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Abstract: In this work we consider a stable algorithm for integrating amathematical model based on mean curvature
motion equation proposed in (Alvarez, Lions, Morel 1992) for image denoising. The scheme is constructed
using a finite difference space discretisation and semi-implicit time discretisation and is considered with a
splitting algorithm that can be implemented in parallel. Weapply this algorithm to the problem of denoising
optical coherence tomograms from the human retina while preserving image features.

1 INTRODUCTION

Optical coherence tomography (OCT) is a non-
invasive imaging modality with an increasing number
of applications and it is becoming an essential tool
in ophthalmology allowing in vivo high-resolution
cross-sectional imaging of the retinal tissue. It relies
in certain optical characteristics of light to provide
information of the eye fundus, facilitating the diag-
nosis of several eye pathologies such as macular de-
generation, cone-rod dystrophy, retinopathy and glau-
coma (Junqueira, Carneiro 2005). All these patholo-
gies can be diagnosed more conclusively with the help
OCT(Serranho, Morgado, Bernardes 2012), (Bouma,
Tearney 2002). In fact, previous studies have estab-
lished a link between changes in the blood-retina bar-
rier and in optical properties of the retina (Bernardes,
Santos, Serranho, Lobo, Cunha-Vaz 2011) which can
be identified by this exam.

As any imaging technique that bases its image for-
mation on coherent waves, OCT images suffer from
speckle noise, which reduces its quality. Despeck-
ling optical coherence tomograms from the human
retina is a fundamental step to a better diagnosis or
as a preprocessing stage for retinal layer segmenta-
tion (Bernardes, Maduro, Serranho, Araújo, Barbeiro
Cunha-Vaz 2010). Both of these applications are par-
ticularly important in monitoring the progression of
retinal disorders.

Physically, OCT is based in low coherence inter-
ferometry. This technique uses an electromagnetic
wave with a low coherence length (meaning the wave
is coherent, i.e., highly self-correlated, in a small
space interval). The light beam emitted from the

source is split into two identical beams with a beam
splitter (see Figure 1). Then, while one of the result-
ing waves (i.e. light beam) travels to a reference mir-
ror and back, the other goes to a sample and is re-
flected by structures there present. These reflected
waves recombine at the splitter. The portions of the
waves that are coherent interfere with each other, re-
sulting in an interference pattern which yields infor-
mation about the sample at a given depth (Bernardes,
Cunha-Vaz, Serranho 2012), (Bouma, Tearney 2002).

Figure 1: Schematic of the optical coherence tomography
apparatus.

The main purpose of this work is to consider an
algorithm to reduce the speckle noise for both the vi-
sual assessment and the improved structure segmen-
tation on high- definition spectral domain Cirrus OCT
(Carl Zeiss Meditec, Dublin, CA, USA). This reti-



nal imaging system allows the acquisition of volumes
of 200× 1024 or 512× 128× 1024 voxels, respec-
tively, for the lateral, azimuthal and axial directions
(Figure 2). These volumetric data are obtained from a
6000×6000×2000µm3 volume of the human mac-
ula. Additionally, high- resolution B-scan images of
1024×1024 pixels can be obtained.

Figure 2: Optical coherence tomography (OCT). Top: volu-
metric OCT data shown over an eye fundus reference. Bot-
tom example of a B-scan (top) and an A-scan profile (bot-
tom).

The paper is organised as follows. In Section 2 we
present the mathematical model for image denoising.
In Section 3 we define the finite difference implicit-
explicit scheme that can be implemented in parallel
and prove that the algorithm is stable with respect to
the infinity norm. In Section 3 we consider the appli-
cation of the proposed filter to an example with syn-
thetic as well as to an OCT high-resolution B-scan
from the human eye fundus. We finish with some con-
clusions.

2 MATHEMATICAL MODEL

Let φ ∈C2(Ω× [0,T]) with Ω⊂R
2 a compact set and

φ0 ∈C(Ω). We consider the problem


































φt = g(|∇Gσ ∗φ|)|∇φ|div

(

∇φ
|∇φ|

)

,

(x,y) ∈ Ω, t ∈]0,T]

φ(x,y,0) = φ0(x), (x,y) ∈ Ω

φ(x,y, t) = 0, (x,y) ∈ ∂Ω, t ∈ [0,T]

(1)

where ∂φ
∂ν denotes the derivative in the direction of

the exterior normal to∂Ω, Gσ a smoothing kernel
that depends on a parameterσ (e.g. a Gaussian) and
g(s) is a nondecreasing real function which tends to
zero ass→ ∞. This problem was proposed in (Al-
varez, Lions, Morel 1992) for image smooting and
edge detection whereφ0(x,y) represents the try level
of the original noisy image,φ(x,y, t) is its smoothed
version depending on the scale parametert. The

term|∇φ|div
(

∇φ
|∇φ|

)

represents a degenerate diffusion

term, which diffusesφ in the direction to its gradient.
The termg(|∇Gσ ∗φ|) is used for the enhancement to
the edges, since it controls the speed of the diffusion:
if the gradient ofφ has a small mean in a neighbour-
hood of a point, this point is considered the interior
point of a smooth region of the image and the diffu-
sion is strong; if the gradient has a large mean value
on the neighbourhood of a point, this point is consid-
ered an edge point and the diffusion spread is lowered
sinceg(s) is small for larges.

The equation (1) is difficult to study since, besides
its non-linearity, is not defined in the points where
|∇φ| = 0. In order to prevent the situation of possi-
ble zero gradients, we will consider the Evans-Spruck
type regularization (Evans, J. Spruck 1991) and con-
sider|∇εφ| instead of|∇φ|, where

∇εφ = (∇Tφ,ε)T ,

with 0≤ ε ≪ 1. In other words, we replace|∇φ| by

|∇εφ|=
√

|∇φ|+ ε2

in (1) obtaining the modified problem that we will
write in the form



































φt

g(|∇Gσ ∗φ|)|∇εφ|
= div

(

∇φ
|∇εφ|

)

,

(x,y) ∈ Ω, t ∈]0,T]

φ(x,y,0) = φ0(x), (x,y) ∈ Ω

φ(x,y, t) = 0, (x,y) ∈ ∂Ω, t ∈ [0,T]

(2)



Note that, for zero gradients, this problem reduces
to the heat equation, which is suitable for smoothing
purposes. On the other hand, for large values of the
gradient, the influence ofε can be neglected.

3 MUMERICAL METHOD

3.1 A Linearly Implicit Finite
Difference Scheme

Let ∆t > 0 andtn = n∆t, with n = 0, ...,N such that
t0 = 0 andtN = T andΩ =]0,X[×]0,Y[, Nx,Ny ∈ N

andh> 0 such that

h=
X
Nx

=
Y
Ny

.

Let us also considerxi = ih and y j = jh, for i =
0,1, ...,Nx and j = 0,1, ...,Ny. These points define a
rectangular grid that we denote by

Ωh = {(xi ,y j) : i = 0,1, ...,Nx, j = 0,1, ...,Ny}.

Let φn
i j ≈ φ(xi ,y j ,n∆t) denote the solution of the finite

differences problem

1
gn

i j |∇ε,hφn
i j |

φn+1
i j −φn

i j

∆t
= D+

x

(

D−
x φn+1

i j

|∇ε,hφn
i j |

)

+D+
y

(

D−
y φn+1

i j

|∇ε,hφn
i j |

)

, (3)

in which

gn
i j = g(|∇Gσ ∗φn

i j |),

∇εφ =
(

D−
x φn

i j ,D
−
y φn

i j ,ε
)T

,

and

|∇ε,hφn
i j |=

√

(D−
x φn

i j )
2+(D−

y φn
i j )

2+ ε2,

with the first order finite differences operators defined
by

D−
x Ui j =

Ui j −Ui−1, j
h , i = 1, ...,Nx, j = 1, ...,Ny−1,

D+
x Ui j =

Ui+1, j−Ui j
h , i = 0, ...,Nx−1, j = 1, ...,Ny−1,

D−
y Ui j =

Ui j −Ui, j−1
h , i = 1, ...,Nx−1, j = 1, ...,Ny,

D+
y Ui j =

Ui, j+1−Ui j
h , i = 1, ...,Nx−1, j = 0, ...,Ny−1.

3.2 A splitting algorithm

The main idea behind splitting algorithms is to split
the problem we want to solve in several simpler sub-
problems, independent or not, conveniently chosen.

Let S be a space of functions andA an operator
defined onS. Let us consider the equation

∂φ
∂t

= A (t,φ)+ f (t) in Ω×]0,T], φ(0) = φ0 ∈ S.

Let us now suppose thatA and f can be decom-
posed in the following way

A = A1+ · · ·+Am and f = f1+ · · ·+ fm.

Splitting algorithms take advantage of this decompo-
sition, considering them subproblems

∂φ
∂t

= A k(t,φ)+ fk(t) in Ω×]0,T], k= 1, ...,m.

Considering the time step∆t, tn = n∆t, for n =
1, ...,N, andφn = φ(x, tn), with φ0 = φ0, in (Lu, Neit-
taanmaki, Tai 1992) the authors proposed the follow-
ing parallel algorithm:

At each level timen= 0, ...,N−1 compute:

1.
φn+ k

2m −φn

m∆t
= Akφn+ k

2m + fk

(

(n+
1
2
)∆t

)

,

k= 1, . . . ,m;

2. φn+1 =
1
m

m

∑
k=1

φn+ k
2m .

We pretend to consider the same approach to de-
fine a splitting algorithm for the discretized equation
(3). Let us considerA = A1+A2 with:

A1(φn+1) = D+
x

(

D−
x φn+1

i j

|∇ε,hφn
i j |

)

and

A2(φn+1) = D+
y

(

D−
y φn+1

i j

|∇ε,hφn
i j |

)

.

We may then define the following sub-equations

1
gn

i j |∇ε,hφn
i j |

φn+ 1
4

i j −φn
i j

2∆t
= A1(φn+1)

and

1
gn

i j |∇ε,hφn
i j |

φn+ 1
4

i j −φn
i j

2∆t
= A2(φn+1).



Let us consider the first equation written in the
form

1
gn

i j |∇ε,hφn
i j |

φn+ 1
4

i j −φn
i j

2∆t
=

φn+ 1
4

i−1, j

h2|∇ε,hφn
i, j |

−
2
h2 φn+ 1

4
i j

(

1
|∇ε,hφn

i+1, j |
+

1
|∇ε,hφn

i, j |

)

+
φn+ 1

4
i+1, j

h2|∇ε,hφn
i+1, j |

. (4)

Let Φn the(Ny−1)(Nx−1)-dimensional vector

Φn =
[

φn
1,1, . . . , φn

Nx−1,1, . . . , φn
1, j , . . . , φn

Nx−1, j ,

. . . , φn
1,Ny−1, . . . , φn

Nx−1,Ny−1

]T

andA1 the(Ny−1)(Nx−1)×(Ny−1)(Nx−1) matrix
with (Ny−1) blocks of(Nx−1)×(Nx−1) tridiagonal
matrices. Thej-th block ofA1, j = 1, ...,Ny−1, has
entries

ai,i−1 =
gn

i j

h2 ,

ai,i =−
2gn

i j

h2

(

|∇ε,hφn
i, j |

|∇ε,hφn
i+1, j |

+1

)

,

ai,i+1 =
gn

i j |∇ε,hφn
i, j |

h2|∇ε,hφn
i+1, j |

,

for i = 1, ...,Nx−1.
Then, the first sub-equation may be written in the

form
Φn+ 1

4 −Φn

2∆t
= A1Φn+ 1

4 .

Following the same approach, we conclude that
the second sub-equation is equivalent to

Φn+ 1
2 −Φn

2∆t
= A2Φn+ 1

2 ,

whereA2 is a matrix of the same type asA1 with en-
tries

ak,k−(Ny−1) =
gn

i j

h2 ,

ak,k =−
2gn

i j

h2

(

|∇ε,hφn
i, j |

|∇ε,hφn
i, j+1|

+1

)

,

ak,k+(Ny−1) =
gn

i j |∇ε,hφn
i, j |

h2|∇ε,hφn
i, j+1|

,

wherek is related withi, j by k= ( j −1)(Nx−1)+ i.
Since bothA1 andA2 strictly diagonal dominant

matrices, they are invertible and then we may define
the following algorithm to solve (2) numerically:

At each level timen= 0, ...,N−1 compute:

1. Compute, fori = 1, ...,Nx−1 andj = 1, ...,Ny−1,

|∇ε,hφn
i j |=

√

(D−
x φn

i j )
2+(D−

y φn
i j )

2+ ε2;

2. ConstructA1 andA2;

3. Solve
(I −2∆tA1)φn+ 1

4 = φn

and
(I −2∆tA2)φn+ 1

2 = φn;

4. φn+1 =
φn+ 1

4 +φn+ 1
2

2
.

With the properties of the matricesA1 andA2 we
may prove that the algorithm is stable for the‖.‖∞
norm. In fact, according to

∣

∣

∣

∣

∣

1+
4∆tgn

i j

h2

(

|∇ε,hφn
i, j |

|∇ε,hφn
i+1, j |

+1

)∣

∣

∣

∣

∣

<

∣

∣

∣

∣

−
2∆tgn

i j

h2

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

−
2∆tgn

i j |∇ε,hφn
i, j |

h2|∇ε,hφn
i+1, j |

∣

∣

∣

∣

∣

,

the matrix I − 2∆tA1 is strictly diagonal dominant.
Since the diagonal entries ofI − 2∆tA1 are positive
and the other entries are non-positive, we conclude
that I − 2∆tA1 is an M-matrix. In the same way, we
conclude thatI − 2∆tA2 is also an M-matrix. Then
there exists two positive constantsC1 andC2 such that

‖(I −2∆tAi)
−1‖∞ ≤Ci , i = 1,2.

Then ‖Φn+ 1
4‖∞ + ‖Φn+ 1

2‖∞ ≤ (C1 + C2)‖φn‖∞
and therefore

‖Φn+1‖∞ ≤ 2
(

‖(Φn+ 1
4‖∞ + ‖Φn+ 1

2 )‖∞

)

≤ 2(c1+ c2)‖φn‖∞,

which proves the stability.

4 NUMERICAL RESULTS

In this section, we report our numerical testing for the
proposed algorithm. In the Example 1, the basic fea-
tures of the algorithm are explained. The second ex-
ample is a two dimensional OCT image. In both ex-
amples we consider

g(s) =
1

1+ s2

and

Gσ(x,y) = σ−1/2exp(−|x2+ y2|/(4σ)).



Other choices for the functiong may be found in lit-
erature but this is the most commonly used in practi-
cal applications (Didas, Weickert 2007), (Plonka, Ma
2008).

For the proposed filter we consider a diffusion
time of 0.3 s. The filter was applied using 10 itera-
tions with a time step∆t = 0.03 s. The parameters
for the gaussian kernel wasσ = 1.5. We also consider
the spatial step sizeh=1 and the relaxation parameter
ε= 10−5. The parameterε can be tuned in each appli-
cation but it has no influence in the overall behavior
of the algorithm.

Example 1 For our first test, we use the image
shown in Figure 3. This image was obtained from
a binary image by introducing 40% of salt and pep-
per noise. Salt and pepper noise presents a serious
problem for segmentation algorithms that use image
gradient information. This example, and others made
with synthetic data, show that the algorithm preserves
contrasts in the original image.
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Figure 3: Top: Original test noisy image; bottom: denoised
image.

Example 2 We consider a data set of images given
by the Institute of Biomedical Research in Light and
Image (IBILI), a research department of the Faculty
of Medicine of the University of Coimbra, that cor-
respond to real human eye fundus OCT data using
the high-definition spectral domain Cirrus OCT (Carl
Zeiss Meditec, Dublin, CA, USA). In our numeri-
cal tests, we considered 32 B-scans using the mac-
ular cube protocol from 32 eye fundus scans from 13
healthy volunteers, 3 eyes with choroidal neovascu-
larization, 2 with cystoid macular edema, 9 with dia-
betic retinopathy and 5 with age-related macular de-
generation. In Figure 4 we just present one of these
tests for a randomly chosen image.
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Figure 4: Top: Original OCT noisy image; bottom: de-
noised image.

Note the well-defined interface between the tissue
and the vitreous regions. This allows us to conclude
that the algorithm can be used not only to improve
visual assessments of medical images but also as a
preprocessor for image segmentation.



5 CONCLUSION AND FUTURE
WORK

In this work we consider an algorithm for integrat-
ing a mathematical model based on mean curvature
motion equation proposed in (Alvarez, Lions, Morel
1992) for image denoising. The scheme has good sta-
bility properties and can be implemented in parallel.
The application to despeckling optical coherence to-
mograms from the human retina show that the algo-
rithm can be used as a preprocessing stage for OCT
retina layer segmentation.

In the near future work we want to use well-
known speckle-reduction performance metrics (Sali-
nas, Fernández 2007) to compare this algoritm with
other filters, in particular with the nonlinear complex
diffusion filter considered in (Bernardes, Maduro,
Serranho, Araújo, Barbeiro Cunha-Vaz 2010). In ad-
dition to this particular area of application in the fun-
dus of the human eye, this filter may be applied as
well to different data sources corrupted with speckle
noise, such as medical ultrasound.
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