Progressin
SURFACE

SCIENCE
PERGAMON Progress in Surface Science 67 (2001) 285-298 _

www.elsevier.com/locate/progsurf

Metallic slabs: perturbative treatments based on
jellium
C. Fiolhais **, C. Henriques *°, I. Sarria ¢, J.M. Pitarke ¢

& Department of Physics, Center for Computational Physics, University of Coimbra, P-3004-516 Coimbra,
Portugal
® Departamento de Fisica, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa,
P-2825-114 Caparica, Portugal
¢ Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea,
644 Posta kutxatila, 48080 Bilbo, Basque Country, Spain
9 Donostia International Physics Center (DIPC) and Centro Mixto CSIC-UPV/EHU, Donostia,
Basque Country, Spain

Abstract

We examine first-order perturbative results based on jellium for the surface energy of slabs
of simple metals, using various local pseudo-potentials (Ashcroft, Heine-Abarenkov and
evanescent core). The difference between the pseudo-potential and the jellium potential is
averaged along the plane parallel to the surface. We compare these perturbative results with
those of the stabilized-jellium model (a modification of the regular jellium model in which the
perturbation appears in the energy functional right from the outset) and with the output of
other perturbative and non-perturbative calculations. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The jellium model is the simplest model which can be used to describe simple
metals (metals with s or p valence electrons). It avoids the atomic non-uniformities
by replacing the ionic cores by a positive uniform background. It describes quali-
tatively the work function, but it predicts negative surface energies for metals with
high valence-clectron density.
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Lang and Kohn [1,2], who were the first to apply the jellium model to surfaces,
introduced a perturbative correction to get realistic results. This correction was
simple enough to keep most of the original simplicity: the self-consistent density was
still that of jellium and the perturbation (difference between the lattice potential and
that of the uniform positive background) was averaged over the surface plane. They
also improved on the description of the ion—ion interaction through the so-called
classic cleavage surface energy. In this way, they obtained face-dependent surface
energies, which were always positive.

Later, the influence of the discrete ions in the electronic density was taken into
account [3,4] via second-order perturbation theory, which includes the linear re-
sponse of the electronic distribution to the lattice potential [5]. Rose and Dobson
[3,4] were the first to work out second-order surface energy terms, but they used
the linear response of bulk jellium, in a kind of local density approximation. Sec-
ond-order perturbation theory using the linear response of a jellium slab in the
random phase approximation has been worked out by Barnett and coworkers [6]
and also by Eguiluz [7]. These calculations, which are three-dimensional, show a
noticeable influence of the second-order term in the face-dependent surface ener-
gies. While the surface energies depend strongly on the exposed face in the first-
order perturbative model of Lang and Kohn, the second-order results show a
weaker dependence.

The stabilized-jellium model or structureless pseudo-potential model [8-11], a
modification of the regular jellium model in which the perturbation appears in the
energy functional right from the outset, includes the perturbation in the effective
potential of the self-consistent Kohn—Sham equations and, as a consequence, its
effect on the electronic density. Originally, this model was intended to describe flat
surfaces and therefore did not include any structure in the averaged perturbation.
However, the dependence of the surface energy on the atomic corrugation of a
particular face of a metal was incorporated multiplying the flat surface results by a
term based on the liquid-drop model [8,12]. The results showed a much weaker face
dependence than in the work of Lang and Kohn, in agreement with second-order
perturbative results. Considering a dipole barrier, due to corrugation, the model was
also adapted to improve the previous face-dependent surface energies [13] and to
calculate face-dependent work functions [8,12,13].

More elaborated, and therefore more computationally demanding non-pertur-
bative calculations, are now available for surfaces [14,15]. The experimental diffi-
culties to get surface energies of the different surfaces to compare with the
perturbative results based on jellium were then obviated by the predictions of these
full atomistic calculations. The results of the stabilized-jellium model were found to
be fairly realistic for several metals [16].

Some of the above-mentioned calculations were performed for slabs or thin films,
i.e., systems made out of a few atomic layers. Slabs, which are convenient to obtain
second-order perturbative results for surfaces, are interesting in their own since they
exhibit quantum size and self-compression effects. Jellium slabs, showing quantum
size effects, were examined in a seminal paper by Schulte [17]. The second-order
perturbative energies of Barnett et al. [6] and Eguiluz [7] were obtained for slabs.
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Slabs of stabilized jellium were recently examined by us [18]. We have shown that
they are able to describe both quantum-size and self-compression effects.

The above perturbative treatments were implemented using Ashcroft’s empty-core
pseudo-potential [19] or the local Heine—-Abarenkov pseudo-potential [20-22]. In this
paper, we study aluminum slabs, with 9 and 17 layers, along the lines of Lang—
Kohn’s perturbation theory using the Ashcroft, the Heine-Abarenkov, and the re-
cent evanescent core pseudo-potential [23,24], which has the advantage of having a
smooth repulsion. We compare our results with those of stabilized jellium and with
other perturbative and non-perturbative calculations. Finally, we refer to the pos-
sibility of considering stabilized jellium as a zero-order description of a metal surface.

The ultimate goal of our research is to perform systematic first- and second-order
perturbative calculations for surfaces of simple metals with the evanescent core
pseudo-potential. This will be an extension to surfaces of the systematic treatment of
the energetics and mechanical properties we have made for metallic solids in different
crystal structures [25]. Although ab initio calculations are nowadays clearly the
method of choice for bulk or surface systems, perturbative treatments still have their
role to describe trends along the periodic table and along different crystallographic
structures. Above all, they can provide understanding of the physics of metal co-
hesion.

The outline of this paper is as follows. In Section 2, the theoretical background is
provided, and in Section 3, the perturbative results are presented. Conclusions ap-
pear in Section 4.

2. Perturbative corrections to jellium model
2.1. Electronic and Madelung subsystems

In order to study a neutral metallic system formed by a fixed lattice of ions and
electrons with density n(7), we start with a superposition of two simple systems: the
valence electrons moving in a positive background of density », () = 7 inside the
metal (n, () = 0 outside), where 7 is the mean electronic density, and the ions lattice
embedded in a negative background with the same density and size as the positive
one.

The first of these subsystems, referred to as the electronic subsystem, is the jellium
model. We denote its ground-state energy by Ej[ny], ny being its electronic density
which we assume to be a reasonable approximation to n(7).

The second subsystem, called Madelung subsystem, has energy Ey. If one wishes
to correct the jellium description perturbatively, one should consider the interactions
within the Madelung system and between this and the electronic subsystem, Eye.
The total energy is

E= EJ[I’[()] +EM +EM,C- (21)

The energy of the jellium model (electronic subsystem) is, in atomic units, given by
the following density functional:
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Exfio] = Tlno] + Exe o] / &r / ds/no )

/d3 /c13’”+ /d3 /d3 ol (7), (2.2)

where T'[ng] is the non-interacting kinetic energy, Fy.[ng] the exchange-correlation
energy (often evaluated in the local density approximation, which is incidentally
adequate for jellium surfaces [26-28]), and the other terms represent, respectively, the
electronic repulsion, the self-repulsion of the positive background and the attraction
between the electrons and the positive background.

On the other hand, the Madelung energy is given by

[ [ @) I 2
2 / d / d 7 — 7| 2 ZI: ; IR(1) — R(I")]
3 Zn(7)
— | & 7 2.3
/ Z IR(1) — 7] .

where the summations run over the ionic positions ﬁ(l ) and Z is the charge of each
ion. The first term is the self-repulsion of the negative background, the second the
Coulomb repulsion of the ions and the third the interaction between the negative
background and the ions.

2.2. First-order perturbative correction

In order to simplify the calculations, it is convenient to use a local pseudo-po-
tential, vy, to represent the ion—electron interactions (from now on, by electrons we
mean valence electrons). The pseudo-potential, due to a pseudo-ion of charge Z
located at the position R(/), can be written as a sum of two contributions: an at-
tractive long-range Coulomb part and a short-range repulsive part:

ops([F = R(D)]) = = —5—+ wx([F = R(1)|). (2.4)

The energy arising from the interactions between the Madelung and the electronic
subsystems can be written in the first order as
E == E( [l’lo] + EM +T

/

/dr 1o (F) [vps (F /d3/d3'n0 _(>)

|

+ /d3 Z”*_r / /d3'”+ 7) . (2.5)

o
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The terms in the first brackets of (2.5) represent the interaction between the
Madelung subsystem and the electrons of the electronic subsystem. They correct the
jellium—electron interactions (last term in the right-hand side of (2.2)). The difference
dv(F) between the potential of a pseudo-ions lattice and the potential of the jellium
background appears in the first-order term, which is the first correction to the jellium
model:

EQ) = [ Erao@m(m), (2.6)
where
Su(F) = vp(F — g ) ”/ (2.7)
! / 7= r |

The second brackets of (2.5) include terms representing the interaction between
the Madelung subsystem and the positive background of the electronic subsystem.
Taking advantage of the pseudo-potential form (2.4) we may rewrite it as

Enmy = — / d*rév(F)n. / d%Zm #— R(D))n (7). (2.8)

If we add Ey of (2.3) to Ey 4y (as written in the second brackets of (2.5)), we find
the second correction to the jellium model, the one which improves the description of
the ion—ion interaction:

_>
1 !

EvM+Evyy = Z / d’r / d’r LGN )7 (2.9)
2 LI |R(

\r—r|

which amounts to replacing the self-repulsion of the background by the repulsion of
the point ions.

The described perturbative approach is based on general density functionals and
may be applied as well to solids, surfaces, slabs or clusters. Lang and Kohn [1,2] used
it to calculate surface properties of metals. Due to translational invariance in the
planes parallel to the surface, they took the average of the difference potential dv(7)
in (2.6) along the plane parallel to the surface, dv(z) (z being the direction perpen-
dicular to the surface), keeping therefore the one-dimensionality of the underlying
jellium model, for which ny(7) = ny(z). They wrote

du(z) = (Sv(F))
— zk:n2nd/ dx) ups<[x|2 + |z — Rz(k)q ‘1/2>x —.(2), (2.10)

where k runs over the ionic planes, d denotes the inter-layer spacing, x| is the distance
in the plane parallel to the surface from any ion, R.(k) is the position of the kth plane
of ions, and ¢_ (z) is the potential due to the uniform positive background.
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Lang and Kohn used the Ashcroft empty-core pseudo-potential [19], which re-
quires for each metal a single parameter, the core radius rc:

-~ 0 |7 —R()| < re

—R(DH)) =47 - g )
PR =\ gy, Bk
A better pseudo-potential is the local form of the Heine—Abarenkov pseudo-po-

tential [20-22], which includes two parameters, R. and u, the first measuring the core
radius and the second the amount of repulsion in the core,

HA(2 B _J Zu/R., |7 — R(I)| < R.
RO = {0 g FR SR 1)

ps

ps

(2.11)

A recent pseudo-potential incorporating an exponential decay of the core repul-
sion, devised for evaluating systematically the energetics of simple metals, is the
evanescent core pseudo-potential [23,24], which also depends on two parameters, R
and o

. - VA ZA [F-R()|
E(F—R()|)) = ———+ "¢
{{ D) PR R
Z [F—R(D)|\ _rka
— (1 +B——— e, 2.13
+|?_R(l)|<+ e A (2.13)

where 4 and B are simple functions of «. The smoothness of this potential assures
good convergence of its Fourier transform and its suitability to second-order per-
turbative calculations. It yields overall good results for simple metal solids and
clusters [23-25,29,30], when the parameters R and « are fitted to solid-state infor-
mation.

Perturbative first-order theory can be applied to slabs along the lines of Lang and
Kohn using these or other local pseudo-potentials. It can also be done beyond the
first order [6,7], but then part of the simplicity of the jellium model is lost.

If one is working with slabs, the surface energy can be extracted from the total
slab energy per unit area by subtracting the corresponding bulk energy:

_1
24
where A4 is an area, L is the slab width (the width of the jellium background in our
system) and € is the total energy per particle in the bulk. We can decompose the

slab surface energy in various parts. For the functional of (2.1) and considering (2.5),
the surface energy reads as

(L) E(L) - ﬁLAeb““‘] , (2.14)

G:JJ—FO'M—F(TI()IS)—FO'M’jLJ. (2.15)

The first term in the right-hand side is the jellium surface energy. The second is the
Madelung surface energy, for which the following classical cleavage formulae may be
used, as Lang and Kohn did [1]:

om &~ aZn, (2.16)
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where « is a tabulated constant for each face of a given crystal structure. The third
term is the first-order pseudo-potential surface energy, which may be calculated
using the average value for the perturbative potential given by (2.10),

1>~-/ dz8v(2)[n(z) — ny (F)]. (2.17)

Finally, oy 4 is a cleavage piece which is different from zero only when the ion
cores appear out of the jellium surface. We may use, for this term, the expression of
Monnier and Perdew [10,11], where the potential is averaged in planes parallel to the
surface, as previously done for the difference potential:

at e _/ dz<ZwR(7—ié(1))>ﬁ, (2.18)
Jellium Edge !

where the angular brackets denote the surface average.
When the width of the slab approaches infinity, the surface energy of the slab
approaches the surface energy of the semi-infinite system.

2.3. Stabilized jellium

In the stabilized-jellium model, which is based on the perturbative-variational
concept of Monnier and Perdew [10,11], the perturbative potential, conveniently
averaged, is included in the Kohn—Sham equations. The new self-consistent density
is a better approach to the real density than the jellium one. The corrections to the
jellium description of the ion—ion and electron—ion interactions are now averaged
out: the self-repulsion of the jellium positive background inside each Wigner—Seitz
sphere € is subtracted (the jellium is supposed to describe well the repulsion between
cells) and, in the perturbative energy, dv(¥) is taken to be constant inside the metal
and equal to its average over the volume of the Wigner—Seitz sphere, (dv)y,g. The
stabilized-jellium energy functional is given by

Egy[n] = Ey[n 76/di’l’l+ SUWS/drﬁ

or using the equality [8] € = (dv)yg — em — g, Where ey is the (bulk) Madelung
energy per particle and wy, is the pseudo-potential repulsion averaged in the Wigner—
Seitz sphere,

Bl = Eilal + (ew-+ ) [ &'rn(7)+ Gy [ &) - .0
(2.19)

While in the jellium model the energy per particle of the bulk system has a single
minimum at a density close to that of sodium

bulk
dey

dn =0
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in the stabilized-jellium model that energy has a minimum for each metal at the
corresponding experimental density

bulk
degy
dn

n=nexp

=0.

This condition is fulfilled by adjusting a pseudo-potential parameter.

The second term in the right-hand side of (2.19) does not contribute to the surface
energy. The stabilized-jellium functional has been recently applied to metal slabs
[18], the conclusion being that the surface energy obtained from (2.14) and (2.19)

Osy = 0313 + Osips (2.20)

gives a reasonable description of aluminum slabs in comparison with ab initio re-
sults, but it fails for lithium slabs, a case where the necessity for a non-local pseudo-
potential is known and for which first-principles calculations showed untypical
features for a simple metal [31]. Note that the first term of (2.20) is similar to the
jellium surface energy but is evaluated with the self-consistent density obtained from
functional (2.19). On the other hand, the second term differs from the Lang-Kohn
perturbative term by the use of a three-dimensional average for the perturbative
potential instead of a two-dimensional one and by the use of the self-consistent
stabilized-jellium electron density instead of the jellium electron density. In sum-
mary, though inspired by it, the stabilized-jellium model is not perturbation theory.

In [18], we have shown that the application of the stabilized-jellium model to slabs
leads to quantum size effects, i.e., fluctuations in the surface energy and work
function, which are similar to those known for the jellium model but are around
more realistic values. Moreover, we have shown that, fixing the width of the slab,
energy minimization with respect to background variation leads to a higher back-
ground density inside the slab, i.e., the system tends to self-compress.

Using functional (2.19) no difference shows up between different crystallographic
faces. However, ad hoc modifications of stabilized jellium have been proposed to
describe the difference between various exposed faces [8,12,13]. In these approaches,
the self-consistent density is obtained by considering a face-dependent potential but,
for the sake of realism, the use of the latter is avoided in the final evaluation of the
first-order surface energy. This methodology describes reasonably well the face-de-
pendence found by more sophisticated methods.

A modification of stabilized jellium has been made by Montag et al. [32], who
tried to incorporate the cleavage energy in a phenomenological way (by fitting to
empirical surface energies).

3. Results

We have considered jellium slabs corresponding to 7 and 19 layers of aluminum
(fcc lattice), cut along the three main planes (111), (100) and (110) (by decreasing
order of planar density and, therefore, by increasing order of interplanar distance).
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We expect perturbation theory based on jellium to converge better for the planes
which are most close-packed and therefore more similar to a flat surface.

Fig. 1 represents our three pseudo-potentials for aluminum. The following values
for the pseudo-potentials parameters have been used (all in atomic units, except o,
which is dimensionless): r. = 1.12 (Ashcroft); R, =1.4017 and u = —0.3921 (Heine—
Abarenkov); and R=0.317, « =3.512 (evanescent core). The first value is simply
derived from a stability condition for the bulk energy within first-order perturbation
theory. The second pair of values come from a stability condition for the bulk energy
at the experimental density and from matching the bulk modulus (within second-
order perturbation theory) to the experimental value [7]. The last pair of values arise
again from a stability condition for the bulk energy within second-order and from
matching first-order values [23,24] to all-electron values for the number of electrons
in the interstitial region (zone between the Wigner—Seitz cell and the inscribed
sphere). It has been shown that the latter requirement does not differ much from the
demand for a realistic bulk modulus [25].

Jellium surface energies o; are straightforward to evaluate. The cleavage energy
oM has been taken from [10,11]. We note that the differences between the values of
om for various faces are large. The term oy 1y is small: it may be even zero depending
on the size of the core radius [10,11]. The perturbative potentials dv(z) corresponding
to the different pseudo-potentials are represented in Fig. 2. They enter in the cal-
culation of ¢)). We note the better smoothness of the Sv(z) arising from the eva-
nescent core potential.

- Ashcroft
- = Heine-Abarenkov
— Evanescent core

6.0

Potential (hartree)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radial distance (bohr)

Fig. 1. Three pseudo-potentials for aluminum used in this work as function of radial distance.
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Fig. 2. Jellium electronic density ny(z) and perturbative potential dv(z) contributing to first-order energy
of slab with 7 layers ((1 1 1) face). Three pictures refer, from top to bottom, to Ashcroft, Heine-Abarenkov
and evanescent core pseudo-potentials. The shaded area indicates the background jellium.



Table 1

First-order surface energies for slabs with 7 and 19 layers of aluminum cut along, respectively, the (111), (100) and the (1 10) planes*

Face oy oM Pseudo-potential aly) oM. I
7 layers 19 layers 7 layers 19 layers 7 layers 19 layers

Al(111) -610.4 -602.7 408.6 Ashcroft 1050.5 1053.5 0 851.7 856.4
-610.4 —-602.7 408.6 Heine-Abarenkov 680.9 677.8 0 479.1 483.7
—610.4 —602.7 408.6 Evanescent core 544.9 543.5 -92.7 250.4 256.7

Al(100) —-613.8 —603.4 1802.8 Ashcroft 405.3 410.8 0 1594.3 1610.2
—613.8 —603.4 1802.8 Heine-Abarenkov —-108.3 -107.7 0 1080.7 1091.6
-613.8 -603.4 1802.8 Evanescent core -168.1 —-168.2 -182.7 838.1 848.5

Al(110) —-585.6 —-608.3 5540.3 Ashcroft —1588.6 —-1581.7 0 3366.1 3350.3
-585.6 —-608.3 5540.3 Heine-Abarenkov -2315.2 -2306.2 -15.4 2624.1 2610.4
—585.6 —608.3 5540.3 Evanescent core —-1986.8 -1978.1 —588.7 2379.2 2365.1

20y, oM, 0’1(3]5), and gy 1 are the terms of the surface energy, o, following (2.15). The Perdew—Wang [33] correlation functional was used in the jellium term. The

other terms were calculated using the approximations expressed by (2.16)—(2.18). All values are in erg/cm?.

867-8C (100Z) L9 22Ud12S 2o1fung Ul SS2USOA | D 12 SIDYJOL] D

S6C
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Table 2
Flat stabilized-jellium surface energies (no corrugation included in the calculations) for slabs with
thicknesses corresponding to 7 and 19 layers®

Thicknesss 0sJ.] 0SJ ps asy

7 layers of Al(111) -447.9 1369.8 921.9
19 layers of Al(111) —450.6 1376.0 925.4
7 layers of Al(100) -445.9 1363.2 917.3
19 layers of Al(100) —450.2 1376.2 926.0
7 layers of Al(110) —460.1 1405.1 945.0
19 layers of Al(110) —451.5 1370.8 919.3

* o1y and o) are the terms of the stabilized-jellium surface energy, os;, following (2.20). The Perdew—
Wang [33] correlation functional was used in the jellium term. All values are in erg/cm?.

Table 1 shows total surface energies, together with their components, obtained
with the three pseudo-potentials for the slabs with 7 and 19 layers. Table 1 illustrates
the importance of the positive Madelung contribution. For the same pseudo-po-
tential the surface energy increases when going from the (11 1) face to the (1 10) face.
The results show a strong dependence on the pseudo-potential, with the Ashcroft
result, which in principle is the most unrealistic, being discrepant from the other two
(it is always bigger). Without the Madelung term, the perturbative correction of
Lang and Kohn would lead to a positive surface energy only for the (111) face,
precisely that considered by those authors.

Table 2 shows the flat stabilized jellium results for aluminum slabs with thick-
nesses corresponding to 7 and 19 layers. The total surface energies are in general very
different not only from the jellium ones but also from first-order perturbation results.

In spite of the quantum size oscillations, slabs may be used to estimate the surface
energy of the semi-infinite system. Indeed, the slab with thickness corresponding to
19 layers is a good approximation to the latter. Table 3 allows us to compare our
previous slab results with semi-infinite results (Lang-Kohn, stabilized jellium, and
other perturbative and non-perturbative results). Actually, the non-perturbative
result was obtained with the plane-wave pseudo-potential method for 12 layers
separated by a vacuum of 6 layers, but this should represent well the semi-infinite

Table 3
Surface energies obtained by first-order perturbative theory (Lang—Kohn approach [1] with the Ashcroft
pseudo-potential), in the second column, and by other methods®

Surface g O'gj“ age}ce OMP ORD OSBH
Al(111) 842 925 938 643 1065 939
Al(100) 1631 925 1087 1460 1160 1081
Al(110) 3393 925 1679 2870 1700 1090

The third column refers to flat stabilized jellium [8], o, the fourth to face-dependent stabilized jellium
[13], ofice, the fifth to the perturbative-variational method of Monnier and Perdew [10], awmp, the sixth to
the second-order perturbative theory of Rose and Dobson [3], orp, and the seventh to Schochlin et al. [34]
first-principles non-perturbative results, gspy. In these works, the semi-infinite system is considered except
in the last one, where a slab with 12 layers was taken. All calculations were done in the local density
approximation. All values are in erg/cm?.
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system. Accepting this non-perturbative as the best result, we have to conclude that
its agreement with the (1 1 1) surface energy of Lang and Kohn, who used the As-
chroft potential, is accidental. The same pseudo-potential for any other face leads to
disagreement. However, the most striking conclusion of Table 3 is that the face-
dependent stabilized-jellium model can emulate quite well the second-order pertur-
bative result of Rose and Dobson and also the non-perturbative calculation, with the
single exception of the (1 10) case.

4. Conclusions

We have studied within perturbation theory surface energies of metallic slabs
taking as zero-order the jellium model. Our results allow us to conclude that first-
order surface energies depend strongly on the pseudo-potential used. For aluminum
slabs, the Heine—Abarenkov and the evanescent core potentials give similar results,
while the Ashcroft potential differs from those two (it differs more for the least dense
surfaces). It should therefore be used with some caution. On the other hand, the first-
order perturbation turns out to be too large for the least dense surfaces, being
imperative to correct it through second-order terms. We are implementing second-
order perturbative calculations using the slab response function. We pointed out the
importance of the Madelung energy, which should therefore be evaluated as far as
possible without any approximations.

We stressed the usefulness of the stabilized-jellium model, which keeps the es-
sential simplicity of jellium, while reproducing various first principles results for
slabs and surfaces. As an extension of that model, we may take as zero’s order the
stabilized-jellium energy instead of the jellium one (since the perturbation is strong
for all aluminum faces, it should, after all, be a better starting point for perturbation
theory) and to take as first-order perturbation, the difference between the pseudo-
potential of stabilized jellium and an adequate pseudo-potential. Work along these
lines is in progress.
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