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Abstract. In this paper we illustrate the use of explicit and semi-
implicit finite difference schemes for nonlinear complex diffusion in the
context of medical imaging despeckling, namely for Optical coherence
Tomography images. Differente boundary conditions will also be used.
Performance metrics are shown to illustrate the feasibility of the numer-
ical schemes and compare its results.
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1 Introduction

Diffusion processes are commonly used for image processing in general, such as
impaiting, denoising and stereo vision [3, 4, 6–8, 10–12]. Particular applications
for image denoising and despeckling are of interested [3, 5, 7, 8] and have been
used in the past decade. The these methods are usually based in the discretization
of a nonlinear diffusion equation of the form

∂u

∂t
(x, t) = ∇ · (D(x, t, u)∇u(x, t)), in Q× [0, T ] (1)

where the solution u(x, t) represents different stages of the filtered image, x is
the spatial coordinate defined in the square Q = [1, N1] × [1, N2] (where the
inital image as dimensions N1 × N2), t is the time coordinate defined in the
interval [0, T ] where T is the diffusion time, and the diffusion coefficient D has
to be properly defined in order to avoid diffusion across intensity edges in the
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image and therefore a blurring effect. Perona and Malik [7] proposed to use a
diffusion coefficient based in the gradient of the image, in order to distinguish
between edges and constant regions. However, in the initial stpes od the image
where the noise level is high, the gradient is unstable. To overcome this problem,
Gilboa [5] suggested to consider an appropriate complex filter of the form

D =
eiϑ

1 +
(

Im(u)
κϑ

)2 . (2)

where ϑ ≈ 0 and κ is a positive coefficient. It was proven that this filter is
efficient, since

lim
ϑ→0

Im(u(., t))

tθ
= G ∗∆I0

where I0 is the initial image, G is a gaussian and ∗ holds for the convolution
operator. In [3], the method was adapted for the case o Optical coherence to-
mography (OCT) images. In [1] rigorous stability results were proven for finite
difference schemes for (1) with complex diffusion coefficient. The convergence
result was also achieved in [2].

Though implicit and semi-implicit finite differences methods are shown to be
unconditionally stable, engineers tend to implement and use explicit schemes for
the diffusion process. The explicit scheme is easier to implement, but the step in
time is limited by the stability condition, leading to the need of a higher number
of time steps required. On the other hand, implicit and semi-implicit schemes
need to solve a linear system at every time step, though the number of time
steps can be considerably lower.

In this work we will compare explicit and semi-implicit schemes for complex
diffusion of OCt images in terms of image metrics. In this way, we aim at showing
how these versions perform in terms of denoising metrics. Moreover, we will
consider both Dirichlet and Neumann boundary conditions for the equation (1),
in order to illustrate if it has an effect on the denoising of the image.

The paper is organized as follows. In section 2 we present the numerical
schemes and the considered boundary conditions. In section 3 we present the
main results, showing denoising metrics of each condidered approach. Finally,
we draw some conclusions and future perspectives in section 4.

2 Methods

Let I0 be the original (noisy) image of size N1×N2. Complex diffusion is usually
based in the numerical solution of the partial differential equation (1). In order
to have a well posed problem, equation (1) must be complemented by an initial
condition of the form

u(x, 0) = I0, (3)

where I0 is the original (noisy) image. Moreover, one needs boundary conditions,
defined in the boundary Γ of the set Q. We will consider Dirichlet boundary
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conditions
u(x, t) = g(x, t), x ∈ Γ, t ∈ [0, T ], (4)

which means that the boundaries of the image are kept fixed with some given g.
In alternative, we will also consider Neumann boundary conditions

∂u

∂ν
(x, t) = 0, x ∈ Γ, t ∈ [0, T ], (5)

which means the there is no normal intensity flux, where ν is the unit exterior
normal vector.

2.1 Discretization

We consider an equally spaced mesh on Q. Let h1 = h2 = 1 be the mesh
spacement in the first and second spatial coordinate direction. The mesh is
therefore defined by the set of points

xj,k = (j, k), i = 0, 1, 2, . . . , N1 + 1, k = 0, 1, 2, . . . , N2 + 1.

Moreover, we consider the a time spacement ht,m which defines the set of points

tm+1 = tm + ht,m, m = 0, 1, . . . , Nt.

such that tNt
= T. Thefore we define a mesh Qh defined by the set of points

(xj,k, tm), i = 0, 1, 2, . . . , N1 + 1, k = 0, 1, 2, . . . , N2 + 1, m = 0, 1, . . . , Nt.

We consider the general finite difference scheme (see eq.(2.9) in [1]) for the
differential equation (1) given by

Um+1
j,k = Umj,k +

ht,m
2h21

[(
Dm,θ,µ

(j+1,k) +Dm,θ,µ
(j,k)

)
Um+θ
(j+1,k) +

(
Dm,θ,µ

(j,k) +Dm,θ,µ
(j−1,k)

)
Um+θ
(j−1,k)

−
(
Dm,θ,µ

(j+1,k) + 2Dm,θ,µ
(j,k) +Dm,θ,µ

(j−1,k)

)
Um+θ
(j,k)

]
+
ht,m
2h22

[(
Dm,θ,µ

(j,k+1) +Dm,θ,µ
(j,k)

)
Um+θ
(j,k+1) +

(
Dm,θ,µ

(j,k) +Dm,θ,µ
(j,k−1)

)
Um+θ
(j,k−1)

−
(
Dm,θ,µ

(j,k+1) + 2Dm,θ,µ
(j,k) +Dm,θ,µ

(j,k−1)

)
Um+θ
(j,k)

]
(6)

for j = 1, 2, . . . , N1, k = 1, 2, . . . , N2, m = 0, 1, . . . , Nt − 1 where Umj,k is the
approximation to the solution u(xj,k, tm),

Dm,θ,µ
(j,k) = D

(
xj,k, t

m+θ, Um+µ
j,k

)
,

and µ ∈ {0, 1}, tm+θ = θtm+1 + (1− θ)tm, θ ∈ [0, 1] and

V m+θ
j,k = θV m+1

j,k + (1− θ)V mj,k, V = U,D,
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Several choices of (θ, µ) give several different numerical schemes.
We will consider the explicit scheme given by θ = 0 and µ = 0, that is,

Um+1
j,k =

[
1− ht,m

2h21

(
Dm

(j+1,k) + 2Dm
(j,k) +Dm

(j−1,k)

)
−ht,m

2h22

(
Dm

(j,k+1) + 2Dm
(j,k) +Dm

(j,k−1)

)]
Umj,k

+
ht,m
2h21

[(
Dm

(j+1,k) +Dm
(j,k)

)
Um(j+1,k) +

(
Dm

(j,k) +Dm
(j−1,k)

)
Um(j−1,k)

]
+
ht,m
2h22

[(
Dm

(j,k+1) +Dm
(j,k)

)
Um(j,k+1) +

(
Dm

(j,k) +Dm
(j,k−1)

)
Um(j,k−1)

]
(7)

for j = 1, 2, . . . , N1, k = 1, 2, . . . , N2, m = 0, 1, . . . , Nt−1. This scheme is known
to be stable (see [1]) for

ht,m ≤
min(h1, h2)

4 max
|Dm

j,k|2
Re(Dm

j,k)

.

We will also consider the semi-implicit scheme given by θ = 1 and µ = 0. This
scheme is known to be unconditionally stable (see [2]), so one can choose a fixed
step in time ht = T/Nt, that is, one as the numerical scheme[

1 +
ht

2h21

(
Dm

(j+1,k) + 2Dm
(j,k) +Dm

(j−1,k)

)
+
ht

2h22

(
Dm

(j,k+1) + 2Dm
(j,k) +Dm

(j,k−1)

)]
Um+1
j,k

− ht
2h21

[(
Dm

(j+1,k) +Dm
(j,k)

)
Um+1
(j+1,k) +

(
Dm

(j,k) +Dm
(j−1,k)

)
Um+1
(j−1,k)

]
− ht

2h22

[(
Dm

(j,k+1) +Dm
(j,k)

)
Um+1
(j,k+1) +

(
Dm

(j,k) +Dm
(j,k−1)

)
Um+1
(j,k−1)

]
= Umj,k, (8)

for j = 1, 2, . . . , N1, k = 1, 2, . . . , N2, m = 0, 1, . . . , Nt − 1. For this numerical
schemme, a linear system needs to be solved at each iteration. As an iterative
method is advised (for computation efficiency) we consider the preconditioned
conjugate gradient algorithm of MatLab.

One also needs to consider the initial condition

U0
j,k = I0(j, k), j = 1, 2, . . . , N1, k = 1, 2, . . . , N2. (9)

We also consider the Dirichlet boundary condition

Umj,0 = I0(j, 1), Umj,N2+1 = I0(j,N1), j = 1, 2, . . . , N1,

Um0,k = I0(1, k), UmN1+1,k = I0(N1, k), k = 1, 2, . . . , N2, (10)
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for m = 0, 1, . . . , Nt or the Neumann condition

Umj,0 = Umj,2, U
m
j,N2+1 = Umj,N2−1, j = 1, 2, . . . , N1,

Um0,k = Um2,k, U
m
N1+1,k = UmN1−1,k, k = 1, 2, . . . , N2, (11)

In this work we will compare the performances of the following numerical schemes:

1. Explicit method with Dirichlet boundary conditions defined by the system
of equations (7), (9), (10);

2. Explicit method with Neumann boundary conditions defined by the system
of equations (7), (9), (11);

3. Semi-implicit method with Dirichlet boundary conditions defined by the sys-
tem of equations (8), (9), (10);

4. Semi-implicit method with Neumann boundary conditions defined by the
system of equations (8), (9), (11);

2.2 Diffusion coefficient

We consider the complex diffusion coefficient (2) proposed by Gilboa [5]. While
Gilboa considered κ constant, an improved version for OCT filtering was pro-
posed in [3] as

κ = κMIN + (κMAX − κMIN )
g −min(g)

max(g)−min(g)

where κMIN , κMAX are given real constants with κMIN < κMAX and

g = GN,σ ∗ Re(u),

where GN,σ is a gaussian of size N × N and standard deviation σ and ∗ holds
for the convolution operator.

2.3 Performance metrics

To test the performance of the proposed filtering methods, we consider both
synthetic and real OCT images.

In the synthetic images [9], one creates a noisefree synthetic OCT image and
adds OCT-like speckle noise. In this way it makes sense to use metrics like the
mean square error (MSE)

MSE =

N1∑
j=1

N2∑
k=1

(
I(i, j)− UNt

j,k

)2
N1N2

where I is noisefree image, and the mean structure similarity index [?]

MSSIM =
1

N

∑
j,k

SSIM(vI(j, k), vU (j, k)) (12)
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with

SSIM(v1, v2) =
(2µ1µ2 + C1) (2σ12 + C2)

(µ2
1 + µ2

2 + C1) (σ2
1 + σ2

2 + C2)
(13)

where vI(j, k) and vU (j, k) represent local windows of the images I and UNt ,

respectively, in the neighborhood of the coordinate (j, k), C1 = (0.01L)
2
, C2 =

(0.03L)
2

and L is the maximum value allowed for the data (e.g., 255 for 8-bit
data). The values µj , σj and σ12 are given by

µj =
∑
k

w(k)vj(k)

σj =

√∑
k

w(k) (vj(k)− µj)2

σ12 =
∑
k

w(k) (v1(k)− µ1) (v2(k)− µ2)

(14)

with j = 1, 2 and w a trivariate Gaussian weight function (of integral equal to
one and standard deviation 1.5) [?].

For both sinthetic or real OCT filtered images we also computed the effective
number of looks (ENL), the signal to noise ratio (SNR) and the contrast to noise
ratio (CNR) given by

ENL =
µ2
H

σ2
H

, SNR =
µH
σH

, CNR = 10 log

(
µR − µH√
σ2
R + σ2

H

)
,

where H is an homogeneous (background) region and R is a feature region in
the image.

3 Results

We present the results in table 1. There are no significant differences in the fil-
tering performance between the explicit and semi-implicit schemes, nor between
the Neumann and Dirichlet boundary condition. There are significant differences
for OCT filtering between κ constant or κ adaptive, has previously shown for
the explicit Dirichlet case [3].

4 Conclusion

The performance in terms of filtering seems to be independent of the numerical
scheme (explicit or semi-implicit) or the bounday condition (non-homogeneous
Dirichelet or homogeneous Neumann). In this way, one can choose the best
scheme in terms of computation eficiency. At this moment, this comparison has
not yet been done, since the linear solver for the semi-implicit scheme can still
be optimized.



Explicit and Semi-implicit schemes for OCT despeckling 7

Table 1. Metrics for the considered numerical schemes, using κ constant and adaptive.

T scheme κ Bound. Cond. CNR ENL MSE MSSIM SNR CNR ENL SNR

0,1

explicit constant Dirichlet 5,7855 14,6426 48,7945 0,6579 1,7566
explicit constant Neumann 5,7865 14,6629 48,7411 0,6579 1,7568
explicit adaptive Dirichlet 5,7855 14,6426 48,7945 0,6579 1,7566
explicit adaptive Neumann 5,7865 14,6629 48,7411 0,6579 1,7568

semi-imp. constant Dirichlet
semi-imp. constant Neumann 5,3104 9,0524 78,9557 0,5144 1,6982
semi-imp. adaptive Dirichlet
semi-imp. adaptive Neumann 5,3178 9,1249 78,3746 0,5163 1,6993

0,5

explicit constant Dirichlet 6,1188 22,638 32,7085 0,7484 1,7965
explicit constant Neumann 6,1156 22,4428 32,8474 0,7484 1,7963
explicit adaptive Dirichlet 5,876 13,1825 51,341 0,6098 1,7583
explicit adaptive Neumann 5,8725 13,0835 51,4071 0,6109 1,7582

semi-imp. constant Dirichlet
semi-imp. constant Neumann 6,0419 20,1384 35,4006 0,7397 1,786
semi-imp. adaptive Dirichlet
semi-imp. adaptive Neumann 6,0635 21,0712 33,9831 0,75 1,7893

1

explicit constant Dirichlet
explicit constant Neumann
explicit adaptive Dirichlet
explicit adaptive Neumann

semi-imp. constant Dirichlet
semi-imp. constant Neumann
semi-imp. adaptive Dirichlet
semi-imp. adaptive Neumann

5

explicit constant Dirichlet
explicit constant Neumann
explicit adaptive Dirichlet
explicit adaptive Neumann

semi-imp. constant Dirichlet
semi-imp. constant Neumann
semi-imp. adaptive Dirichlet
semi-imp. adaptive Neumann
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We have left the implicit method defined by θ = 1 and µ = 1 outside the
scope of this comparison, since it needs a nonlinear solver at each step. The
choice of the linearization process for the solver influences the result and will be
object of future research.
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