonlinearity of instantaneous elastic response.

Replacing (37) and (38) into (36), we obtain

σV (t) = −k̃r

(

εV (t) + c

∫

t

0

∫

τ2

τ1

1

τ
e−

t−s
τ dτ

dεV
ds

(s)ds

)

+ σS(t), (39)
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where k̃r = λ1λ2

1+c ln(
τ2
τ1

)
and σS(t) is as before the stress response to the stent deformation.

The quasilinear viscoelastic model has five material parameters (three for the reduced relaxation

function ( Equation (37)) and two for the elastic response ( Equation (38)) which must be de-

termined experimentally. Although some estimations are available in the literature for ligaments

([17]), femur-MCL-tibia complexes ([1]) and spinal tissue ([38]), to the best knowledge of the au-

thors, physiological values of these five parameters are not available in the case of coronary walls.

Due to the lack of appropriate information, we fix four parameters λ1 = 0.2 Mpa, λ2 = 25,

τ1 = 0.5s and τ2 = 1800s and choose c = 0.37 to have κ̃r = 1.2 Mpa ([13]) for healthy arterial wall

and c = 0.02 to have κ̃r = 4.1 Mpa ([25]) for a highly diseased arterial wall.

The plots in Figure 12 show that the profile of drug release exhibits the same qualitative behavior

as before. The barrier to drug permeation of stiff vessel walls, in the first period of drug delivery,

is a clinical finding suggested by Fung’s and Maxwell-Wiechert mechanistic models.

5 Conclusions

In recent years mathematical modeling has become an effective tool to simulate drug delivery pro-

cesses. In the case of drug eluting stents it leads to a deeper understanding of the drug release

mechanisms in the biodegradable coating and in the vessel wall. Although the cardiovascular drug

delivery depends on very complex biochemical and physiological phenomena, we believe that a

simplified release model can help to provide understanding of the role of some of the key factors

such as the stiffness of the arterial wall.

In this paper we present a coupled model to simulate drug delivery from a stent to a vessel wall.

The coating of the stent is biodegradable and the viscoelastic properties of the vessel wall are

included in the model. From the numerical viewpoint two particular aspects of clinical importance

are addressed: the influence of the viscoelasticity of the vessel wall and the effect of the perme-

ability of the stent coating.

Concerning the first aspect we show that during an initial period of time the permeation of drug

in the vessel is affected by its stiffness: the total mass of drug that enters the vessel is a de-

creasing function of the Young’s modulus. Patients who need a cardiovascular stent generally

have atherosclerosis and consequently stiff vessels that have high Young’s modulus. To prevent an

inflammatory response and the smooth muscle cell growth a correct concentration of drug must

penetrate the vessel from the moment when the stent is implanted. Interestingly such behavior

changes for late times: the amount of drug in the vessel in an increasing function of the stiffness.

The second aspect we want to stress is the control of the release profile according to the perme-

ability of the coating: release can be speeded up or delayed as different polymers are used.

The results presented in the paper are physiologically and physically sound, which suggests its

face validity. However, as written before, we made some mathematical assumptions that should

be relaxed in order to obtain a more realistic model. We mention the circular cross section of

the vessel, the homogeneity of the vessel wall and the complete embedding of the stent from its

insertion. These aspects will be addressed in the near future by considering:

1. Real geometries obtained from OCT images. Deviations relatively to a circular cross section

result in an initial stress (caused by the stent) dependent on space.
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2. Heterogeneity of the vessel wall using real images where lipidic and calcium plaques are

identified. Diffusive and rheological properties of the vessel will depend on space.

3. The proliferation of neo-intima cells that produce the coverage of the stent and ultimately

the restenosis of the vessel.

The inclusion of these aspects and the use of OCT data to validate the model will represent a step

forward for the field.
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A Weak formulation of the continuous model

A.1 Porous media problem

In order to find the pressure drop in the stented vessel wall, as kj and µj , j = S, V, are constants, it

is convenient to rewrite the equations (4), (13) and (28) in terms of pressure drop in the following

coupled form



































































−∇.( kV

µV
∇pV ) = 0 in V,

−∇.( kS

µS
∇pS) = 0 in S,

pV = plumen on Γlumen,

pV = padv on Γadv,
kV

µV
∇pV .ηV = 0 on Γwall,

pV = pS on Γcoat,
kV

µV
∇pV .ηV = − kS

µS
∇pS .ηS on Γcoat,

kS

µS
∇pS .ηS = 0 on Γstrut.

(40)

For a sake of simplicity, we assume padv = 0 and a nonzero pressure plumen = p0.

In what follows we use the notations

Aj(pj , qj) =
(κj

µj
∇pj ,∇qj

)

j
, j = S, V, (41)

we use the spaces

H1
lumen(V ) =

{

ϑ ∈ H1(V ) such that ϑ = 0 on Γlumen

}

(42)

and

V =

{

(pS , pV ) ∈ H1(S)×H1
lumen(V ) such that pS = pV on Γcoat

}

. (43)
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Let w ∈ H1(V ) be such that w = plumen on Γlumen and p∗V = pV − w ∈ H1
lumen

(V ).

With the previous notations, we consider the weak formulation of problem (40):

Find (pS , p
∗
V ) ∈ V such that

AS(pS , qS) +AV (p
∗
V , qV ) = −AV (w, qV ), ∀ (qS , qV ) ∈ V . (44)

It is obvious that pV can be recovered by pV = p∗V + w.

A.2 Convection-diffusion-reaction problem

We adopt in what follows the following notations:

aS
(

vS(t), wS

)

=

5
∑

m=1

(

Dm,S∇vm,S(t)− uSvm,S(t),∇wm,S

)

S

,

aV
(

vV (t), wV

)

=
5

∑

m=1
m 6=2

(

Dm,V ∇vm,V (t)− uV vm,V (t),∇wm,V

)

V

+
5

∑

m=1
m 6=2

∫ t

0

e−
t−s
τ1

(

Dm,σ∇vm,V (s),∇wm,V

)

V

ds,

alumen(vV (t), wV ) = γ1,V

(

1− v1,V (t), w1,V

)

Γlumen

−
5

∑

m=3

γm,V

(

vm,V (t), wm,V

)

Γlumen

.

(45)

These bilinear forms are defined in the Sobolev space

W =

{

(

vS , vV
)

∈

(

H1(S)

)5

×

(

H1(V )

)4

such that vm,S = vm,V on Γcoat, m = 1, 3, 4, 5

}

, (46)

where
(

vS , vV
)

=

(

(

vm,S

)

m=1,...,5
,
(

vm,V

)

m=1,...,5
m 6=2

)

and

L2(0, T ;W) =

{

w : (0, T ) −→ W such that

∫ T

0

∥

∥

∥

∥

w(t)

∥

∥

∥

∥

2

W
dt < ∞

}

. (47)

The weak solution of the problem (25)− (31) is the solution of the following variational problem:

Find
(

CS , CV
)

∈ L2(0, T,W) such that
(

∂CS

∂t
, ∂CV

∂t

)

∈

(

L2(0, T, L2(S))

)5

×

(

L2(0, T, L2(V ))

)4

and























∑

j=S,V

(

(∂Cj

∂t
(t), vj

)

j
+ aj

(

Cj(t), vj
)

)

=
∑

j=S,V

(

Fj(Cj(t)), vj
)

j
+ alumen(CV (t), vV ),

a.e in (0, T ), for all (vS , vV ) ∈ W ,

CS(0) = (0, 1, 0, 0, 1), CV (0) = (1, 0, 0, 0),

(48)

where

(

FS(CS),FV (CV )
)

=

(

(

Fm,S(CS)
)

m=1,...,5
,
(

Fm,V (CV )
)

m=1,...,5
m 6=2

)

(49)
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is defined by (2)-(12).

We define the energy functional

E(t) =
∑

j=S,V

(
∥

∥

∥

∥

Cj(t)

∥

∥

∥

∥

2

L2(j)

+

∫ t

0

∥

∥

∥

∥

∇Cj(s)

∥

∥

∥

∥

2

L2(j)

ds

)

+

∥

∥

∥

∥

∫ t

0

e
−

t−s
τ1 ∇CV (s)ds

∥

∥

∥

∥

2

L2(V )

, t ∈ [0, T ], (50)

where

∥

∥

∥

∥

CS(t)

∥

∥

∥

∥

L2(S)

=

5
∑

m=1

∥

∥

∥

∥

Cm,S(t)

∥

∥

∥

∥

L2(S)

and

∥

∥

∥

∥

CV (t)

∥

∥

∥

∥

L2(V )

=

5
∑

m=1
m 6=2

∥

∥

∥

∥

Cm,V (t)

∥

∥

∥

∥

L2(V )

. (51)

An upper bound for the energy functional (50) is established in the following theorem.

Theorem A.1 If (CS , CV ) ∈ L2(0, T,W), with (∂CS

∂t
, ∂CV

∂t
) ∈

(

L2(0, T ;L2(S))

)5

×

(

L2(0, T ;L2(V ))

)4

,

is a solution of the variational problem (48), then assuming
(

CS(t), CV (t)
)

∈
(

H2(S)
)5

×
(

H2(V )
)4

we have

E(t) ≤ 1

min
{

1,φ,Dσ

}e2(K+ϕ)tE(0) +
γ1,V

2

∣

∣Γlumen

∣

∣

2

(

e2(K+ϕ)t − 1

)

, (52)

where K, φ, ϕ and Dσ are concentration-independent constants while |Γlumen| is the length of the

transition layer Γlumen.

Estimate (52) proves the stability of the model for finite intervals of time.

B Weak formulation of the discrete model

We fix h > 0 and define in Ω = S ∪ V (Figure 2) an admissible triangulation Th, depending on

h > 0, such that the corresponding admissible triangulations in S and V, respectively ThS
and ThV

,

are compatible in Γcoat (see the zoomed part of Figure 4). We represent by ∆1 a typical element

of ThS
and by ∆2 a typical element of ThV

.

Let Sh =
⋃

∆1∈ThS

∆1, Vh =
⋃

∆2∈ThV

∆2 and let AS,h(., .) and AV,h(., .) be defined as AS(., .) and

AV (., .) but with the L2 inner product defined on Sh and Vh, respectively. To define the bilinear

form corresponding to alumen(., .), we represent by Γlumen,h the boundary of Vh that replaces

Γlumen.

We assume that padv = 0 and plumen = p0,h. We define in what follows the space of globally

continuous functions on Sh and Vh whose restrictions to each element ∆1 and ∆2 respectively, are

polynomials of degree at most n, i.e.

Vh =

{

(pS,h, pV,h) ∈ C0(S̄h)× C0(V̄h) such that pS,h = pV,h on Γcoat and pV,h = 0 on Γlumen

and (pS,h, pV,h)
∣

∣

∆1×∆2

∈ Pn × Pn, for all ∆1 ∈ ThS
and ∆2 ∈ ThV

}

⊂ H1(Sh)×H1
lumen

(Vh).
(53)

In (53), Pn denotes the space of polynomial of degree at most n.

The finite dimensional formulation for system (40) reads:
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Find (pS,h, p
∗
V,h) ∈ Vh such that

AS,h(pS,h, qS,h) +AV,h(p
∗
V,h, qV,h) = −AV,h(wh, qV,h), ∀ (qS,h, qV,h) ∈ Vh. (54)

We also use the following notations

(

vS,h, vV,h
)

=

(

(

vm,S,h

)

m=1,...,5
,
(

vm,V,h

)

m=1,...,5
m 6=2

)

. (55)

To compute the semi-discrete Ritz-Galerkin approximation Ch = (CS,h, CV,h) for the weak solution

of C = (CS , CV ) defined by (25)− (31), we consider the space

Wh =
{

(

vS,h, vV,h

)

∈
(

C0(S̄h)
)5

×
(

C0(V̄h)
)4

such that vm,S,h = vm,V,h on Γcoat, m = 1, 3, 4, 5

and (vS,h, vV,h)
∣

∣

∆1×∆2

∈ (Pq)
5 × (Pq)

4 for all ∆1 ∈ ThS
and ∆2 ∈ ThV

}

⊂
(

H1(Sh)
)5

×
(

H1(Vh)
)4
,

(56)

where Pq denotes the space of polynomials of degree at most q (not necessarily equal to n).

By aj,h(., .) we represent the bilinear form defined on aj(., .) but with the L2 inner products defined

on Sh for j = S and Vh for j = V . By alumen,h(., .) we denote the bilinear form defined as alumen(., .)

but considering the boundary integrals on Γlumen,h.

The weak solution of the problem (25)− (31) in the discrete case is the solution of the following

finite dimensional variational formulation:

Find
(

CS,h, CV,h
)

∈ L2(0, T,Wh), with (
∂CS,h

∂t
,
∂CV,h

∂t
) ∈

(

L2(0, T ;L2(Sh))

)5

×

(

L2(0, T ;L2(Vh))

)4

and























∑

j=S,V

(

(∂Cj,h

∂t
(t), vj,h

)

j,h
+ aj,h

(

Cj,h(t), vj,h
)

)

=
∑

j=S,V

(

Fj(Cj,h(t)), vj,h
)

j,h
+ alumen,h(CV,h(t), vV,h),

a.e in (0, T ), for all (vS,h, vV,h) ∈ Wh,

CS,h(0) = (0, 1, 0, 0, 1), CV,h(0) = (1, 0, 0, 0).

(57)

To conclude this section, we introduce the semi-discrete energy functional

Eh(t) =
∑

j=S,V

(∥

∥

∥

∥

Cj,h(t)

∥

∥

∥

∥

2

L2(j)

+

∫ t

0

∥

∥

∥

∥

∇Cj,h(s)

∥

∥

∥

∥

2

L2(j)

ds

)

+

∥

∥

∥

∥

∫ t

0

e
−

t−s
τ1 ∇CV,h(s)ds

∥

∥

∥

∥

2

L2(V )

, t ∈ [0, T ], (58)

where Cj,h(t), j = S, V, is the solution of (57).

This functional is the semi-discrete version of the energy functional (50). Following a procedure

analogous to the one in Theorem A.1, a discrete version of inequality (52) can be established.

C Validation of the numerical model

In Table 2 we present the errors

Ehmax
(C5,j) = max

n=1,...,N

∥

∥

∥

∥

C̄n
5,j − Cn

5,j,h

∥

∥

∥

∥

L2(j)

, j = S, V, (59)
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where C̄n
5,j represents the reference solution computed considering for the stent: hmax = 2.2×10−2,

with 1706 triangles, 1054 vertices; and for the arterial wall: hmax = 4.89 × 10−2, with 33033

triangles, 16895 vertices. We also present in this table the convergence rates

Rh1,h2
(C5,j) =

ln(
Ehmax,1(C5,j)
Ehmax,2(C5,j)

)

ln(hmax,1
hmax,2

)
, j = S, V, (60)

when ∆t is fixed, where hmax,1 and hmax,2 are the maximum edge size of triangles of two consecutive

generated meshes and N∆i
, i = 1, 2, are the number of elements used in the triangulation of the

stent coating and the arterial wall respectively. We took αm = 1,m = 1, 3, 4, 5.

hmax N∆1
Ehmax

(C5,S) Rh1,h2
(C5,S) hmax N∆2

Ehmax
(C5,V ) Rh1,h2

(C5,V )
6.27× 10−2 200 6.52× 10−2 − 1.51× 10−1 3688 6.56× 10−2 −
5.10× 10−2 298 4.72× 10−2 1.5728 1.27× 10−1 5624 5.33× 10−2 1.1787
4.39× 10−2 454 3.59× 10−2 1.8435 9.87× 10−2 8107 3.81× 10−2 1.3332
4.09× 10−2 522 3.11× 10−2 1.9925 8.49× 10−2 10877 3.04× 10−2 1.4918
3.27× 10−2 786 2.00× 10−2 1.9823 7.92× 10−2 14741 2.68× 10−2 1.8133
3.00× 10−2 1014 1.68× 10−2 2.0082 6.60× 10−2 18684 1.88× 10−2 1.9374

Table 2: Errors and convergence rates for the drug in the stent and arterial wall obtained with
∆t = 10−3 and T = 1h.

In Table 3 we present the errors E∆tk(C5,j) in C5,j defined by (59) for a fixed triangulation and

for different time step sizes and the convergence rates

R∆t1,∆t2(C5,j) =
ln(

E∆t1
(C5,j)

E∆t2
(C5,j)

)

ln(∆t1
∆t2

)
, (61)

for j = S, V. In (61) ∆t1 and ∆t2 define two consecutive time steps.

∆t E∆t(C5,S) R∆t1,∆t2(C5,S) E∆t(C5,V ) R∆t1,∆t2(C5,V )
0.01 9.91× 10−2 − 1.18× 10−1 −
0.075 8.73× 10−2 0.4365 9.86× 10−2 0.6321
0.005 7.11× 10−2 0.5117 7.87× 10−2 0.5551
0.0025 3.98× 10−2 0.8351 4.55× 10−2 0.7921
0.001 1.68× 10−2 0.9389 1.88× 10−2 0.9605

Table 3: Errors and convergence rates for the drug obtained with hmax = 3.00 × 10−2, hmax =
6.60× 10−2 for the stent and arterial wall respectively and with T = 1h.
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